Generic placeholder image

Current Drug Research Reviews

Editor-in-Chief

ISSN (Print): 2589-9775
ISSN (Online): 2589-9783

Review Article

Potential Drugs for the Treatment of COVID-19: Synthesis, Brief History and Application

Author(s): Ekhlass Uddin, Raisul Islam, Ashrafuzzaman, Nur Amin Bitu, Md. Saddam Hossain, ABM Nazmul Islam, Ali Asraf, Faruk Hossen, Ranjan K Mohapatra and Md. Kudrat-E-Zahan*

Volume 13, Issue 3, 2021

Published on: 11 June, 2021

Page: [184 - 202] Pages: 19

DOI: 10.2174/2589977513666210611155426

Price: $65

Abstract

Coronaviruses (CoVs) belong to the Betacoronavirus group, an unusually large RNA genome characterized by club-like spikes that project from their surface. An outbreak of a novel coronavirus 2019 (nCOVID-19) already showed a unique replication strategy and infection that has posed significant threat to international health and the economy around the globe. Scientists around the world are investigating few previously used clinical drugs for the treatment of COVID-19. This review provides synthesis and mode of action of recently investigated drugs like Chloroquine, Hydroxychloroquine, Ivermectin, Selamectin, Remdesivir, Baricitinib, Darunavir, Favipiravir, Lopinavir/ ritonavir and Mefloquine hydrochloride that constitute an option for COVID-19 treatment.

Keywords: Coronavirus, nCOVID-19, drug synthesis, antiviral therapies, pandemic disease, COVID-19 treatment.

