[1]
Moustafa, M.T. Removal of pathogenic bacteria from wastewater using silver nanoparticles synthesized by two fungal species. Water Sci., 2017, 31(2), 164-176.
[4]
Hussein, A.K.; Walunj, A.; Kolsi, L. Applications of nanotechnology to enhance the performance of the direct absorption solar collectors. J. Therm. Eng., 2016, 2(1), 529-540.
[5]
Hussein, A.K. Applications of nanotechnology to improve the performance of solar collectors–Recent advances and overview. Sust. Energ. Rev., 2016, 62, 767-792.
[8]
Ferosekhan, S.; Gupta, S.; Singh, R.A.; Rather, A.; Kumari, R.; Kothari, C. D.; Kumar Pal, A.; Balkrishna Jadhao, S. RNA-loaded chitosan nanoparticles for enhanced growth, immunostimulation and disease resistance in fish. Curr. Nanosci., 2014, 10(3), 453-464.
[10]
Bernela, M.; Kaur, P.; Ahuja, M.; Thakur, R. Nano-based delivery system for nutraceuticals: the potential future.Advances in Animal Biotechnology and its Applications; Springer: Singapore, 2018, pp. 103-117.
[18]
Ajayi, A.O.; Okoh, A.I. Bacteriological study of pond water for aquaculture purposes. J. Food Agric. Environ., 2014, 12, 1260-1265.
[23]
Elsheshtawy, A.; Yehia, N.; Elkemary, M.; Soliman, H. Direct detection of unamplified Aeromonas hydrophila DNA in clinical fish samples using gold nanoparticle probe-based assay. Aquaculture, 2019, 500, 451-457.
[24]
Aboyadak, I.M.; Ali, N.G.M.; Goda, A.M.A.S.; Aboelgalagel, W.H.; Salam, A. Molecular detection of Aeromonas hydrophila as the main cause of outbreak in tilapia farms in Egypt. J. Aquac. Mar. Biol., 2015, 2(5), 00045.
[25]
Hayatgheib, N.; Moreau, E.; Calvez, S.; Lepelletier, D.; Pouliquen, H. A review of functional feeds and the control of Aeromonas infections
in freshwater fish. Aquac. Int., 2020, 1-41.
[26]
Laith, A.R.; Najiah, M. Aeromonas hydrophila: antimicrobial susceptibility and histopathology of isolates from diseased catfish, Clarias gariepinus (Burchell). J. Aquac. Res. Dev., 2014, 5(2), 215.
[32]
Terzi, E. Determination of antimicrobial resistance profiles of the bacteria isolated from cultured sturgeons. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, 2018, 4(2), 7-13.
[33]
Terzi, E.; Isler, H. Antibiotic resistance genes of Escherichia coli in coastal marine environment of Eastern Black Sea, Turkey. Fresenius Environ. Bull., 2019, 28, 1594-1601.
[36]
Margabandhu, M.; Sendhilnathan, S.; Maragathavalli, S.; Karthikeyan, V.; Annadurai, B. Glob. Synthesis characterisation and antibacterial activity of iron oxide nanoparticles. Glob. J. Bio Sci. Biotechnol., 2015, 4, 335.
[37]
Nivethitha, P.R.; Rachel, D.C.J. A study of antioxidant and antibacterial
activity using honey mediated Chromium oxide nanoparticles
and its characterization. Materials Today: Proceedings,
[41]
Alavijeh, M.S.; Bani, M.S.; Rad, I.; Hatamie, S.; Zomorod, M.S.; Haghpanahi, M. Antibacterial properties of ferrimagnetic and superparamagnetic nanoparticles: a comparative study. J. Mech. Sci. Technol., 2021, 1-7.
[42]
Mahdy, S.A.; Raheed, Q.J.; Kalaichelvan, P.T. Antimicrobial activity of zero-valent iron nanoparticles. Int. J. Mod. Eng. Res., 2012, 2(1), 578-581.
[43]
Mohan, P.; Mala, R.; Kalaichelvan, P.T. Comparative antibacterial activity of magnetic iron oxide nanoparticles synthesized by biological and chemical methods against poultry feed pathogens. Mater. Res. Express, 2019, 6(11), 115077.
[44]
Vitta, Y.; Figueroa, M.; Calderon, M.; Ciangherotti, C. Synthesis of iron nanoparticles from aqueous extract of Eucalyptus robusta Sm and evaluation of antioxidant and antimicrobial activity. Mater. Sci. Technol., 2020, 3, 97-103.
[46]
Landage, K.S.; Arbade, G.K.; Khanna, P.; Bhongale, C.J. Biological approach to synthesize TiO2 nanoparticles using Staphylococcus aureus for antibacterial and anti-biofilm applications. J. Microbiol. Exp., 2020, 8(1), 36-43.
[52]
Kulkarni, N.; Muddapur, U. Biosynthesis of metal nanoparticles: a
review. J. Nanotechnol., 2014. Article ID 510246.
[53]
Samrot, A.V.; Justin, C.; Padmanaban, S.; Burman, U. A study on the effect of chemically synthesised magnetite nanoparticles on earthworm: Eudrilus eugeniae. Appl. Nanosci., 2017, 7, 17-23.
[54]
Samrot, A.V.; Shobana, N.; Sruthi, P.D.; Sahithya, C.S. Utilisation of chitosan-coated super-paramagnetic iron oxide nanoparticles for chromium removal. Appl. Water Sci., 2018, 8, 192.
[57]
Griffiths, D.; Bernt, W.; Hole, P.; Smith, J.; Malloy, A.; Carr, B. Zeta potential measurement of nanoparticles by nanoparticle tracking analysis (NTA). NSTI-Nanotech, 2011, 1, 4-7.
[58]
Hanaor, D.; Michelazzi, M.; Leonelli, C.; Sorrell, C.C. The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO 2. J. Eur. Ceram. Soc., 2012, 32, 235-244.
[60]
Justin, C.; Philip, S.A.; Samrot, A.V. Synthesis and characterization of superparamagnetic iron-oxide nanoparticles (SPIONs) and utilization of SPIONs in X-ray imaging. Appl. Nanosci., 2017, 7(7), 463-475.
[65]
Unsoy, G.; Yalcin, S.; Khodadust, R.; Gunduz, G.; Gunduz, U. Synthesis optimisation and characterisation of chitosan-coated iron oxide nanoparticles produced for biomedical applications. J. Nanopart. Res., 2012, 14(11), 964.
[67]
Li, S.; Zhang, T.; Tang, R.; Qiu, H.; Wang, C.; Zhou, Z. Solvothermal synthesis and characterisation of monodisperse super-paramagnetic iron oxide nanoparticles. J. Magn. Magn. Mater., 2015, 379, 226-231.
[68]
Karimzadeh, I.; Aghazadeh, M.; Doroudi, T.; Ganjali, M.R.; Kolivand, P.H. Super- paramagnetic iron oxide (Fe 3 O 4) nanoparticles coated with PEG/PEI for biomedical applications: A facile and scalable preparation route based on the cathodic electrochemical deposition method. Adv. Phys. Chem., 2017. Article ID 9437487.
[69]
Khedri, B.; Shahanipour, K.; Fatahian, S.; Jafary, F. Preparation of chitosan-coated Fe 3 O 4 nanoparticles and assessment of their effects on enzymatic antioxidant system as well as high-density lipoprotein/low-density lipoprotein lipoproteins on wistar rat. J. Biomed. Biotechnol. Res., 2018, 2, 68.
[70]
Eid, M.M.; El-Hallouty, S.M.; El-Manawaty, M.; Abdelzaher, F.H. Physicochemical Characterisation and Biocompatibility of SPION@ Plasmonic@ Chitosan Core-Shell Nanocomposite Biosynthesised from Fungus Species. J. Nanomater., 2019. Article ID 4024958.
[72]
Lin, C.C.; Ho, J.M. Structural analysis and catalytic activity of Fe 3 O 4 nanoparticles prepared by a facile co-precipitation method in a rotating packed bed. Ceram. Int., 2014, 40, 10275-10282.
[73]
Zhou, S.; Li, Y.; Cui, F.; Jia, M.; Yang, X.; Wang, Y.; Xie, L.; Zhang, Q.; Hou, Z. Development of multifunctional folate-poly (ethylene glycol)-chitosan-coated Fe 3 O 4 nanoparticles for biomedical applications. Macromol. Res., 2014, 22, 58-66.
[75]
Han, C.; Romero, N.; Fischer, S.; Dookran, J.; Berger, A.; Doiron, A.L. Recent developments in the use of nanoparticles for treatment of biofilms. Nanotechnol. Rev., 2017, 6(5), 383-404.
[76]
Arokiyaraj, S.; Saravanan, M.; Prakash, N.U.; Arasu, M.V.; Vijayakumar, B.; Vincent, S. Enhanced antibacterial activity of iron oxide magnetic nanoparticles treated with Argemone mexicana L. leaf extract: an in vitro study. Mater. Res. Bull., 2013, 48, 3323-3327.
[77]
Zhang, L.; Jiang, Y.; Ding, Y.; Povey, M.; York, D. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res., 2007, 9, 479-489.
[78]
Dung, T.T.; Danh, T.M.; Hoa, L.T.M.; Chien, D.M.; Duc, N.H. Structural and magnetic properties of starch-coated magnetite nanoparticles. J. Exp. Nanosci., 2009, 4, 259-267.
[79]
Namanga, J.; Foba, J.; Ndinteh, D.T.; Yufanyi, D.M.; Krause, R.W.M. Synthesis and magnetic properties of a superparamagnetic nanocomposite “pectin-magnetite nanocomposite”. J. Nanomater., 2013. Article ID 137275, 1-8.
[80]
Mohapatra, S.; Pramanik, N.; Mukherjee, S.; Ghosh, S.K.; Pramanik, P. A simple synthesis of amine-derivatised superparamagnetic iron oxide nanoparticles for bioapplications. J. Mater. Sci., 2007, 42, 7566-7574.
[85]
Gregorio-Jauregui, K.M.; Pineda, M.G.; Rivera-Salinas, J.E.; Hurtado, G.; Saade, H.; Martinez, J.L.; Ilyina, A.; López, R.G. One-step method for preparation of magnetic nanoparticles coated with chitosan. J. Nanomater., 2012. Article ID 813958.
[86]
Nonkumwong, J.; Ananta, S.; Jantaratana, P.; Phumying, S.; Maensiri, S.; Srisombat, L. Phase formation, morphology and magnetic properties of MgFe2O4 nanoparticles synthesised by hydrothermal technique. J. Magn. Magn. Mater., 2015, 381, 226-234.
[97]
Mukha, I.P.; Eremenko, A.M.; Smirnova, N.P.; Mikhienkova, A.I.; Korchak, G.I.; Gorchev, V.F.; Chunikhin, A.Y. Anti-microbial activity of stable silver nanoparticles of a certain size. Appl. Biochem. Microbiol., 2013, 49, 199-206.
[99]
Dorobantu, L.S.; Fallone, C.; Noble, A.J.; Veinot, J.; Ma, G.; Goss, G.G.; Burrell, R.E. Toxicity of silver nanoparticles against bacteria, yeast, and algae. J. Nanopart. Res., 2015, 17, 172.
[101]
Song, J.; Zhang, F.; Huang, Y.; Keller, A.A.; Tang, X.; Zhang, W.; Jia, W.; Santos, J. Highly efficient bacterial removal and disinfection by magnetic barium phosphate nanoflakes with embedded iron oxide nanoparticles. Environ. Sci. Nano, 2018, 5(6), 1341-1349.
[105]
Seifi Mansour, S.; Ezzatzadeh, E.; Safarkar, R. In vitro evaluation of its antimicrobial effect of the synthesized Fe3O4 nanoparticles using Persea Americana extract as a green approach on two standard strains. Asian J. Green Chem., 2019, 3(3), 353-365.