Generic placeholder image

Current Drug Research Reviews

Editor-in-Chief

ISSN (Print): 2589-9775
ISSN (Online): 2589-9783

Review Article

Therapeutic Potential of Green Synthesized Metallic Nanoparticles Against Staphylococcus aureus

Author(s): Meron Moges Tsegaye, Garima Chouhan*, Molla Fentie, Priya Tyagi and Parma Nand

Volume 13, Issue 3, 2021

Published on: 26 February, 2021

Page: [172 - 183] Pages: 12

DOI: 10.2174/2589977513666210226123920

Price: $65

Abstract

Background: The recent treatment challenges posed by the widespread emergence of pathogenic multidrug-resistant (MDR) bacterial strains cause huge health problems worldwide. Infections caused by MDR organisms are associated with longer periods of hospitalization, increased mortality, and inflated healthcare costs. Staphylococcus aureus is one of these MDR organisms identified as an urgent threat to human health by the World Health Organization. Infections caused by S. aureus may range from simple cutaneous infestations to life-threatening bacteremia. S. aureus infections easily escalate in severely ill, hospitalized, and or immunocompromised patients with an incapacitated immune system. Also, in HIV-positive patients, S. aureus ranks amongst one of the most common comorbidities where it can further worsen a patient’s health condition. At present, anti-staphylococcal therapy is typically reliant on chemotherapeutics that are gaining resistance and pose unfavorable side-effects. Thus, newer drugs are required that can bridge these shortcomings and aid effective control against S. aureus.

Objective: In this review, we summarize drug resistance exhibited by S. aureus, lacunae in current anti-staphylococcal therapy and nanoparticles as an alternative therapeutic modality. The focus lies on various green synthesized nanoparticles, their mode of action, and their application as potent antibacterial compounds against S. aureus.

Conclusion: The use of nanoparticles as anti-bacterial drugs has gained momentum in the recent past, and green synthesized nanoparticles, which involve microorganisms and plants or their byproducts for the synthesis of nanoparticles, offer a potent, as well as environment friendly solution in warfare against MDR bacteria.

Keywords: Green synthesis, metallic nanoparticles, antibacterial, Staphylococcus aureus, anti-staphylococcal therapy, biofilm formation.