Graphical Abstract

[1]
Wang L-F, Shi Z, Zhang S, Field H, Daszak P, Eaton BT. Review of bats and SARS. Emerg Infect Dis 2006; 12(12): 1834-40.
[http://dx.doi.org/10.3201/eid1212.060401] [PMID: 17326933]
[2]
Ge X-Y, Li JL, Yang XL, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 2013; 503(7477): 535-8.
[http://dx.doi.org/10.1038/nature12711] [PMID: 24172901]
[3]
Alanagreh L, Alzoughool F, Atoum M. The human coronavirus disease COVID-19: its origin, characteristics, and insights into potential drugs and its mechanisms. Pathogens 2020; 9(5): 331.
[http://dx.doi.org/10.3390/pathogens9050331] [PMID: 32365466]
[4]
Yoo J-H. The fight against the 2019-nCoV outbreak: an arduous march has just begun. J Korean Med Sci 2020; 35(4): e56.
[http://dx.doi.org/10.3346/jkms.2020.35.e56] [PMID: 31997618]
[5]
Rismanbaf A. Potential treatments for COVID-19; a narrative literature review. Arch Acad Emerg Med 2020; 8(1): e29.
[PMID: 32232214]
[6]
Liu N-N, Tan JC, Li J, Li S, Cai Y, Wang H. COVID-19 pandemic: experiences in China and implications for its prevention and treatment worldwide. Curr Cancer Drug Targets 2020; 20(6): 410-6.
[http://dx.doi.org/10.2174/1568009620666200414151419] [PMID: 32286947]
[7]
Costanzo M, De Giglio MAR, Roviello GN. SARS-CoV-2: recent reports on antiviral therapies based on lopinavir/ritonavir, darunavir/umifenovir, hydroxychloroquine, remdesivir, favipiravir and other drugs for the treatment of the new coronavirus. Curr Med Chem 2020; 27(27): 4536-41.
[http://dx.doi.org/10.2174/0929867327666200416131117] [PMID: 32297571]
[8]
Sharma AK, Sharma V, Sharma A, Pallikkuth S, Sharma AK. Current paradigms in COVID-19 research: proposed treatment strategies, recent trends and future directions. Curr Med Chem 2021; 28(16): 3173-92.
[http://dx.doi.org/10.2174/0929867327666200711153829] [PMID: 32651959]
[9]
Kebede T, Kumar D, Sharma PK. Potential drug options for treatment of COVID-19: a review. Coronaviruses 2020; 1(1): 42-8.
[10]
White NJ, Pukrittayakamee S, Hien TT, Faiz MA, Mokuolu OA, Dondorp AM. Malaria. Lancet 2014; 383(9918): 723-35.
[http://dx.doi.org/10.1016/S0140-6736(13)60024-0] [PMID: 23953767]
[11]
Plantone D, Koudriavtseva T. Current and future use of chloroquine and hydroxychloroquine in infectious, immune, neoplastic, and neurological diseases: a mini-review. Clin Drug Investig 2018; 38(8): 653-71.
[http://dx.doi.org/10.1007/s40261-018-0656-y] [PMID: 29737455]
[12]
Rynes RI. Antimalarial therapy and lupus. Macmillan 1993.
[13]
Tanenbaum L, Tuffanelli DL. Antimalarial agents. Chloroquine, hydroxychloroquine, and quinacrine. Arch Dermatol 1980; 116(5): 587-91.
[http://dx.doi.org/10.1001/archderm.1980.01640290097026] [PMID: 6990871]
[14]
Sundelin SP, Terman A. Different effects of chloroquine and hydroxychloroquine on lysosomal function in cultured retinal pigment epithelial cells. APMIS 2002; 110(6): 481-9.
[http://dx.doi.org/10.1034/j.1600-0463.2002.100606.x] [PMID: 12193209]
[15]
Ferrari V, Cutler DJ. Kinetics and thermodynamics of chloroquine and hydroxychloroquine transport across the human erythrocyte membrane. Biochem Pharmacol 1991; 41(1): 23-30.
[http://dx.doi.org/10.1016/0006-2952(91)90006-Q] [PMID: 1986742]
[16]
Krafts K, Hempelmann E, Skórska-Stania A. From methylene blue to chloroquine: a brief review of the development of an antimalarial therapy. Parasitol Res 2012; 111(1): 1-6.
[http://dx.doi.org/10.1007/s00436-012-2886-x] [PMID: 22411634]
[17]
Salazar-Bookaman MM, Wainer I, Patil PN. Relevance of drug-melanin interactions to ocular pharmacology and toxicology. J Ocul Pharmacol Ther 1994; 10(1): 217-39.
[http://dx.doi.org/10.1089/jop.1994.10.217]
[18]
Al-Bari MAA. Chloroquine analogues in drug discovery: new directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J Antimicrob Chemother 2015; 70(6): 1608-21.
[http://dx.doi.org/10.1093/jac/dkv018] [PMID: 25693996]
[19]
Hobbs HE, Sorsby A, Freedman A. Retinopathy following chloroquine therapy. Lancet 1959; 2(7101): 478-80.
[http://dx.doi.org/10.1016/S0140-6736(59)90604-X] [PMID: 14402143]
[20]
Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents 2020; 55(5): 105938.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105938] [PMID: 32171740]
[21]
McChesney EW. Animal toxicity and pharmacokinetics of hydroxychloroquine sulfate. Am J Med 1983; 75(1A): 11-8.
[http://dx.doi.org/10.1016/0002-9343(83)91265-2] [PMID: 6408923]
[22]
Biot C, Daher W, Chavain N, et al. Design and synthesis of hydroxyferroquine derivatives with antimalarial and antiviral activities. J Med Chem 2006; 49(9): 2845-9.
[http://dx.doi.org/10.1021/jm0601856] [PMID: 16640347]
[23]
Choudhary R, Sharma AK. Potential use of hydroxychloroquine, ivermectin and azithromycin drugs in fighting COVID-19: trends, scope and relevance. New Microbes New Infect 2020; 35: 100684.
[http://dx.doi.org/10.1016/j.nmni.2020.100684] [PMID: 32322397]
[24]
Ferner RE, Aronson JK. Chloroquine and hydroxychloroquine in COVID-19. BMJ 2020; 369: m1432.
[25]
Campbell W, Burg RW, Fisher MH, Dybas RA. The discovery of ivermectin and other avermectins. In: Magee PS, Kohn GK, Menn JJ. Pesticide Synthesis Through Rational Approaches. Washington DC, USA: ACS Publications 1984; 225: pp. 5-20.
[http://dx.doi.org/10.1021/bk-1984-0255.ch001]
[26]
Liu X, Sun Q, Wang H, Zhang L, Wang JY. Microspheres of corn protein, zein, for an ivermectin drug delivery system. Biomaterials 2005; 26(1): 109-15.
[http://dx.doi.org/10.1016/j.biomaterials.2004.02.013] [PMID: 15193886]
[27]
Lanusse C, Lifschitz A, Virkel G, et al. Comparative plasma disposition kinetics of ivermectin, moxidectin and doramectin in cattle. J Vet Pharmacol Ther 1997; 20(2): 91-9.
[http://dx.doi.org/10.1046/j.1365-2885.1997.00825.x] [PMID: 9131534]
[28]
Kar SK, Mania J, Patnaik S. The use of ivermectin for scabies. Natl Med J India 1994; 7(1): 15-6.
[PMID: 8156025]
[29]
Omura S. Ivermectin: 25 years and still going strong. Int J Antimicrob Agents 2008; 31(2): 91-8.
[http://dx.doi.org/10.1016/j.ijantimicag.2007.08.023] [PMID: 18037274]
[30]
Bourguinat C, Pion SD, Kamgno J, et al. Genetic selection of low fertile Onchocerca volvulus by ivermectin treatment. PLoS Negl Trop Dis 2007; 1(1): e72.
[http://dx.doi.org/10.1371/journal.pntd.0000072] [PMID: 17989786]
[31]
Õmura S, Crump A. The life and times of ivermectin - a success story. Nat Rev Microbiol 2004; 2(12): 984-9.
[http://dx.doi.org/10.1038/nrmicro1048] [PMID: 15550944]
[32]
Varghese FS, Kaukinen P, Gläsker S, et al. Discovery of berberine, abamectin and ivermectin as antivirals against chikungunya and other alphaviruses. Antiviral Res 2016; 126: 117-24.
[http://dx.doi.org/10.1016/j.antiviral.2015.12.012] [PMID: 26752081]
[33]
Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res 2020; 178: 104787.
[http://dx.doi.org/10.1016/j.antiviral.2020.104787] [PMID: 32251768]
[34]
Şimşek Yavuz S, Ünal S. Antiviral treatment of COVID-19. Turk J Med Sci 2020; 50(SI-1): 611-9.
[http://dx.doi.org/10.3906/sag-2004-145] [PMID: 32293834]
[35]
Patrì A, Fabbrocini G. Hydroxychloroquine and ivermectin: A synergistic combination for COVID-19 chemoprophylaxis and treatment? J Am Acad Dermatol 2020; 82(6): e221.
[http://dx.doi.org/10.1016/j.jaad.2020.04.017] [PMID: 32283237]
[36]
Navarro M, Camprubí D, Requena-Méndez A, et al. Safety of high-dose ivermectin: a systematic review and meta-analysis. J Antimicrob Chemother 2020; 75(4): 827-34.
[http://dx.doi.org/10.1093/jac/dkz524] [PMID: 31960060]
[37]
Yang SNY, Atkinson SC, Wang C, et al. The broad spectrum antiviral ivermectin targets the host nuclear transport importin α/β1 heterodimer. Antiviral Res 2020; 177: 104760.
[http://dx.doi.org/10.1016/j.antiviral.2020.104760] [PMID: 32135219]
[38]
Iannino F, Iannetti L, Paganico D, Podaliri Vulpiani M. Evaluation of the efficacy of selamectin spot-on in cats infested with Aelurostrongylus abstrusus (Strongylida, Filariodidae) in a Central Italy cat shelter. Vet Parasitol 2013; 197(1-2): 258-62.
[http://dx.doi.org/10.1016/j.vetpar.2013.04.042] [PMID: 23743419]
[39]
Lan J, Fu Y, Yang Z, et al. Treatment and prevention of natural heartworm (Dirofilaria immitis) infections in red pandas (Ailurus fulgens) with selamectin and ivermectin. Parasitol Int 2012; 61(2): 372-4.
[http://dx.doi.org/10.1016/j.parint.2012.01.006] [PMID: 22306025]
[40]
Vatta AF, Everett WR, Holzmer SJ, et al. Efficacy of a new spot-on formulation of selamectin plus sarolaner for cats against adult Ctenocephalides felis, flea egg production and adult flea emergence. Vet Parasitol 2017; 238( Suppl. 1): S22-6.
[http://dx.doi.org/10.1016/j.vetpar.2017.02.026] [PMID: 28395752]
[41]
Vatta AF, Young DR, Everett WR, et al. Efficacy of a new topical formulation containing selamectin plus sarolaner against three common tick species infesting cats in the United States. Vet Parasitol 2019; 270( Suppl. 1): S19-25.
[http://dx.doi.org/10.1016/j.vetpar.2018.10.013] [PMID: 30470637]
[42]
Banks BJ, Bishop BF, Evans NA, et al. Avermectins and flea control: structure-activity relationships and the selection of selamectin for development as an endectocide for companion animals. Bioorg Med Chem 2000; 8(8): 2017-25.
[http://dx.doi.org/10.1016/S0968-0896(00)00120-6] [PMID: 11003146]
[43]
Gönenç B, Sarimehmetoğlu HO, Iça A, Kozan E. Efficacy of selamectin against mites (Myobia musculi, Mycoptes musculinus and Radfordia ensifera) and nematodes (Aspiculuris tetraptera and Syphacia obvelata) in mice. Lab Anim 2006; 40(2): 210-3.
[http://dx.doi.org/10.1258/002367706776319105] [PMID: 16600081]
[44]
Araujo AM, Roma GC, Pizano MA, et al. Determination of the LC50 of selamectin (active principle of the antiparasitic Revolution®, Pfizer) applied on engorged female of the tick Rhipicephalus sanguineus (Latreille, 1806)(Acari: Ixodidae). Int J Acarol 2012; 38(4): 277-81.
[http://dx.doi.org/10.1080/01647954.2011.638320]
[45]
Wang T, Yang GY, Yan HJ, et al. Comparison of efficacy of selamectin, ivermectin and mebendazole for the control of gastrointestinal nematodes in rhesus macaques, China. Vet Parasitol 2008; 153(1-2): 121-5.
[http://dx.doi.org/10.1016/j.vetpar.2008.01.012] [PMID: 18295404]
[46]
Six RH, Clemence RG, Thomas CA, et al. Efficacy and safety of selamectin against Sarcoptes scabiei on dogs and Otodectes cynotis on dogs and cats presented as veterinary patients. Vet Parasitol 2000; 91(3-4): 291-309.
[http://dx.doi.org/10.1016/S0304-4017(00)00300-9] [PMID: 10940530]
[47]
Scherr N, Pluschke G, Thompson CJ, Ramón-García S. Selamectin is the avermectin with the best potential for Buruli ulcer treatment. PLoS Negl Trop Dis 2015; 9(8): e0003996.
[http://dx.doi.org/10.1371/journal.pntd.0003996] [PMID: 26270480]
[48]
Sarasola P, Jernigan AD, Walker DK, Castledine J, Smith DG, Rowan TG. Pharmacokinetics of selamectin following intravenous, oral and topical administration in cats and dogs. J Vet Pharmacol Ther 2002; 25(4): 265-72.
[http://dx.doi.org/10.1046/j.1365-2885.2002.00415.x] [PMID: 12213114]
[49]
Gupta RC, Masthay MB, Canerdy TD, et al. Human exposure to selamectin from dogs treated with revolution: methodological consideration for selamectin isolation. Toxicol Mech Methods 2005; 15(4): 317-21.
[http://dx.doi.org/10.1080/15376520590968860] [PMID: 20021097]
[50]
Fan H-H, Wang LQ, Liu WL, et al. Repurposing of clinically approved drugs for treatment of coronavirus disease 2019 in a 2019-novel coronavirus-related coronavirus model. Chin Med J (Engl) 2020; 133(9): 1051-6.
[http://dx.doi.org/10.1097/CM9.0000000000000797] [PMID: 32149769]
[51]
Cao YC, Deng QX, Dai SX. Remdesivir for severe acute respiratory syndrome coronavirus 2 causing COVID-19: an evaluation of the evidence. Travel Med Infect Dis 2020; 35: 101647.
[http://dx.doi.org/10.1016/j.tmaid.2020.101647] [PMID: 32247927]
[52]
Mulangu S, Dodd LE, Davey RT Jr, et al. PALM Writing Group; PALM Consortium Study Team. A randomized, controlled trial of Ebola virus disease therapeutics. N Engl J Med 2019; 381(24): 2293-303.
[http://dx.doi.org/10.1056/NEJMoa1910993] [PMID: 31774950]
[53]
Wang L. Cell Res. the press 2019.
[54]
Tchesnokov EP, Feng JY, Porter DP, Götte M. Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir. Viruses 2019; 11(4): 326.
[http://dx.doi.org/10.3390/v11040326] [PMID: 30987343]
[55]
de Wit E, Feldmann F, Cronin J, et al. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc Natl Acad Sci USA 2020; 117(12): 6771-6.
[http://dx.doi.org/10.1073/pnas.1922083117] [PMID: 32054787]
[56]
Gordon CJ, Tchesnokov EP, Feng JY, Porter DP, Götte M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J Biol Chem 2020; 295(15): 4773-9.
[http://dx.doi.org/10.1074/jbc.AC120.013056] [PMID: 32094225]
[57]
Kang S, Peng W, Zhu Y, et al. Recent progress in understanding 2019 novel coronavirus (SARS-CoV-2) associated with human respiratory disease: detection, mechanisms and treatment. Int J Antimicrob Agents 2020; 55(5): 105950.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105950] [PMID: 32234465]
[58]
Sheahan TP, Sims AC, Leist SR, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun 2020; 11(1): 222.
[http://dx.doi.org/10.1038/s41467-019-13940-6] [PMID: 31924756]
[59]
Pillaiyar T, Meenakshisundaram S, Manickam M. Recent discovery and development of inhibitors targeting coronaviruses. Drug Discov Today 2020; 25(4): 668-88.
[http://dx.doi.org/10.1016/j.drudis.2020.01.015] [PMID: 32006468]
[60]
Al-Tawfiq JA, Al-Homoud AH, Memish ZA. Remdesivir as a possible therapeutic option for the COVID-19. Travel Med Infect Dis 2020; 34: 101615.
[http://dx.doi.org/10.1016/j.tmaid.2020.101615] [PMID: 32145386]
[61]
Scavone C, Brusco S, Bertini M, et al. Current pharmacological treatments for COVID-19: What’s next? Br J Pharmacol 2020; 177(21): 4813-24.
[http://dx.doi.org/10.1111/bph.15072] [PMID: 32329520]
[62]
Siegel D, Hui HC, Doerffler E. Discovery and synthesis of a Phosphoramidate Prodrug of a Pyrrolo [2, 1-f][triazin-4-amino] adenine C-nucleoside (GS-5734) for the treatment of Ebola and emerging viruses. J Med Chem 2017; 60(5): 1648-61.
[63]
Amirian ES, Levy JK. Current knowledge about the antivirals remdesivir (GS-5734) and GS-441524 as therapeutic options for coronaviruses. One Health 2020; 9: 100128.
[http://dx.doi.org/10.1016/j.onehlt.2020.100128] [PMID: 32258351]
[64]
Eastman RT, Roth JS, Brimacombe KR, et al. Remdesivir: a review of its discovery and development leading to emergency use authorization for treatment of COVID-19. ACS Cent Sci 2020; 6(5): 672-83.
[http://dx.doi.org/10.1021/acscentsci.0c00489] [PMID: 32483554]
[65]
Favalli EG, Ingegnoli F, De Lucia O, Cincinelli G, Cimaz R, Caporali R. COVID-19 infection and rheumatoid arthritis: faraway, so close! Autoimmun Rev 2020; 19(5): 102523.
[http://dx.doi.org/10.1016/j.autrev.2020.102523] [PMID: 32205186]
[66]
Grein J, Ohmagari N, Shin D, et al. Compassionate use of remdesivir for patients with severe Covid-19. N Engl J Med 2020; 382(24): 2327-36.
[http://dx.doi.org/10.1056/NEJMoa2007016] [PMID: 32275812]
[67]
Agostini ML, Andres EL, Sims AC, et al. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. MBio 2018; 9(2): e00221-18.
[http://dx.doi.org/10.1128/mBio.00221-18] [PMID: 29511076]
[68]
Sheahan TP, Sims AC, Graham RL, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med 2017; 9(396): eaal3653.
[http://dx.doi.org/10.1126/scitranslmed.aal3653] [PMID: 28659436]
[69]
Markham A. Baricitinib: first global approval. Drugs 2017; 77(6): 697-704.
[http://dx.doi.org/10.1007/s40265-017-0723-3] [PMID: 28290136]
[70]
Kunwar S, Collins CE, Constantinescu F. Baricitinib, a Janus kinase inhibitor, in the treatment of rheumatoid arthritis: a systematic literature review and meta-analysis of randomized controlled trials. Clin Rheumatol 2018; 37(10): 2611-20.
[http://dx.doi.org/10.1007/s10067-018-4199-7] [PMID: 30006916]
[71]
Al-Salama ZT, Scott LJ. Baricitinib: a review in rheumatoid arthritis. Drugs 2018; 78(7): 761-72.
[http://dx.doi.org/10.1007/s40265-018-0908-4] [PMID: 29687421]
[72]
van der Heijde D, Durez P, Schett G, et al. Structural damage progression in patients with early rheumatoid arthritis treated with methotrexate, baricitinib, or baricitinib plus methotrexate based on clinical response in the phase 3 RA-BEGIN study. Clin Rheumatol 2018; 37(9): 2381-90.
[http://dx.doi.org/10.1007/s10067-018-4221-0] [PMID: 30078086]
[73]
Yuan K, Huang G, Sang X, Xu A. Baricitinib for systemic lupus erythematosus. Lancet 2019; 393(10170): 402.
[http://dx.doi.org/10.1016/S0140-6736(18)32763-6] [PMID: 30712894]
[74]
Wallace DJ, Furie RA, Tanaka Y, et al. Baricitinib for systemic lupus erythematosus: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 2018; 392(10143): 222-31.
[http://dx.doi.org/10.1016/S0140-6736(18)31363-1] [PMID: 30043749]
[75]
Ceribelli A, Motta F, De Santis M, et al. Recommendations for coronavirus infection in rheumatic diseases treated with biologic therapy. J Autoimmun 2020; 109: 102442.
[http://dx.doi.org/10.1016/j.jaut.2020.102442] [PMID: 32253068]
[76]
Ansari MJ, Alshahrani SM. Nano-encapsulation and characterization of baricitinib using poly-lactic-glycolic acid co-polymer. Saudi Pharm J 2019; 27(4): 491-501.
[http://dx.doi.org/10.1016/j.jsps.2019.01.012] [PMID: 31061617]
[77]
Kubo S, Nakayamada S, Sakata K, et al. Janus kinase inhibitor baricitinib modulates human innate and adaptive immune system. Front Immunol 2018; 9: 1510.
[http://dx.doi.org/10.3389/fimmu.2018.01510] [PMID: 30002661]
[78]
Bechman K, Subesinghe S, Norton S, et al. A systematic review and meta-analysis of infection risk with small molecule JAK inhibitors in rheumatoid arthritis. Rheumatology (Oxford) 2019; 58(10): 1755-66.
[http://dx.doi.org/10.1093/rheumatology/kez087] [PMID: 30982883]
[79]
Cui X, Du J, Jia Z, et al. A green and facile synthesis of an industrially important quaternary heterocyclic intermediates for baricitinib. BMC chemistry 2019; 13(1): 1-7.
[http://dx.doi.org/10.1186/s13065-019-0639-y]
[80]
Dasari S, Seelam N, Jayachandra S, et al. Synthesis and characterization of compounds potentially related to the janus kinase inhibitor baricitinib. Russ J Org Chem 2019; 55(10): 1569-74.
[http://dx.doi.org/10.1134/S1070428019100166]
[81]
Xu J, Cai J, Chen J, et al. An efficient synthesis of baricitinib. J Chem Res 2016; 40(4): 205-8.
[http://dx.doi.org/10.3184/174751916X14569294811333]
[82]
Richardson P, Corbellino M, Stebbing J, et al. Correspondence baricitinib as potential. Lancet 2020; 6736: 2019-20.
[83]
Richardson PJ, Corbellino M, Stebbing J. Baricitinib for COVID-19: a suitable treatment? - Authors’ reply. Lancet Infect Dis 2020; 20(9): 1013-4.
[http://dx.doi.org/10.1016/S1473-3099(20)30270-X] [PMID: 32251639]
[84]
Praveen D, Puvvada RC, M VA. Janus kinase inhibitor baricitinib is not an ideal option for management of COVID-19. Int J Antimicrob Agents 2020; 55(5): 105967.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105967] [PMID: 32259575]
[85]
Cantini F, Niccoli L, Matarrese D, Nicastri E, Stobbione P, Goletti D. Baricitinib therapy in COVID-19: a pilot study on safety and clinical impact. J Infect 2020; 81(2): 318-56.
[http://dx.doi.org/10.1016/j.jinf.2020.04.017] [PMID: 32333918]
[86]
König SK, Herzog M, Theile D, Zembruski N, Haefeli WE, Weiss J. Impact of drug transporters on cellular resistance towards Saquinavir and Darunavir. J Antimicrob Chemother 2010; 65(11): 2319-28.
[http://dx.doi.org/10.1093/jac/dkq324] [PMID: 20817741]
[87]
de Meyer S, Vangeneugden T, van Baelen B, et al. Resistance profile of darunavir: combined 24-week results from the POWER trials. AIDS Res Hum Retroviruses 2008; 24(3): 379-88.
[http://dx.doi.org/10.1089/aid.2007.0173] [PMID: 18327986]
[88]
Sasková KG, Kozísek M, Rezácová P, et al. Molecular characterization of clinical isolates of human immunodeficiency virus resistant to the protease inhibitor darunavir. J Virol 2009; 83(17): 8810-8.
[http://dx.doi.org/10.1128/JVI.00451-09] [PMID: 19535439]
[89]
Sekar V, Kestens D, Spinosa-Guzman S, et al. The effect of different meal types on the pharmacokinetics of darunavir (TMC114)/ritonavir in HIV-negative healthy volunteers. J Clin Pharmacol 2007; 47(4): 479-84.
[http://dx.doi.org/10.1177/0091270006298603] [PMID: 17389557]
[90]
McCoy C. Darunavir: a nonpeptidic antiretroviral protease inhibitor. Clin Ther 2007; 29(8): 1559-76.
[http://dx.doi.org/10.1016/j.clinthera.2007.08.016] [PMID: 17919539]
[91]
Dierynck I, De Wit M, Gustin E, et al. Binding kinetics of darunavir to human immunodeficiency virus type 1 protease explain the potent antiviral activity and high genetic barrier. J Virol 2007; 81(24): 13845-51.
[http://dx.doi.org/10.1128/JVI.01184-07] [PMID: 17928344]
[92]
Madruga JV, Berger D, McMurchie M, et al. TITAN study group. Efficacy and safety of darunavir-ritonavir compared with that of lopinavir-ritonavir at 48 weeks in treatment-experienced, HIV-infected patients in TITAN: a randomised controlled phase III trial. Lancet 2007; 370(9581): 49-58.
[http://dx.doi.org/10.1016/S0140-6736(07)61049-6] [PMID: 17617272]
[93]
Rapolu RK, Areveli S, Raju P, Navuluri S, Chavali M, Mulakayala N. An efficient synthesis of Darunavir substantially free from impurities: synthesis and characterization of novel impurities. ChemistrySelect 2019; 4(14): 4422-7.
[http://dx.doi.org/10.1002/slct.201803825]
[94]
Rittweger M, Arastéh K. Clinical pharmacokinetics of darunavir. Clin Pharmacokinet 2007; 46(9): 739-56.
[http://dx.doi.org/10.2165/00003088-200746090-00002] [PMID: 17713972]
[95]
Lefebvre E, Schiffer CA. Resilience to resistance of HIV-1 protease inhibitors: profile of darunavir. AIDS Rev 2008; 10(3): 131-42.
[PMID: 18820715]
[96]
Poveda E, de Mendoza C, Martin-Carbonero L, et al. Prevalence of darunavir resistance mutations in HIV-1-infected patients failing other protease inhibitors. J Antimicrob Chemother 2007; 60(4): 885-8.
[http://dx.doi.org/10.1093/jac/dkm276] [PMID: 17646201]
[97]
Clotet B, Bellos N, Molina JM, et al. POWER 1 and 2 study groups. Efficacy and safety of darunavir-ritonavir at week 48 in treatment-experienced patients with HIV-1 infection in POWER 1 and 2: a pooled subgroup analysis of data from two randomised trials. Lancet 2007; 369(9568): 1169-78.
[http://dx.doi.org/10.1016/S0140-6736(07)60497-8] [PMID: 17416261]
[98]
Molina J-M, Hill A. Darunavir (TMC114): a new HIV-1 protease inhibitor. Expert Opin Pharmacother 2007; 8(12): 1951-64.
[http://dx.doi.org/10.1517/14656566.8.12.1951] [PMID: 17696796]
[99]
Rosa SGV, Santos WC. Clinical trials on drug repositioning for COVID-19 treatment. Rev Panam Salud Publica 2020; 44: e40.
[http://dx.doi.org/10.26633/RPSP.2020.40] [PMID: 32256547]
[100]
Furuta Y, Takahashi K, Fukuda Y, et al. In vitro and in vivo activities of anti-influenza virus compound T-705. Antimicrob Agents Chemother 2002; 46(4): 977-81.
[http://dx.doi.org/10.1128/AAC.46.4.977-981.2002] [PMID: 11897578]
[101]
Kiso M, Takahashi K, Sakai-Tagawa Y, et al. T-705 (favipiravir) activity against lethal H5N1 influenza A viruses. Proc Natl Acad Sci USA 2010; 107(2): 882-7.
[http://dx.doi.org/10.1073/pnas.0909603107] [PMID: 20080770]
[102]
Harismah K, Mirzaei M. Favipiravir: structural analysis and activity against COVID-19. Adv J Chem B 2020; 2(2): 55-60.
[103]
Alver Ö, et al. DFT/QTAIM analysis of favipiravir adsorption on pristine and silicon doped C20 fullerenes. Main Group Met Chem 2019; 42(1): 143-9.
[http://dx.doi.org/10.1515/mgmc-2019-0016]
[104]
Dhanaraj B, Papanna MK, Adinarayanan S, et al. Prevalence and risk factors for adult pulmonary tuberculosis in a metropolitan city of South India. PLoS One 2015; 10(4): e0124260.
[http://dx.doi.org/10.1371/journal.pone.0124260] [PMID: 25905900]
[105]
Gowen BB, Smee DF, Wong MH, et al. Treatment of late stage disease in a model of arenaviral hemorrhagic fever: T-705 efficacy and reduced toxicity suggests an alternative to ribavirin. PLoS One 2008; 3(11): e3725.
[http://dx.doi.org/10.1371/journal.pone.0003725] [PMID: 19008960]
[106]
Favié LM, Murk JL, Meijer A, Nijstad AL, van Maarseveen EM, Sikma MA. Pharmacokinetics of favipiravir during continuous venovenous haemofiltration in a critically ill patient with influenza. Antivir Ther 2018; 23(5): 457-61.
[http://dx.doi.org/10.3851/IMP3210] [PMID: 29185991]
[107]
Baz M, Carbonneau J, Rhéaume C, Cavanagh MH, Boivin G. Combination therapy with oseltamivir and favipiravir delays mortality but does not prevent oseltamivir resistance in immunodeficient mice infected with pandemic a (H1N1) influenza virus. Viruses 2018; 10(11): 610.
[http://dx.doi.org/10.3390/v10110610] [PMID: 30400276]
[108]
Guo Q, Xu M, Guo S, et al. The complete synthesis of favipiravir from 2-aminopyrazine. Chem Pap 2019; 73(5): 1043-51.
[http://dx.doi.org/10.1007/s11696-018-0654-9]
[109]
Bocan TM, Basuli F, Stafford RG, et al. Synthesis of [18 F] Favipiravir and Biodistribution in C3H/HeN mice as assessed by positron emission tomography. Sci Rep 2019; 9(1): 1-10.
[http://dx.doi.org/10.1038/s41598-018-37866-z] [PMID: 30626917]
[110]
Fang Q, Wang D. Advanced researches on the inhibition of influenza virus by Favipiravir and Baloxavir. Biosafety and Health 2020; 2(2): 64-70.
[http://dx.doi.org/10.1016/j.bsheal.2020.04.004]
[111]
Borrego B, de Ávila AI, Domingo E, Brun A. Lethal mutagenesis of Rift Valley fever virus induced by favipiravir. Antimicrob Agents Chemother 2019; 63(8): e00669-19.
[http://dx.doi.org/10.1128/AAC.00669-19] [PMID: 31085519]
[112]
Bricker TL, Shafiuddin M, Gounder AP, et al. Therapeutic efficacy of favipiravir against Bourbon virus in mice. PLoS Pathog 2019; 15(6): e1007790.
[http://dx.doi.org/10.1371/journal.ppat.1007790] [PMID: 31194854]
[113]
Buys KK, Jung KH, Smee DF, Furuta Y, Gowen BB. Maporal virus as a surrogate for pathogenic New World hantaviruses and its inhibition by favipiravir. Antivir Chem Chemother 2011; 21(5): 193-200.
[http://dx.doi.org/10.3851/IMP1729] [PMID: 21566265]
[114]
Daikoku T, Mizuguchi M, Obita T, et al. Characterization of susceptibility variants of poliovirus grown in the presence of favipiravir. J Microbiol Immunol Infect 2018; 51(5): 581-6.
[http://dx.doi.org/10.1016/j.jmii.2017.03.004] [PMID: 28709841]
[115]
Delang L, Segura Guerrero N, Tas A, et al. Mutations in the chikungunya virus non-structural proteins cause resistance to favipiravir (T-705), a broad-spectrum antiviral. J Antimicrob Chemother 2014; 69(10): 2770-84.
[http://dx.doi.org/10.1093/jac/dku209] [PMID: 24951535]
[116]
Gowen BB, Westover JB, Sefing EJ, et al. Enhanced protection against experimental Junin virus infection through the use of a modified favipiravir loading dose strategy. Antiviral Res 2017; 145: 131-5.
[http://dx.doi.org/10.1016/j.antiviral.2017.07.019] [PMID: 28780425]
[117]
Marosi A, Forgách P, Gyuranecz M, Sulyok KM, Bakonyi T. Evaluation of in vitro inhibitory potential of type-I interferons and different antiviral compounds on rabies virus replication. Vaccine 2019; 37(33): 4663-72.
[http://dx.doi.org/10.1016/j.vaccine.2018.01.082] [PMID: 29459063]
[118]
Mendenhall M, Russell A, Juelich T, et al. T-705 (favipiravir) inhibition of arenavirus replication in cell culture. Antimicrob Agents Chemother 2011; 55(2): 782-7.
[http://dx.doi.org/10.1128/AAC.01219-10] [PMID: 21115797]
[119]
Rocha-Pereira J, Jochmans D, Dallmeier K, Leyssen P, Nascimento MS, Neyts J. Favipiravir (T-705) inhibits in vitro norovirus replication. Biochem Biophys Res Commun 2012; 424(4): 777-80.
[http://dx.doi.org/10.1016/j.bbrc.2012.07.034] [PMID: 22809499]
[120]
Du YX, Chen XP. Favipiravir: pharmacokinetics and concerns about clinical trials for 2019 nCoV infection. Clin Pharmacol Ther 2020; 108(2): 242-7.
[http://dx.doi.org/10.1002/cpt.1844] [PMID: 32246834]
[121]
Cai Q, Yang M, Liu D, et al. Experimental treatment with favipiravir for COVID-19: an open-label control study. Engineering (Beijing) 2020; 6(10): 1192-8.
[http://dx.doi.org/10.1016/j.eng.2020.03.007] [PMID: 32346491]
[122]
Vogel M, Rockstroh JK. Safety of lopinavir/ritonavir for the treatment of HIV-infection. Expert Opin Drug Saf 2005; 4(3): 403-20.
[http://dx.doi.org/10.1517/14740338.4.3.403] [PMID: 15934849]
[123]
Ford J, Khoo SH, Back DJ. The intracellular pharmacology of antiretroviral protease inhibitors. J Antimicrob Chemother 2004; 54(6): 982-90.
[http://dx.doi.org/10.1093/jac/dkh487] [PMID: 15537695]
[124]
Walmsley S, Christian MD. The role of lopinavir/ritonavir (Kaletra) in the management of HIV infected adults. Expert Rev Anti Infect Ther 2003; 1(3): 389-401.
[http://dx.doi.org/10.1586/14787210.1.3.389] [PMID: 15482136]
[125]
Trasi NS, Bhujbal S, Zhou QT, Taylor LS. Amorphous solid dispersion formation via solvent granulation - A case study with ritonavir and lopinavir. Int J Pharm X 2019; 1: 100035.
[http://dx.doi.org/10.1016/j.ijpx.2019.100035] [PMID: 31788669]
[126]
Simpson KN, Luo MP, Chumney E, Sun E, Brun S, Ashraf T. Cost-effectiveness of lopinavir/ritonavir versus nelfinavir as the first-line highly active antiretroviral therapy regimen for HIV infection. HIV Clin Trials 2004; 5(5): 294-304.
[http://dx.doi.org/10.1310/WT81-MEM4-5C4L-CHPK] [PMID: 15562370]
[127]
Tan D, Walmsley S. Lopinavir plus ritonavir: a novel protease inhibitor combination for HIV infections. Expert Rev Anti Infect Ther 2007; 5(1): 13-28.
[http://dx.doi.org/10.1586/14787210.5.1.13] [PMID: 17266450]
[128]
Ghosh AK, Bilcer G, Schiltz G. Syntheses of FDA approved HIV protease inhibitors. Synthesis (Stuttg) 2001; 2001(15): 2203-29.
[http://dx.doi.org/10.1055/s-2001-18434] [PMID: 30393404]
[129]
Sham HL, Zhao C, Li L, et al. Novel lopinavir analogues incorporating non-Aromatic P-1 side chains-synthesis and structure-activity relationships. Bioorg Med Chem Lett 2002; 12(21): 3101-3.
[http://dx.doi.org/10.1016/S0960-894X(02)00643-1] [PMID: 12372511]
[130]
Raghava Reddy AV, Garaga S, Takshinamoorthy C, Naidu A. Synthesis and characterization of impurities in the production process of lopinavir. Sci Pharm 2014; 83(1): 49-63.
[http://dx.doi.org/10.3797/scipharm.1407-14] [PMID: 26839801]
[131]
Pulido F, Arribas JR, Delgado R, et al. OK04 Study Group. Lopinavir-ritonavir monotherapy versus lopinavir-ritonavir and two nucleosides for maintenance therapy of HIV. AIDS 2008; 22(2): F1-9.
[http://dx.doi.org/10.1097/QAD.0b013e3282f4243b] [PMID: 18097218]
[132]
Kumar GN, Jayanti VK, Johnson MK, et al. Metabolism and disposition of the HIV-1 protease inhibitor lopinavir (ABT-378) given in combination with ritonavir in rats, dogs, and humans. Pharm Res 2004; 21(9): 1622-30.
[http://dx.doi.org/10.1023/B:PHAM.0000041457.64638.8d] [PMID: 15497688]
[133]
Cooper C, la Porte C, Tossonian H, Sampalis J, Ackad N, Conway B. A pilot, prospective, open-label simplification study to evaluate the safety, efficacy, and pharmacokinetics of once-daily lopinavir-ritonavir monotherapy in HIV-HCV coinfected patients: the MONOCO study. HIV Clin Trials 2012; 13(4): 179-88.
[http://dx.doi.org/10.1310/hct1304-179] [PMID: 22849960]
[134]
Hermes A, Squires K, Fredrick L, et al. Meta-analysis of the safety, tolerability, and efficacy of lopinavir/ritonavir-containing antiretroviral therapy in HIV-1-infected women. HIV Clin Trials 2012; 13(6): 308-23.
[http://dx.doi.org/10.1310/hct1306-308] [PMID: 23195669]
[135]
Oldfield V, Plosker GL. Lopinavir/ritonavir: a review of its use in the management of HIV infection. Drugs 2006; 66(9): 1275-99.
[http://dx.doi.org/10.2165/00003495-200666090-00012] [PMID: 16827606]
[136]
Cvetkovic RS, Goa KL. Lopinavir/ritonavir: a review of its use in the management of HIV infection. Drugs 2003; 63(8): 769-802.
[http://dx.doi.org/10.2165/00003495-200363080-00004] [PMID: 12662125]
[137]
Yilmaz A, Ståhle L, Hagberg L, Svennerholm B, Fuchs D, Gisslén M. Cerebrospinal fluid and plasma HIV-1 RNA levels and lopinavir concentrations following lopinavir/ritonavir regimen. Scand J Infect Dis 2004; 36(11-12): 823-8.
[http://dx.doi.org/10.1080/00365540410025320] [PMID: 15764168]
[138]
Agarwal S, Boddu SH, Jain R, Samanta S, Pal D, Mitra AK. Peptide prodrugs: improved oral absorption of lopinavir, a HIV protease inhibitor. Int J Pharm 2008; 359(1-2): 7-14.
[http://dx.doi.org/10.1016/j.ijpharm.2008.03.031] [PMID: 18455890]
[139]
Reynes J, Lawal A, Pulido F, et al. Examination of noninferiority, safety, and tolerability of lopinavir/ritonavir and raltegravir compared with lopinavir/ritonavir and tenofovir/ emtricitabine in antiretroviral-naïve subjects: the progress study, 48-week results. HIV Clin Trials 2011; 12(5): 255-67.
[http://dx.doi.org/10.1310/hct1205-255] [PMID: 22180523]
[140]
de Mendoza C, Martín-Carbonero L, Barreiro P, et al. Salvage treatment with lopinavir/ritonavir (Kaletra) in HIV-infected patients failing all current antiretroviral drug families. HIV Clin Trials 2002; 3(4): 304-9.
[http://dx.doi.org/10.1310/H5JN-MFG3-G35K-QX9J] [PMID: 12187504]
[141]
Sprinz E, Neto AJ, Bargman E, et al. Substitution with lopinavir/ritonavir improves patient-reported outcomes including quality of life in patients who were intolerant to their antiretroviral therapy. HIV Clin Trials 2006; 7(6): 291-308.
[http://dx.doi.org/10.1310/hct0706-291] [PMID: 17197377]
[142]
Lafeuillade A, Hittinger G, Philip G, Lambry V, Jolly P, Poggi C. Metabolic evaluation of HIV-infected patients receiving a regimen containing lopinavir/ritonavir (Kaletra). HIV Clin Trials 2004; 5(6): 392-8.
[http://dx.doi.org/10.1310/Q0TG-0V50-9JML-638U] [PMID: 15682352]
[143]
Lim J, Jeon S, Shin HY, et al. Case of the index patient who caused tertiary transmission of COVID-19 infection in Korea: the application of lopinavir/ritonavir for the treatment of COVID-19 infected pneumonia monitored by quantitative RT-PCR. J Korean Med Sci 2020; 35(6): e79.
[http://dx.doi.org/10.3346/jkms.2020.35.e79] [PMID: 32056407]
[144]
Cao B, Wang Y, Wen D, et al. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. N Engl J Med 2020; 382(19): 1787-99.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[145]
Chen F, Chan KH, Jiang Y, et al. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J Clin Virol 2004; 31(1): 69-75.
[http://dx.doi.org/10.1016/j.jcv.2004.03.003] [PMID: 15288617]
[146]
Chan KS, Lai ST, Chu CM, et al. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicentre retrospective matched cohort study. Hong Kong Med J 2003; 9(6): 399-406.
[PMID: 14660806]
[147]
Arabi YM, Alothman A, Balkhy HH, et al. And the MIRACLE trial group. Treatment of Middle East Respiratory Syndrome with a combination of lopinavir-ritonavir and interferon-β1b (MIRACLE trial): study protocol for a randomized controlled trial. Trials 2018; 19(1): 81.
[http://dx.doi.org/10.1186/s13063-017-2427-0] [PMID: 29382391]
[148]
Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N Engl J Med 2020; 382(13): 1199-207.
[http://dx.doi.org/10.1056/NEJMoa2001316] [PMID: 31995857]
[149]
Rothe C, Schunk M, Sothmann P, et al. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N Engl J Med 2020; 382(10): 970-1.
[http://dx.doi.org/10.1056/NEJMc2001468] [PMID: 32003551]
[150]
Chang D, Lin M, Wei L, et al. Epidemiologic and clinical characteristics of novel coronavirus infections involving 13 patients outside Wuhan, China. JAMA 2020; 323(11): 1092-3.
[http://dx.doi.org/10.1001/jama.2020.1623] [PMID: 32031568]
[151]
Nevin RL. Idiosyncratic quinoline central nervous system toxicity: Historical insights into the chronic neurological sequelae of mefloquine. Int J Parasitol Drugs Drug Resist 2014; 4(2): 118-25.
[http://dx.doi.org/10.1016/j.ijpddr.2014.03.002] [PMID: 25057461]
[152]
Goto TE, Caseli L. The interaction of mefloquine hydrochloride with cell membrane models at the air-water interface is modulated by the monolayer lipid composition. J Colloid Interface Sci 2014; 431: 24-30.
[http://dx.doi.org/10.1016/j.jcis.2014.05.050] [PMID: 24980622]
[153]
Baudry S, Pham YT, Baune B, et al. Stereoselective passage of mefloquine through the blood-brain barrier in the rat. J Pharm Pharmacol 1997; 49(11): 1086-90.
[http://dx.doi.org/10.1111/j.2042-7158.1997.tb06047.x] [PMID: 9401943]
[154]
Müller M, Orben CM, Schützenmeister N, et al. The absolute configuration of (+)- and (-)-erythro-mefloquine. Angew Chem Int Ed Engl 2013; 52(23): 6047-9.
[http://dx.doi.org/10.1002/anie.201300258] [PMID: 23616269]
[155]
Moon DK, Tripathi A, Sullivan D, Siegler MA, Parkin S, Posner GH. A single, low, oral dose of a 5-carbon-linked trioxane dimer orthoester plus mefloquine cures malaria-infected mice. Bioorg Med Chem Lett 2011; 21(9): 2773-5.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.123] [PMID: 20952197]
[156]
Sandhya S, Kumar PS, Meena S. Application of HPTLC-densitometry by derivatization and stability indicating LC for simultaneous determination of mefloquine hydrochloride and artesunate in combined dosage form. Chem Sci Int J 2015; 7(1): 26-37.
[157]
Kumar MS, Nageshwar Y, Meshram H. A facile and alternative method for the synthesis of mefloquine. Synth Commun 1996; 26(10): 1913-9.
[http://dx.doi.org/10.1080/00397919608003544]
[158]
Katsenos S, Psathakis K, Nikolopoulou MI, Constantopoulos SH. Mefloquine-induced eosinophilic pneumonia. Pharmacotherapy 2007; 27(12): 1767-71.
[http://dx.doi.org/10.1592/phco.27.12.1767] [PMID: 18041895]
[159]
Nosten F, ter Kuile F, Chongsuphajaisiddhi T, Na Bangchang K, Karbwang J, White NJ. Mefloquine pharmacokinetics and resistance in children with acute falciparum malaria. Br J Clin Pharmacol 1991; 31(5): 556-9.
[http://dx.doi.org/10.1111/j.1365-2125.1991.tb05581.x] [PMID: 1888626]
[160]
Nosten F, Phillips-Howard PA, ter Kuile FO. Other 4-methanolquinolines, amyl alcohols and phentathrenes: mefloquine, lumefantrine and halofantrine, in treatment and prevention of malaria. Basel, Switzerland: Springer 2011; pp. 95-111.
[161]
Arayne MS, Sultana N, Qureshi MS, Naseem S. Interaction studies of omeprazole with mefloquine, pyrimethamine and sulfadoxine. Pak J Pharm Sci 2006; 19(4): 314-21.
[PMID: 17105711]
[162]
Peters W, Robinson BL, Mittelholzer ML, Crevoisier C, Stürchler D. The chemotherapy of rodent malaria. LII. Response of Plasmodium yoelii ssp. NS to mefloquine and its enantiomers. Ann Trop Med Parasitol 1995; 89(5): 465-8.
[http://dx.doi.org/10.1080/00034983.1995.11812978] [PMID: 7495359]
[163]
Shah PP, Mashru RC, Rane YM, Thakkar A. Design and optimization of mefloquine hydrochloride microparticles for bitter taste masking. AAPS PharmSciTech 2008; 9(2): 377-89.
[http://dx.doi.org/10.1208/s12249-008-9052-x] [PMID: 18431670]
[164]
Shah PP, Mashru RC. Influence of chitosan crosslinking on bitterness of mefloquine hydrochloride microparticles using central composite design. J Pharm Sci 2009; 98(2): 690-703.
[http://dx.doi.org/10.1002/jps.21456] [PMID: 18563807]
[165]
Shete AS, Yadav AV, Murthy MS. Evaluation of performance of co crystals of mefloquine hydrochloride in tablet dosage form. Drug Dev Ind Pharm 2013; 39(5): 716-23.
[http://dx.doi.org/10.3109/03639045.2012.689764] [PMID: 22639963]
[166]
Misra DP, Agarwal V, Gasparyan AY, Zimba O. Rheumatologists’ perspective on coronavirus disease 19 (COVID-19) and potential therapeutic targets. Clin Rheumatol 2020; 39(7): 2055-62.
[http://dx.doi.org/10.1007/s10067-020-05073-9] [PMID: 32277367]
[167]
Han YJ, Lee KH, Yoon S, et al. Treatment of severe acute respiratory syndrome (SARS), Middle East Respiratory Syndrome (MERS), and coronavirus disease 2019 (COVID-19): a systematic review of in vitro, in vivo, and clinical trials. Theranostics 2021; 11(3): 1207-31.
[http://dx.doi.org/10.7150/thno.48342] [PMID: 33391531]
[168]
Yang J, Zheng Y, Gou X, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis 2020; 94: 91-5.
[http://dx.doi.org/10.1016/j.ijid.2020.03.017] [PMID: 32173574]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy