Abstract
Background: In this report, the layered g-C3N4/SnS2 composite was successfully fabricated by a facile hydrothermal route.
Methods: The ultraviolet-visible spectroscopy data presented that such layered g-C3N4/SnS2 catalysts showed a remarkable visible-light absorption, hence significantly enhancing the catalytic activity. Particularly, the g-C3N4/SnS2 catalysts showed an outstanding catalytic performance for the degradation of methylene blue (~ 98.1%) under visible light irradiation that is much better than that of pure SnS2 (~ 86.7%) and pure g-C3N4 (~ 67.3%).
Results: The remarkable photocatalytic performance is ascribed to its layer structure resulting in a large surface area, which not only improves the ion transfer rate but also provides abundant surface reaction sites.
Conclusion: Our work demonstrates that the layered g-C3N4/SnS2 can be considered as an exceptional candidate for a highly-efficient photocatalyst.
Keywords: SnS2, g-C3N4, visible light, photocatalysts, methylene blue, highly efficient.
Graphical Abstract
[http://dx.doi.org/10.1021/jacs.6b02692] [PMID: 27116595]
[http://dx.doi.org/10.1021/acs.chemrev.6b00075] [PMID: 27199146]
[http://dx.doi.org/10.1021/acsnano.8b04693] [PMID: 30183258]
[http://dx.doi.org/10.1016/j.apcatb.2016.05.052]
[http://dx.doi.org/10.1016/j.apsusc.2016.07.030]
[http://dx.doi.org/10.1002/adfm.201600894]
[http://dx.doi.org/10.1039/C9TA05135J]
[http://dx.doi.org/10.3390/ma11061030]
[http://dx.doi.org/10.1002/adma.201903545] [PMID: 31518015]
[http://dx.doi.org/10.1021/acssuschemeng.7b01312]
[http://dx.doi.org/10.1021/acsami.7b12733] [PMID: 28929741]
[http://dx.doi.org/10.1021/acssuschemeng.7b01313]
[http://dx.doi.org/10.1039/D0RA05779G]
[http://dx.doi.org/10.1016/j.cej.2020.126135]
[http://dx.doi.org/10.1016/j.apsusc.2018.08.209]
[http://dx.doi.org/10.1016/j.apsusc.2016.06.169]
[http://dx.doi.org/10.1016/j.ceramint.2020.10.162]
[http://dx.doi.org/10.1021/acssuschemeng.7b04461]
[http://dx.doi.org/10.1002/smll.201902291] [PMID: 31192542]
[http://dx.doi.org/10.1016/j.apcatb.2019.01.043]
[http://dx.doi.org/10.1039/C6NR09022B] [PMID: 28106213]
[http://dx.doi.org/10.1016/j.jallcom.2018.10.008]
[http://dx.doi.org/10.1039/C9TA03059J]
[http://dx.doi.org/10.1021/acssuschemeng.8b04250]
[http://dx.doi.org/10.1016/j.apcatb.2019.05.032]
[http://dx.doi.org/10.1016/j.apsusc.2019.03.221]
[http://dx.doi.org/10.1002/admi.201900554]
[http://dx.doi.org/10.1016/j.cej.2018.10.180]
[http://dx.doi.org/10.1016/j.nanoen.2019.103918]
[http://dx.doi.org/10.1021/acssuschemeng.9b02519]
[http://dx.doi.org/10.1002/adma.201902709] [PMID: 31194268]
[http://dx.doi.org/10.1016/j.ceramint.2019.06.240]
[http://dx.doi.org/10.1016/j.micromeso.2018.06.056]
[http://dx.doi.org/10.1016/j.chempr.2016.07.005]
[http://dx.doi.org/10.1016/j.carbon.2017.02.015]
[http://dx.doi.org/10.1002/slct.201904532]
[http://dx.doi.org/10.1021/acsami.8b16994] [PMID: 30461253]
[http://dx.doi.org/10.1002/admi.202001627]
[http://dx.doi.org/10.1016/j.apcatb.2018.11.080]