Graphical Abstract

[1]
Samadi R, Ghalavand Z, Mirnejad R, Nikmanesh B, Eslami G. Antimicrobial resistance and molecular characteristics of methicillin-resistant Staphylococcus aureus isolates from children patients in iran. Infect Drug Resist 2019; 12: 3849-57.
[http://dx.doi.org/10.2147/IDR.S229394] [PMID: 31849502]
[2]
Ezeamagu C, Imanatue I, Dosunmu M, et al. Detection of methicillin resistant and toxin-associated genes in Staphylococcus aureus. Beni-Suef Univ J Basic Appl Sci 2017; 7(1): 92-7.
[http://dx.doi.org/10.1016/j.bjbas.2017.07.010]
[3]
Lin LC, Ge M-C, Liu TP, Lu JJ. Molecular epidemiological survey of prophages in MRSA isolates in taiwan. Infect Drug Resist 2020; 13: 635-41.
[http://dx.doi.org/10.2147/IDR.S238495] [PMID: 32158239]
[4]
Martín ML, Dassie SA, Valenti LE, Giacomelli CE. A simple surface biofunctionalization strategy to inhibit the biofilm formation by Staphylococcus aureus on solid substrates. Colloids Surf B Biointerfaces 2019; 183: 110432.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110432] [PMID: 31421403]
[5]
Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 2015; 28(3): 603-61.
[http://dx.doi.org/10.1128/CMR.00134-14] [PMID: 26016486]
[6]
Taramasso L, Tatarelli P, Di Biagio A, Taramasso L, Tatarelli P, Di Biagio A. Bloodstream infections in HIV-infected patients. Virulence 2016; 7(3): 320-8.
[http://dx.doi.org/10.1080/21505594.2016.1158359] [PMID: 26950194]
[7]
Furuno JP, Johnson JK, Schweizer ML, et al. Community-associated methicillin-resistant Staphylococcus aureus bacteremia and endocarditis among HIV patients: a cohort study. BMC Infect Dis 2011; 11(1): 298.
[http://dx.doi.org/10.1186/1471-2334-11-298] [PMID: 22040268]
[8]
Sakr A, Brégeon F, Mège JL, Rolain JM, Blin O. Staphylococcus aureus nasal colonization: An update on mechanisms, epidemiology, risk factors, and subsequent infections. Front Microbiol 2018; 9(9): 2419.
[http://dx.doi.org/10.3389/fmicb.2018.02419] [PMID: 30349525]
[9]
Saeed K, Gould I, Esposito S, et al. Corrigendum to ‘Panton-Valentine Leucocidin (PVL) Staphylococcus aureus a position statement from the International Society of Chemotherapy. Int J Antimicrob Agents 2018; 52(1): 125.
[http://dx.doi.org/10.1016/j.ijantimicag.2018.03.005] [PMID: 29571899]
[10]
Reid MJA, Steenhoff AP, Mannathoko N, et al. Staphylococcus aureus nasal colonization among HIV-infected adults in Botswana: prevalence and risk factors. AIDS Care 2017; 29(8): 961-5.
[http://dx.doi.org/10.1080/09540121.2017.1282600] [PMID: 28127988]
[11]
Sabbagh P, Riahi SM, Gamble HR, Rostami A. The global and regional prevalence, burden, and risk factors for methicillin-resistant Staphylococcus aureus colonization in HIV-infected people: A systematic review and meta-analysis. Am J Infect Control 2019; 47(3): 323-33.http://www.sciencedirect.com/science/article/pii/S0196655318307417
[http://dx.doi.org/10.1016/j.ajic.2018.06.023] [PMID: 30170767]
[12]
Wu CJ, Ko WC, Ho MW, et al. Prevalence of and risk factors for methicillin-resistant Staphylococcus aureus colonization among human immunodeficient virus-infected outpatients in Taiwan: oral Candida colonization as a comparator. J Oral Microbiol 2017; 9(1): 1322446.
[http://dx.doi.org/10.1080/20002297.2017.1322446] [PMID: 28748029]
[13]
Ma Y, Xu Y, Yestrepsky BD, et al. Novel inhibitors of Staphylococcus aureus virulence gene expression and biofilm formation. PLoS One 2012; 7(10): e47255.
[http://dx.doi.org/10.1371/journal.pone.0047255] [PMID: 23077578]
[14]
McGuinness WA, Malachowa N, DeLeo FR. Vancomycin Resistance in Staphylococcus aureus. Yale J Biol Med 2017; 90(2): 269-81.
[PMID: 28656013]
[15]
Kobayashi SD, Malachowa N, DeLeo FR. Pathogenesis of Staphylococcus aureus abscesses. Am J Pathol 2015; 185(6): 1518-27.
[http://dx.doi.org/10.1016/j.ajpath.2014.11.030] [PMID: 25749135]
[16]
Gordon RJ, Lowy FD. Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis 2008; 46(S5)(Suppl. 5): S350-9.
[http://dx.doi.org/10.1086/533591] [PMID: 18462090]
[17]
Spijk JN, Van , Schoster A, Wittenbrink MM, Schmitt S. A retrospective analysis of antimicrobial resistance in bacterial pathogens in an equine hospital ( 2012 – 2015 ). Schweizer Archiv für Tierheilkunde 2016; 158: 433-2.
[18]
Schneewind O, Fowler A, Faull KF. Structure of the cell wall anchor of surface proteins in Staphylococcus aureus. Sci 1995; 268(14): 1-6.
[http://dx.doi.org/10.1126/science.7701329]
[19]
Dweba CC, Zishiri OT, El Zowalaty ME. Methicillin-resistant Staphylococcus aureus: livestock-associated, antimicrobial, and heavy metal resistance. Infect Drug Resist 2018; 11: 2497-509.
[http://dx.doi.org/10.2147/IDR.S175967] [PMID: 30555249]
[20]
Manukumar HM, Umesha S. MALDI-TOF-MS based identification and molecular characterization of food associated aureus. Sci Rep 2017; (April): 1-16.
[http://dx.doi.org/10.1038/s41598-017-11597-z] [PMID: 28900246]
[21]
Price JR, Cole K, Bexley A, et al. Transmission of Staphylococcus aureus between health-care workers, the environment, and patients in an intensive care unit: a longitudinal cohort study based on whole-genome sequencing. Lancet Infect Dis 2017; 17(2): 207-14.
[http://dx.doi.org/10.1016/S1473-3099(16)30413-3] [PMID: 27863959]
[22]
Khan HA, Baig FK, Mehboob R. Nosocomial infections: Epidemiology, prevention, control and surveillance. Asian Pac J Trop Biomed 2017; 7(5): 478-82.
[http://dx.doi.org/10.1016/j.apjtb.2017.01.019]
[23]
Khairalla AS, Wasfi R, Ashour HM. Carriage frequency, phenotypic, and genotypic characteristics of aureus isolated from dental health- care personnel, patients, and environment. Sci Rep 2017; 7(April): 1-16.
[http://dx.doi.org/10.1038/s41598-017-07713-8] [PMID: 28784993]
[24]
Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ. Green synthesis of metallic nanoparticles via biological entities. Mater 2015; 8(11): 7278-308.http://www.ncbi.nlm.nih.gov/pubmed/28793638
[http://dx.doi.org/10.3390/ma8115377]
[25]
Rauwel P, Küünal S, Ferdov S, Rauwel E. A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Adv Mater Sci Eng 2015.
[http://dx.doi.org/10.1155/2015/682749]
[26]
Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2010; 2(4): 282-9.
[http://dx.doi.org/10.4103/0975-7406.72127] [PMID: 21180459]
[27]
Jahangirian H, Lemraski EG, Webster TJ, Rafiee MR, Abdollahi Y. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int J Nanomedicine 2017; 12: 2957-78.
[http://dx.doi.org/10.2147/IJN.S127683] [PMID: 28442906]
[28]
Hogan S, Zapotoczna M, Stevens NT, Humphreys H, O’Gara JP, O’Neill E. Potential use of targeted enzymatic agents in the treatment of Staphylococcus aureus biofilm-related infections. J Hosp Infect 2017; 96(2): 177-82.
[http://dx.doi.org/10.1016/j.jhin.2017.02.008] [PMID: 28351512]
[29]
Beloin C, Renard S, Ghigo JM, Lebeaux D. Novel approaches to combat bacterial biofilms. Curr Opin Pharmacol 2014; 18: 61-8.
[http://dx.doi.org/10.1016/j.coph.2014.09.005] [PMID: 25254624]
[30]
Sun F, Qu F, Ling Y, et al. Biofilm-associated infections: antibiotic resistance and novel therapeutic strategies. Future Microbiol 2013; 8(7): 877-86.
[http://dx.doi.org/10.2217/fmb.13.58] [PMID: 23841634]
[31]
Zhao X. Biofilm formation and control strategies of foodborne pathogens : food safety perspectives. RSC Adv 2017; 7(iii): 36670-83.
[http://dx.doi.org/10.1039/C7RA02497E]
[32]
Moormeier DE, Bayles KW. Micro review Staphylococcus aureus biofilm : a complex developmental organism. 2017; 104: 365-76.
[33]
Magana M, Sereti C, Ioannidis A, Mitchell CA, Ball AR, Magiorkinis E, et al. Options and limitations in clinical investigation of bacterial. Biofilms 2018; 31(3): 1-49.
[34]
Otto M. Staphylococcal Biofilms. Microbiol Spectr 2018; 6(4): 699-710.
[http://dx.doi.org/10.1128/microbiolspec.GPP3-0023-2018] [PMID: 30117414]
[35]
Novick RP, Geisinger E. Quorum sensing in staphylococci. Annu Rev Genet 2008; 42(1): 541-64.
[http://dx.doi.org/10.1146/annurev.genet.42.110807.091640] [PMID: 18713030]
[36]
Scherr TD, Heim CE, Morrison JM, Kielian T. Hiding in plain sight: interplay between staphylococcal biofilms and host immunity. Front Immunol 2014; 5: 37.
[http://dx.doi.org/10.3389/fimmu.2014.00037] [PMID: 24550921]
[37]
Arciola CR, Campoccia D, Montanaro L. Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol 2018; 16(7): 397-409.
[http://dx.doi.org/10.1038/s41579-018-0019-y] [PMID: 29720707]
[38]
Udo EE, Boswihi SS, Mathew B, et al. Emergence of methicillin-resistant Staphylococcus aureus belonging to clonal complex 15 (CC15-MRSA) in Kuwait hospitals. Infect Drug Resist 2020; 13: 617-26.
[http://dx.doi.org/10.2147/IDR.S237319] [PMID: 32110072]
[39]
De Aldecoa ALI, Zafra O, González-pastor JE. Mechanisms and regulation of extracellular dna release and its biological roles in microbial communities. Front Microbial 2017; 8(July): 1-19.
[40]
Kavanaugh JS, Flack CE, Lister J, et al. Identification of extracellular DNA-binding proteins in the biofilm matrix. mBio 2019; 10(3): e01137-219.
[http://dx.doi.org/10.1128/mbio.01137-19]
[41]
Nguyen D, Joshi DA, Lepine F, et al. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Sci 2011; 334(6058): 982-6.
[http://dx.doi.org/10.1126/science.1211037]
[42]
Reffuveille F, Josse J, Vallé Q, Mongaret C, Gangloff SC. Staphylococcus aureus biofilms and their impact on the medical field. The rise of virulence and antibiotic resistance in Staphylococcus aureus Intechopen 2017.
[http://dx.doi.org/10.5772/66380]
[43]
Bø K, Artal R, Barakat R, et al. Exercise and pregnancy in recreational and elite athletes: 2016 evidence summary from the IOC expert group meeting, Lausanne. Part 1-exercise in women planning pregnancy and those who are pregnant. Br J Sports Med 2016; 50(10): 571-89.
[http://dx.doi.org/10.1136/bjsports-2016-096218] [PMID: 27127296]
[44]
Hancock REW. Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr Opin Microbiol 2013; 16(5): 580-9.
[45]
Cook L, Chatterjee A, Barnes A, Yarwood J, Hu W, Dunny G. Biofilm growth alters regulation of conjugation by a bacterial pheromone. Mol Microbiol 2011; 81: 1499-510.
[http://dx.doi.org/10.1111/j.1365-2958.2011.07786.x]
[46]
Nguyen KT, Piastro K, Gray TA, Derbyshire KM. Mycobacterial biofilms facilitate horizontal DNA transfer between strains of Mycobacterium smegmatis. J Bacteriol 2010; 192(19): 5134-42.
[http://dx.doi.org/10.1128/JB.00650-10]
[47]
Stalder T, Top E. Plasmid transfer in biofilms: a perspective on limitations and opportunities. NPJ Biofilms Microbiomes 2016; 2: 16022.
[48]
Chinnambedu RS, Marimuthu RR, Sunil SS, Amrose P, Ramachandran V, Pachamuthu B. Changing antibiotic resistance profile of Staphylococcus aureus isolated from HIV patients (2012-2017) in Southern India. J Infect Public Health 2020; 13(1): 75-9.
[http://dx.doi.org/10.1016/j.jiph.2019.06.015] [PMID: 31402312]
[49]
Lee J, Bae Y, Lee S, Lee S. Biofilm formation of staphylococcus aureus on various surfaces and their resistance to chlorine sanitizer. J Food Sci 2015; 80(10): M2279-86.
[50]
Rajput A, Thakur A, Sharma S, Kumar M. a Biofilm : A resource of anti-biofilm agents and their potential implications in targeting antibiotic drug resistance. Nucleic Acids Res 2018; 46: 894-900.
[51]
Assis LM, Nedeljković M, Dessen A. New strategies for targeting and treatment of multi-drug resistant Staphylococcus aureus. Drug Resist Updat 2017; 31: 1-14.
[http://dx.doi.org/10.1016/j.drup.2017.03.001] [PMID: 28867240]
[52]
Welte T, Kantecki M, Stone GG, Hammond J. Ceftaroline fosamil as a potential treatment option for Staphylococcus aureus community-acquired pneumonia in adults. Int J Antimicrob Agents 2019; 54(4): 410-22.
[http://dx.doi.org/10.1016/j.ijantimicag.2019.08.012] [PMID: 31404620]
[53]
Shahiwala AF, Khan GA, Bostanooei NM. Efficacy of Levofloxacin , Chitosan and EDTA Combination against Methicillin Resistant Staphylococcus aureus Skin Infections : in vitro and in vivo evaluations. Int J Med Microbiol 2017; 1: 2-7.
[54]
Sultana N, Shafia S, Sultana SN, Habib Ur Rehman I, Kokiwar P, Stephen AS. Study of relation between prescribing pattern and antibiotic resistance pattern in a tertiary care hospital. Indo Am J Pharm 2015; 5(02): 1-6.
[55]
Kapoor G, Saigal S, Elongavan A. Action and resistance mechanisms of antibiotics: A guide for clinicians. J Anaesthesiol Clin Pharmacol 2017; 33(3): 300-5.
[http://dx.doi.org/10.4103/joacp.JOACP_349_15] [PMID: 29109626]
[56]
Soleimani M, Habibi-Pirkoohi M. Antimicrobial effect of silver nanoparticles on Staphylococcus aureus. GMJ 2016; 5(4): 200-7.
[57]
Ahmed S, Ahmad M, Swami BL, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 2016; 7(1): 17-28.
[http://dx.doi.org/10.1016/j.jare.2015.02.007] [PMID: 26843966]
[58]
Chukwudi CU. rRNA binding sites and the molecular mechanism of action of the Tetracyclines. Antimicrob Agents Chemother 2016; 60(8): 4433-41.
[59]
Hooper DC, Jacoby GA. Topoisomerase inhibitors: fluoroquinolone mechanisms of action and resistance. Cold Spring Harb Perspect Med 2016; 6(9): a025320.
[60]
Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev 2013; 65(13-14): 1803-15.
[http://dx.doi.org/10.1016/j.addr.2013.07.011] [PMID: 23892192]
[61]
Allen HK, Trachsel J, Looft T, Casey TA. Finding alternatives to antibiotics. Ann N Y Acad Sci 2014; 1323: 91-100.
[http://dx.doi.org/10.1111/nyas.12468] [PMID: 24953233]
[62]
Foster TJ. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol Rev 2017; 41(3): 430-49.
[http://dx.doi.org/10.1093/femsre/fux007] [PMID: 28419231]
[63]
Lewis K. New approaches to antimicrobial discovery. Biochem Pharmacol 2017; 134: 87-98.
[http://dx.doi.org/10.1016/j.bcp.2016.11.002] [PMID: 27823963]
[64]
Frieri M, Kumar K, Boutin A. Antibiotic resistance. J Infect Public Health 2017; 10(4): 369-78.
[http://dx.doi.org/10.1016/j.jiph.2016.08.007] [PMID: 27616769]
[65]
Handzlik J, Matys A, Kieć-kononowicz K. Recent advances in Multi-Drug Resistance (MDR) efflux pump inhibitors of Gram-positive bacteria S. aureus. Antibiotics (Basel) 2013; 2(1): 28-45.
[66]
Choo EJ, Chambers HF. Treatment of methicillin-resistant Staphylococcus aureus bacteremia. Infect Chemother 2016; 48(4): 267-73.
[http://dx.doi.org/10.3947/ic.2016.48.4.267] [PMID: 28032484]
[67]
Rahi A, Kazemeini H, Jafariaskari S, Seif A, Hosseini S, Safarpoor Dehkordi F. Genotypic and phenotypic-based assessment of antibiotic resistance and profile of Staphylococcal cassette chromosome mec in the methicillin-resistant Staphylococcus aureus recovered from raw milk. Infect Drug Resist 2020; 13: 273-83.
[PMID: 32099419]
[68]
Chaves TP, Eveline R, Pinheiro E, et al. Industrial crops & products essential oil of Eucalyptus camaldulensis Dehn potentiates β -lactam activity against Staphylococcus aureus and Escherichia coli resistant strains. Ind Crop Prod 2018; 112: 70-4.
[http://dx.doi.org/10.1016/j.indcrop.2017.10.048]
[69]
Kong C, Neoh HM, Nathan S. Targeting Staphylococcus aureus toxins: a potential form of anti-virulence therapy. Toxins (Basel) 2016; 8(3): E72.
[PMID: 26999200]
[70]
Sirelkhatim A, Mahmud S, Seeni A, et al. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett 2015; 7(3): 219-42.
[http://dx.doi.org/10.1007/s40820-015-0040-x] [PMID: 30464967]
[71]
Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arab J Chem 2017.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[72]
Aderibigbe BA, Mukaya HE. Polymer Therapeutics : Design , Application , and Pharmacokinetics. Nano- and Microscale Drug Delivery Systems 2017; 33-48.
[73]
Pelaz P del P. Nanobiotechnology.Zaragoza, Spain: Elsevier 2012; pp. 307-416.
[74]
Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 2017; 12: 1227-49.
[http://dx.doi.org/10.2147/IJN.S121956] [PMID: 28243086]
[75]
Li X, Xu H, Chen Z, Chen G. Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater 2011; 2011: 270974.
[http://dx.doi.org/10.1155/2011/270974]
[76]
Akbar S, Tauseef I, Subhan F, et al. An overview of the plant-mediated synthesis of zinc oxide nanoparticles and their antimicrobial potential. Inorg Nano-Metal Chem 2020; 50(4): 257-71.
[http://dx.doi.org/10.1080/24701556.2019.1711121]
[77]
Parveen K, Banse V, Ledwani L. Green synthesis of nanoparticles: their advantages and disadvantages. AIP Conf Proc 2016; 1724.
[http://dx.doi.org/10.1063/1.4945168]
[78]
Velusamy P, Kumar GV, Jeyanthi V, Das J, Pachaiappan R. Bio-inspired green nanoparticles: synthesis, mechanism, and antibacterial application. Toxicol Res 2016; 32(2): 95-102.
[http://dx.doi.org/10.5487/TR.2016.32.2.095] [PMID: 27123159]
[79]
Panchal P, Paul DR, Sharma A, Choudhary P, Meena P, Nehra SP. Biogenic mediated Ag/ZnO nanocomposites for photocatalytic and antibacterial activities towards disinfection of water. J Colloid Interface Sci 2020; 563: 370-80.
[http://dx.doi.org/10.1016/j.jcis.2019.12.079] [PMID: 31887701]
[80]
Srikar SK, Giri DD, Pal DB, Upadhyay SN, Mishra PK. Green synthesis of silver nanoparticles: a review. Green Sustain Chem 2016; 06(01): 34-56.
[http://dx.doi.org/10.4236/gsc.2016.61004]
[81]
Jagathesan G, Rajiv P. Biosynthesis and characterization of iron oxide nanoparticles using Eichhornia crassipes leaf extract and assessing their antibacterial activity. Biocatal Agric Biotechnol 2018; 13: 90-4.
[http://dx.doi.org/10.1016/j.bcab.2017.11.014]
[82]
Surti A, Ansari R. Characterization of dye degrading potential of suspended and nanoparticle immobilized cells of Pseudomonas aeruginosa Ar-7. J Microbiol Biotechnol Food Sci 2018; 8(2): 774-80.
[http://dx.doi.org/10.15414/jmbfs.2018.8.2.774-780]
[83]
Das RK, Pachapur VL, Lonappan L, et al. Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects. Nanotechnol Environ Eng 2017; 2(1): 18.http://link.springer.com/10.1007/s41204-017-0029-4
[http://dx.doi.org/10.1007/s41204-017-0029-4]
[84]
Mahdavi B, Saneei S, Qorbani M, Zhaleh M. Ziziphora clinopodioides Lam leaves aqueous extract mediated synthesis of zinc nanoparticles and their antibacterial, antifungal, cytotoxicity, antioxidant, and cutaneous wound healing properties under in vitro and in vivo conditions. Appl Organomet Chem 2019; e5164: 1-16.
[http://dx.doi.org/10.1002/aoc.5164]
[85]
Aadil KR, Pandey N, Mussatto SI, Jha H. Green synthesis of silver nanoparticles using acacia lignin, their cytotoxicity, catalytic, metal ion sensing capability and antibacterial activity. J Environ Chem Eng 2019; 7(5): 103296.
[http://dx.doi.org/10.1016/j.jece.2019.103296]
[86]
Vijayakumar S, Krishnakumar C, Arulmozhi P, Mahadevan S, Parameswari N. Biosynthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from leaf extract of Glycosmis pentaphylla (Retz.) DC. Microb Pathog 2018; 116: 44-8.
[http://dx.doi.org/10.1016/j.micpath.2018.01.003] [PMID: 29330059]
[87]
Gavamukulya Y, Maina EN, Meroka AM, et al. Green synthesis and characterization of highly stable silver nanoparticles from ethanolic extracts of fruits of Annona muricata. J Inorg Organomet Polym Mater 2020; 30(4): 123142.
[http://dx.doi.org/10.1007/s10904-019-01262-5]
[88]
Nadeem M, Abbasi BH, Younas M, Ahmad W, Khan T. A review of the green syntheses and anti-microbial applications of gold nanoparticles. Green Chem Lett Rev 2017; 10(4): 216-27.
[http://dx.doi.org/10.1080/17518253.2017.1349192]
[89]
Singh T, Shukla S, Kumar P, Wahla V, Bajpai VK. Application of nanotechnology in food science: perception and overview. Front Microbiol 2017; 8: 1501.
[http://dx.doi.org/10.3389/fmicb.2017.01501] [PMID: 28824605]
[90]
Singh P, Kim YJ, Zhang D, Yang DC. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 2016; 34(7): 588-99.
[http://dx.doi.org/10.1016/j.tibtech.2016.02.006] [PMID: 26944794]
[91]
Jeronsia JE, Joseph LA, Vinosha PA, Mary AJ, Das SJ. Camellia sinensis leaf extract mediated synthesis of copper oxide nanostructures for potential biomedical applications. Mater Today Proc 2019; 8: 214-22.
[http://dx.doi.org/10.1016/j.matpr.2019.02.103]
[92]
Haneefa M, Jayandran M, Balasubramanian V. Evaluation of antimicrobial activity of green-synthesized manganese oxide nanoparticles and comparative studies with curcuminaniline functionalized nanoform. Asian J Pharm Clin Res 2017; 10(3): 347.
[93]
Mishra V, Sharma R, Jasuja ND, et al. A review on green synthesis of nanoparticles and evaluation of antimicrobial activity. Int J Green Herb Chem 2014; 3: 81-94.
[94]
Nikaido H. Multidrug resistance in bacteria. Annu Rev Biochem 2009; 78(1): 119-46.
[http://dx.doi.org/10.1146/annurev.biochem.78.082907.145923] [PMID: 19231985]
[95]
Mohammadi G, Valizadeh H, Barzegar-Jalali M, et al. Development of azithromycin-PLGA nanoparticles: physicochemical characterization and antibacterial effect against Salmonella typhi. Colloids Surf B Biointerfaces 2010; 80(1): 34-9.
[http://dx.doi.org/10.1016/j.colsurfb.2010.05.027] [PMID: 20558048]
[96]
Sing A, Gautam PK, Verma A, et al. Green synthesis of Metalic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections. A review. Biotechnol Rep 2020; 25: e00427.
[http://dx.doi.org/10.1016/j.btre.2020.e00427] [PMID: 32055457]
[97]
Sondi I, Salopek-sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 2004; 275(1): 177-82.
[98]
Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic basis of antimicrobial actions od Silver nanoparticles. Front Microbiol 2016; 7: 1831.
[http://dx.doi.org/10.3389/fmicb.2016.01831] [PMID: 27899918]
[99]
Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A. Antimicrobial activity of metal oxide nanoparticles against Gram- positive and Gram-negative bacteria: a comparative study. Int J Nanomedicine 2012; 7: 6003-9.
[http://dx.doi.org/10.2147/IJN.S35347] [PMID: 23233805]
[100]
Egger S, Lehmann RP, Height MJ, et al. Antimicrobial properties of a novel silver-silica nanocomposite material. Appl Environ Microbiol 2009; 75(9): 2973-6.
[http://dx.doi.org/10.1128/AEM.01658-08] [PMID: 19270121]
[101]
Haris Z, Ahmad I. Impact of metal oxide nanoparticles on beneficial soil microorganisms and their secondary metabolites. Int J Life Sci Scienti Res 2017; 3: 1020-30.
[http://dx.doi.org/10.21276/ijlssr.2017.3.3.10]
[102]
Ahamed M, Alhadlaq HA, Khan MAM, Karuppiah P, Al-dhabi NA. Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles. J Nanomater 2014; 2014: 1-4.
[103]
Mamat MH, Khusaimi Z, Musa MF, Rusop M. Fabrication of ultraviolet photoconductive sensor using a novel aluminium-doped Zinc oxide nanorod-nanoflake network thin film prepared via ultrasonic-assisted sol-gel and immersion methods. Sens Actuators A Phys 2011; 171(2): 241-7.
[104]
Yugandhar T. Vasavi, P. Uma, M. Devi, Bioinspired green synthesis of copper oxide nanoparticles from Syzygium alternifolium (Wt. ) Walp: characterization and evaluation of its synergistic antimicrobial and anticancer activity. Appl Nanosci 2017; 7: 417-27.
[http://dx.doi.org/10.1007/s13204-017-0584-9]
[105]
Borkow G. Using copper to fight microorganisms. Curr Chem Biol 2012; 6: 93-103.
[http://dx.doi.org/10.2174/187231312801254723]
[106]
Mahapatra M. Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomedicine 2013; 8: 4467-79.
[107]
Leung YH, Ng AMC, Xu X, et al. Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli. Small 2014; 10(6): 1171-83.
[http://dx.doi.org/10.1002/smll.201302434] [PMID: 24344000]
[108]
Datta A, Patra C, Bharadwaj H, Kaur S, Dimri N, Khajuria R. Green synthesis of zinc oxide nanoparticles using Parthenium hysterophorus leaf extract and evaluation of their antibacterial properties. J Biotechnol Biomater 2017; 7(3): 3-7.
[http://dx.doi.org/10.4172/2155-952X.1000271]
[109]
Gholami M, Shahzamani K, Marzban A, Lashgarian HE. Evaluation of antimicrobial activity of synthesised silver nanoparticles using Thymus kotschyanus aqueous extract. IET Nanobiotechnol 2018; 12(8): 1114-7.
[http://dx.doi.org/10.1049/iet-nbt.2018.5110] [PMID: 30964023]
[110]
Feris K, Otto C, Tinker J, et al. Electrostatic interactions affect nanoparticle-mediated toxicity to gram-negative bacterium Pseudomonas aeruginosa PAO1. Langmuir 2010; 26(28): 4429-36.
[111]
Skandalis N, Dimopoulou A, Georgopoulou A, et al. The effect of silver nanoparticles size, produced using plant extract from Arbutus unedo, on their antibacterial efficacy. Nanomaterials (Basel) 2017; 7(7): E178.
[http://dx.doi.org/10.3390/nano7070178] [PMID: 28698511]
[112]
Anandan M, Poorani G, Boomi P, Varunkumar K, Anand K, Chuturgoon AA. Green synthesis of anisotropic silver nanoparticles from the aqueous leaf extract of Dodonaea viscosa with their antibacterial and anticancer activities. Process Biochem 2019; 80: 80-8.
[http://dx.doi.org/10.1016/j.procbio.2019.02.014]
[113]
Gopinath V, MubarakAli D, Priyadarshini S, Priyadharsshini NM, Thajuddin N, Velusamy P. Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach. Colloids Surf B Biointerfaces 2012; 96: 69-74.
[http://dx.doi.org/10.1016/j.colsurfb.2012.03.023] [PMID: 22521683]
[114]
Baruah D, Yadav RNS, Yadav A, Das AM, Moni A. Alpinia nigra fruits mediated synthesis of silver nanoparticles and their antimicrobial and photocatalytic activities. J Photochem Photobiol B 2019; 201: 111649.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111649] [PMID: 31710925]
[115]
Sharmila G, Thirumarimurugan M, Muthukumaran C. Green synthesis of ZnO nanoparticles using Tecoma castanifolia leaf extract: characterization and evaluation of its antioxidant, bactericidal and anticancer activities. 2019; 145: 578-87.
[116]
Patil BN, Taranath TC. Limonia acidissima L. leaf mediated synthesis of silver and zinc oxide nanoparticles and their antibacterial activities. Microb Pathog 2018; 115: 227-32.
[http://dx.doi.org/10.1016/j.micpath.2017.12.035] [PMID: 29248515]
[117]
Saravanakumar K, Chelliah R, Shanmugam S, et al. Green synthesis and characterization of biologically active nanosilver from seed extract of Gardenia jasminoides Ellis. J Photochem Photobiol B 2018; 185: 126-35.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.05.032] [PMID: 29886331]
[118]
Saha R, Subramani K, Petchi Muthu Raju SAK, Rangaraj S, Venkatachalam R. Psidium guajava leaf extract-mediated synthesis of ZnO nanoparticles under different processing parameters for hydrophobic and antibacterial finishing over cotton fabrics. 2018; 124: 80-91.
[119]
Chandra H, Patel D, Kumari P, Jangwan JS, Yadav S. Phyto-mediated synthesis of zinc oxide nanoparticles of Berberis aristata: Characterization, antioxidant activity and antibacterial activity with special reference to urinary tract pathogens. Mater Sci Eng C Mater Biol Appl 2019; 102: 212-20.
[120]
Irshad S, Salamat A, Anjum AA, Sana S, Saleem RS, Naheed A, et al. Green tea leaves mediated ZnO nanoparticles and its antimicrobial activity. Cogent Chem 2018; 4(1): 1-11.
[http://dx.doi.org/10.1080/23312009.2018.1469207]
[121]
Naseem T, Farrukh MA. Antibacterial activity of green synthesis of iron nanoparticles using Lawsonia inermis and Gardenia jasminoides leaves extract. J Chem 2015; 2015: 1-7.
[http://dx.doi.org/10.1155/2015/912342]
[122]
Xie Y, He Y, Irwin PL, Jin T, Shi X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol 2011; 77(7): 2325-31.
[http://dx.doi.org/10.1128/AEM.02149-10] [PMID: 21296935]
[123]
Naika HR, Lingaraju K, Manjunath K, Kumar D, Nagaraju G, Suresh D, et al. Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. J Taibah Univ Sci 2015; 9(1): 7-12.
[http://dx.doi.org/10.1016/j.jtusci.2014.04.006]
[124]
Green tea (Camellia sinensis) mediated synthesis of zinc oxide (ZnO) nanoparticles and studies on their antimicrobial activities. Int J Pharm Pharm Sci 2014; 6(6): 461-5.
[125]
Pandimurugan R, Thambidurai S. Novel seaweed capped ZnO nanoparticles for effective dye photodegradation and antibacterial activity. Adv Powder Technol 2016; 27(4): 1062-72.
[http://dx.doi.org/10.1016/j.apt.2016.03.014]
[126]
Singhal G, Bhavesh R, Kasariya K, Sharma AR, Singh RP. Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. J Nanopart Res 2011; 13(7): 2981-8.
[http://dx.doi.org/10.1007/s11051-010-0193-y]
[127]
Parmar S. Amit Gangwal NSD. Synthesis of plant mediated silver nanoparticles and antimicrobial activity in Cucumis sativa. J Nat Prod Plant Resour 2011; 2(4): 373-83.
[128]
Govindaraju K, Tamilselvan S, Kiruthiga V, Singaravelu G. Biogenic silver nanoparticles by Solanum torvum and their promising antimicrobial activity. J Biopestic 2010; 3(1 SPEC.ISSUE): 394-9.
[129]
Harinee S, Muthukumar K, Dahms HU, et al. Biocompatible nanoparticles with enhanced photocatalytic and anti-microfouling potential. Int Biodeterior Biodegradation 2019; 145: 104790.
[http://dx.doi.org/10.1016/j.ibiod.2019.104790]
[130]
Singh T, Jyoti K, Patnaik A, Singh A, Chauhan R, Chandel SS. Biosynthesis, characterization and antibacterial activity of silver nanoparticles using an endophytic fungal supernatant of Raphanus sativus. J Genet Eng Biotechnol 2017; 15(1): 31-9.
[http://dx.doi.org/10.1016/j.jgeb.2017.04.005] [PMID: 30647639]
[131]
Wilson A, Prabukumar S, Sathishkumar G, Sivaramakrishnan S. Aspergillus flavus mediated silver nanoparticles synthesis and evaluation of its antimicrobial activity against different human pathogens. Int J Appl Pharm 2016; 8(4): 43-6.
[http://dx.doi.org/10.22159/ijap.2016v8i4.13930]
[132]
Rajakumar G, Rahuman AA, Roopan SM, et al. Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy Fungus-mediated biosynthesis and characterization of TiO 2 nanoparticles and their activity against pathogenic bacteria. Spectrochim Acta Part A Mol Biomol Spectrosc 2012; 91: 23-9.
[http://dx.doi.org/10.1016/j.saa.2012.01.011] [PMID: 22349888]
[133]
Singh R, Wagh P, Wadhwani S, et al. Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. Int J Nanomedicine 2013; 8: 4277-90.
[134]
Raliya R, Tarafdar JC. ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L.). Agric Res 2013; 2: 48-57.
[135]
Fayaz M, Tiwary CS, Kalaichelvan PT, Venkatesan R. Blue orange light emission from biogenic synthesized silver nanoparticles using Trichoderma viride. Colloids Surf B Biointerfaces 2010; 75: 175-8.
[136]
Musarrat J, Dwivedi S, Singh BR, Al-Khedhairy AA, Azam A, Naqvi A. Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Bioresour Technol 2010; 101(22): 8772-6.
[http://dx.doi.org/10.1016/j.biortech.2010.06.065] [PMID: 20619641]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy