Review Article

骨质疏松症:针对免疫检查点的当前和新兴疗法

卷 27, 期 37, 2020

页: [6356 - 6372] 页: 17

弟呕挨: 10.2174/0929867326666190730113123

open access plus

摘要

骨质疏松症是一种骨骼病理学,其特征是骨强度下降,导致骨折风险增加,主要是脊柱和髋部骨折。骨质疏松症影响着全世界2亿多人,由于它导致的骨骼骨折,是老年人发病、残疾和死亡的一个主要原因。近年来,骨免疫学的新发现澄清了骨质疏松症的许多发病机制,有助于寻找新的免疫靶点来治疗骨质疏松症,为利用生物药物进行新的有效治疗开辟了道路。目前治疗骨质疏松症的单克隆抗体基本有两种:狄诺塞麦和romosozumab。在这里,我们关注骨质疏松症管理的现代方法,特别是当前和正在开发的针对新的免疫学检查点的生物药物,在骨免疫学的景观。

关键词: 骨质疏松症,骨免疫学,骨重塑,细胞因子,免疫学检查点,生物疗法

[1]
Ensrud, K.E.; Crandall, C. J. Osteoporosis. Ann. Intern. Med., 2017, 167(3), 17-32.
[http://dx.doi.org/10.7326/AITC201708010 ] [PMID: 28761958]
[2]
Akkawi, I.; Zmerly, H. Osteoporosis: Current Concepts. Joints, 2018, 6(2), 122-127.
[http://dx.doi.org/10.1055/s-0038-1660790 ] [PMID: 30051110]
[3]
Nuti, R.; Brandi, M.L.; Checchia, G.; Di Munno, O.; Dominguez, L.; Falaschi, P.; Fiore, C.E.; Iolascon, G.; Maggi, S.; Michieli, R.; Migliaccio, S.; Minisola, S.; Rossini, M.; Sessa, G.; Tarantino, U.; Toselli, A.; Isaia, G.C. Guidelines for the management of osteoporosis and fragility fractures. Intern. Emerg. Med., 2019, 14(1), 85-102.
[http://dx.doi.org/10.1007/s11739-018-1874-2 ] [PMID: 29948835]
[4]
Hernlund, E.; Svedbom, A.; Ivergård, M.; Compston, J.; Cooper, C.; Stenmark, J.; McCloskey, E.V.; Jönsson, B.; Kanis, J.A. Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch. Osteoporos., 2013, 8, 136.
[http://dx.doi.org/10.1007/s11657-013-0136-1 ] [PMID: 24113837]
[5]
De Martinis, M.; Di Benedetto, M.C.; Mengoli, L.P.; Ginaldi, L. Senile osteoporosis: is it an immune-mediated disease? Inflamm. Res., 2006, 55(10), 399-404.
[http://dx.doi.org/10.1007/s00011-006-6034-x ] [PMID: 17109066]
[6]
Bultink, I.E.M. Bone disease in connective tissue disease/systemic lupus erythematosus. Calcif. Tissue Int., 2018, 102(5), 575-591.
[http://dx.doi.org/10.1007/s00223-017-0322-z ] [PMID: 28900675]
[7]
De Martinis, M.; Ciccarelli, F.; Sirufo, M.M.; Ginaldi, L. An overview of environmental risk factors in systemic sclerosis. Expert Rev. Clin. Immunol., 2016, 12(4), 465-478.
[http://dx.doi.org/10.1586/1744666X.2016.1125782 ] [PMID: 26610037]
[8]
Panday, K.; Gona, A.; Humphrey, M.B. Medication-induced osteoporosis: screening and treatment strategies. Ther. Adv. Musculoskelet. Dis., 2014, 6(5), 185-202.
[http://dx.doi.org/10.1177/1759720X14546350 ] [PMID: 25342997]
[9]
Franceschi, C.; Garagnani, P.; Parini, P.; Giuliani, C.; Santoro, A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol., 2018, 14(10), 576-590.
[http://dx.doi.org/10.1038/s41574-018-0059-4 ] [PMID: 30046148]
[10]
Okamoto, K.; Nakashima, T.; Shinohara, M.; Negishi-Koga, T.; Komatsu, N.; Terashima, A.; Sawa, S.; Nitta, T.; Takayanagi, H. Osteoimmunology: the conceptual framework unifying the immune and skeletal systems. Physiol. Rev., 2017, 97(4), 1295-1349.
[http://dx.doi.org/10.1152/physrev.00036.2016 ] [PMID: 28814613]
[11]
Ginaldi, L.; De Martinis, M. Osteoimmunology and beyond. Curr. Med. Chem., 2016, 23(33), 3754-3774.
[http://dx.doi.org/10.2174/0929867323666160907162546 ] [PMID: 27604089]
[12]
Harvey, N.C.W.; McCloskey, E.V.; Mitchell, P.J.; Dawson-Hughes, B.; Pierroz, D.D.; Reginster, J.Y.; Rizzoli, R.; Cooper, C.; Kanis, J.A. Mind the (treatment) gap: a global perspective on current and future strategies for prevention of fragility fractures. Osteoporos. Int., 2017, 28(5), 1507-1529.
[http://dx.doi.org/10.1007/s00198-016-3894-y ] [PMID: 28175979]
[13]
Cotts, K.G.; Cifu, A.S. Treatment of osteoporosis. JAMA, 2018, 319(10), 1040-1041.
[http://dx.doi.org/10.1001/jama.2017.21995 ] [PMID: 29536084]
[14]
Kanis, J.A.; Reginster, J.Y.; Kaufman, J.M.; Ringe, J.D.; Adachi, J.D.; Hiligsmann, M.; Rizzoli, R.; Cooper, C. A reappraisal of generic bisphosphonates in osteoporosis. Osteoporos. Int., 2012, 23(1), 213-221.
[http://dx.doi.org/10.1007/s00198-011-1796-6 ] [PMID: 21953472]
[15]
Martinkovich, S.; Shah, D.; Planey, S.L.; Arnott, J.A. Selective estrogen receptor modulators: tissue specificity and clinical utility. Clin. Interv. Aging, 2014, 9, 1437-1452.
[PMID: 25210448]
[16]
Leder, B.Z. Parathyroid hormone and parathyroid hormone-related protein analogs in osteoporosis therapy. Curr. Osteoporos. Rep., 2017, 15(2), 110-119.
[http://dx.doi.org/10.1007/s11914-017-0353-4 ] [PMID: 28303448]
[17]
Lewiecki, E.M. Denosumab in postmenopausal osteoporosis: what the clinician needs to know. Ther. Adv. Musculoskelet. Dis., 2009, 1(1), 13-26.
[http://dx.doi.org/10.1177/1759720X09343221 ] [PMID: 22870424]
[18]
Kenkre, J.S.; Bassett, J. The bone remodelling cycle. Ann. Clin. Biochem., 2018, 55(3), 308-327.
[http://dx.doi.org/10.1177/0004563218759371 ] [PMID: 29368538]
[19]
Takayanagi, H. Osteoimmunology in 2014: Two-faced immunology-from osteogenesis to bone resorption. Nat. Rev. Rheumatol., 2015, 11(2), 74-76.
[http://dx.doi.org/10.1038/nrrheum.2014.219 ] [PMID: 25561367]
[20]
Srivastava, R.K.; Dar, H.Y.; Mishra, P.K. Immunoporosis: immunology of osteoporosis-role of T cells. Front. Immunol., 2018, 9, 657.
[http://dx.doi.org/10.3389/fimmu.2018.00657 ] [PMID: 29675022]
[21]
Amjadi-Moheb, F.; Akhavan-Niaki, H. Wnt signaling pathway in osteoporosis: Epigenetic regulation, interaction with other signaling pathways, and therapeutic promises. J. Cell. Physiol., 2019.
[http://dx.doi.org/10.1002/jcp.28207 ] [PMID: 30693508]
[22]
Uehara, S.; Udagawa, N.; Kobayashi, Y. Non-canonical Wnt signals regulate cytoskeletal remodeling in osteoclasts. Cell. Mol. Life Sci., 2018, 75(20), 3683-3692.
[http://dx.doi.org/10.1007/s00018-018-2881-1 ] [PMID: 30051162]
[23]
Witcher, P.C.; Miner, S.E.; Horan, D.J.; Bullock, W.A.; Lim, K.E.; Kang, K.S.; Adaniya, A.L.; Ross, R.D.; Loots, G.G.; Robling, A.G. Sclerostin neutralization unleashes the osteoanabolic effects of Dkk1 inhibition. JCI Insight, 2018, 3(11), 98673.
[http://dx.doi.org/10.1172/jci.insight.98673 ] [PMID: 29875318]
[24]
Delgado-Calle, J.; Sato, A.Y.; Bellido, T. Role and mechanism of action of sclerostin in bone. Bone, 2017, 96, 29-37.
[http://dx.doi.org/10.1016/j.bone.2016.10.007 ] [PMID: 27742498]
[25]
Colditz, J.; Thiele, S.; Baschant, U.; Garbe, A.I.; Niehrs, C.; Hofbauer, L.C.; Rauner, M. Osteogenic Dkk1 mediates glucocorticoid-induced but not arthritis-induced bone loss. J. Bone Miner. Res., 2019, 34(7), 1314-1323.
[http://dx.doi.org/10.1002/jbmr.3702 ] [PMID: 30779862]
[26]
Ciccarelli, F.; De Martinis, M.; Ginaldi, L. Glucocorticoids in patients with rheumatic diseases: friends or enemies of bone? Curr. Med. Chem., 2015, 22(5), 596-603.
[http://dx.doi.org/10.2174/0929867321666141106125051 ] [PMID: 25386817]
[27]
Zhang, J.; Fu, Q.; Ren, Z.; Wang, Y.; Wang, C.; Shen, T.; Wang, G.; Wu, L. Changes of serum cytokines-related Th1/Th2/Th17 concentration in patients with postmenopausal osteoporosis. Gynecol. Endocrinol., 2015, 31(3), 183-190.
[http://dx.doi.org/10.3109/09513590.2014.975683 ] [PMID: 25384921]
[28]
Suzuki, T.; Nakamura, Y.; Kato, H. Effects of denosumab on bone metabolism and bone mineral density with anti-TNF inhibitors, tocilizumab, or abatacept in osteoporosis with rheumatoid arthritis. Ther. Clin. Risk Manag., 2018, 14, 453-459.
[http://dx.doi.org/10.2147/TCRM.S156350 ] [PMID: 29535527]
[29]
Saribal, D.; Hocaoglu-Emre, F.S.; Erdogan, S.; Bahtiyar, N.; Caglar Okur, S.; Mert, M. Inflammatory cytokines IL-6 and TNF-α in patients with hip fracture. Osteoporos. Int., 2019, 30(5), 1025-1031.
[http://dx.doi.org/10.1007/s00198-019-04874-2 ] [PMID: 30701344]
[30]
Ginaldi, L.; De Martinis, M.; Ciccarelli, F.; Saitta, S.; Imbesi, S.; Mannucci, C.; Gangemi, S. Increased levels of interleukin 31 (IL-31) in osteoporosis. BMC Immunol., 2015, 16, 60.
[http://dx.doi.org/10.1186/s12865-015-0125-9 ] [PMID: 26449657]
[31]
Holgado, A.; Braun, H.; Van Nuffel, E.; Detry, S.; Schuijs, M.J.; Deswarte, K.; Vergote, K.; Haegman, M.; Baudelet, G.; Haustraete, J.; Hammad, H.; Lambrecht, B.N.; Savvides, S.N.; Afonina, I.S.; Beyaert, R. IL-33trap is a novel IL-33-neutralizing biologic that inhibits allergic airway inflammation. J. Allergy Clin. Immunol., 2019, 144(1), 204-215.
[http://dx.doi.org/10.1016/j.jaci.2019.02.028 ] [PMID: 30876911]
[32]
Ginaldi, L.; De Martinis, M.; Saitta, S.; Sirufo, M.M.; Mannucci, C.; Casciaro, M.; Ciccarelli, F.; Gangemi, S. Interleukin-33 serum levels in postmenopausal women with osteoporosis. Sci. Rep., 2019, 9(1), 3786.
[http://dx.doi.org/10.1038/s41598-019-40212-6 ] [PMID: 30846811]
[33]
De Martinis, M.; Sirufo, M.M.; Ginaldi, L. Allergy and aging: an old/new emerging health issue. Aging Dis., 2017, 8(2), 162-175.
[http://dx.doi.org/10.14336/AD.2016.0831 ] [PMID: 28400983]
[34]
Dar, H.Y.; Azam, Z.; Anupam, R.; Mondal, R.K.; Srivastava, R.K. Osteoimmunology: the Nexus between bone and immune system. Front. Biosci., 2018, 23, 464-492.
[http://dx.doi.org/10.2741/4600 ] [PMID: 28930556]
[35]
van Dam, P.A.; Verhoeven, Y.; Trinh, X.B.; Wouters, A.; Lardon, F.; Prenen, H.; Smits, E.; Baldewijns, M.; Lammens, M. RANK/RANKL signaling inhibition may improve the effectiveness of checkpoint blockade in cancer treatment. Crit. Rev. Oncol. Hematol., 2019, 133, 85-91.
[http://dx.doi.org/10.1016/j.critrevonc.2018.10.011 ] [PMID: 30661662]
[36]
Massimini, M.; Palmieri, C.; De Maria, R.; Romanucci, M.; Malatesta, D.; De Martinis, M.; Maniscalco, L.; Ciccarelli, A.; Ginaldi, L.; Buracco, P.; Bongiovanni, L.; Della Salda, L. 17-AAG and apoptosis, autophagy, and mitophagy in canine osteosarcoma cell lines. Vet. Pathol., 2017, 54(3), 405-412.
[http://dx.doi.org/10.1177/0300985816681409 ] [PMID: 28438108]
[37]
Infante, M.; Fabi, A.; Cognetti, F.; Gorini, S.; Caprio, M.; Fabbri, A. RANKL/RANK/OPG system beyond bone remodeling: involvement in breast cancer and clinical perspectives. J. Exp. Clin. Cancer Res., 2019, 38(1), 12.
[http://dx.doi.org/10.1186/s13046-018-1001-2 ] [PMID: 30621730]
[38]
Shupp, A.B.; Kolb, A.D.; Mukhopadhyay, D.; Bussard, K.M. Cancer metastases to bone: concepts, mechanisms, and interactions with bone osteoblasts. Cancers (Basel), 2018, 10, 3390.
[http://dx.doi.org/10.3390/cancers10060182]
[39]
Vishal, M.; Swetha, R.; Thejaswini, G.; Arumugam, B.; Selvamurugan, N. Role of Runx2 in breast cancer-mediated bone metastasis. Int. J. Biol. Macromol., 2017, 99, 608-614.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.03.021 ] [PMID: 28268169]
[40]
Sigl, V.; Jones, L.P.; Penninger, J.M. RANKL/RANK: from bone loss to the prevention of breast cancer. Open Biol., 2016, 6(11), 160230.
[http://dx.doi.org/10.1098/rsob.160230 ] [PMID: 27881737]
[41]
Baron, R.; Ferrari, S.; Russell, R.G. Denosumab and bisphosphonates: different mechanisms of action and effects. Bone, 2011, 48(4), 677-692.
[http://dx.doi.org/10.1016/j.bone.2010.11.020 ] [PMID: 21145999]
[42]
Bone, H.G.; Wagman, R.B.; Brandi, M.L.; Brown, J.P.; Chapurlat, R.; Cummings, S.R.; Czerwiński, E.; Fahrleitner-Pammer, A.; Kendler, D.L.; Lippuner, K.; Reginster, J.Y.; Roux, C.; Malouf, J.; Bradley, M.N.; Daizadeh, N.S.; Wang, A.; Dakin, P.; Pannacciulli, N.; Dempster, D.W.; Papapoulos, S. 10 years of denosumab treatment in postmenopausal women with osteoporosis: results from the phase 3 randomised FREEDOM trial and open-label extension. Lancet Diabetes Endocrinol., 2017, 5(7), 513-523.
[http://dx.doi.org/10.1016/S2213-8587(17)30138-9 ] [PMID: 28546097]
[43]
Cummings, S.R.; San Martin, J.; McClung, M.R.; Siris, E.S.; Eastell, R.; Reid, I.R.; Delmas, P.; Zoog, H.B.; Austin, M.; Wang, A.; Kutilek, S.; Adami, S.; Zanchetta, J.; Libanati, C.; Siddhanti, S.; Christiansen, C. FREEDOM Trial. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N. Engl. J. Med., 2009, 361(8), 756-765.
[http://dx.doi.org/10.1056/NEJMoa0809493 ] [PMID: 19671655]
[44]
Lorentzon, M. Treating osteoporosis to prevent fractures: current concepts and future developments. J. Intern. Med., 2019, 285(4), 381-394.
[http://dx.doi.org/10.1111/joim.12873 ] [PMID: 30657216]
[45]
Zanchetta, M.B.; Boailchuk, J.; Massari, F.; Silveira, F.; Bogado, C.; Zanchetta, J.R. Significant bone loss after stopping long-term denosumab treatment: a post FREEDOM study. Osteoporos. Int., 2018, 29(1), 41-47.
[http://dx.doi.org/10.1007/s00198-017-4242-6 ] [PMID: 28975362]
[46]
Leder, B.Z.; Tsai, J.N.; Neer, R.M.; Uihlein, A.V.; Wallace, P.M.; Burnett-Bowie, S.A. Response to therapy with teriparatide, denosumab, or both in postmenopausal women in the DATA (denosumab and teriparatide administration) study randomized controlled trial. J. Clin. Densitom., 2016, 19(3), 346-351.
[http://dx.doi.org/10.1016/j.jocd.2016.01.004 ] [PMID: 26900146]
[47]
Leder, B.Z.; Tsai, J.N.; Jiang, L.A.; Lee, H. Importance of prompt antiresorptive therapy in postmenopausal women discontinuing teriparatide or denosumab: The Denosumab and Teriparatide Follow-up study (DATA-Follow-up). Bone, 2017, 98, 54-58.
[http://dx.doi.org/10.1016/j.bone.2017.03.006 ] [PMID: 28286299]
[48]
Leder, B.Z. Optimizing sequential and combined anabolic and antiresorptive osteoporosis therapy. JBMR Plus, 2018, 2(2), 62-68.
[http://dx.doi.org/10.1002/jbm4.10041 ] [PMID: 30283892]
[49]
Fusco, V.; Santini, D.; Armento, G.; Tonini, G.; Campisi, G. Osteonecrosis of jaw beyond antiresorptive (bone targeted) agents: new horizons in oncology. Expert Opin. Drug Saf., 2016, 15(7), 925-935.
[http://dx.doi.org/10.1080/14740338.2016.1177021 ] [PMID: 27074901]
[50]
Suh, Y.S.; Jang, B.W.; Nho, J.H.; Won, S.H.; Lee, W.S. Atypical incomplete femoral neck fracture in patients taking long-term bisphosphonate: Case report, a report of 2 cases. Medicine (Baltimore), 2019, 98(9), e14701.
[http://dx.doi.org/10.1097/MD.0000000000014701 ] [PMID: 30817607]
[51]
Lou, S.; Lv, H.; Yin, P.; Li, Z.; Tang, P.; Wang, Y. Combination therapy with parathyroid hormone analogs and antiresorptive agents for osteoporosis: a systematic review and meta-analysis of randomized controlled trials. Osteoporos. Int., 2019, 30(1), 59-70.
[http://dx.doi.org/10.1007/s00198-018-4790-4 ] [PMID: 30539271]
[52]
Bhattacharyya, S.; Pal, S.; Chattopadhyay, N. Targeted inhibition of sclerostin for post-menopausal osteoporosis therapy: A critical assessment of the mechanism of action. Eur. J. Pharmacol., 2018, 826, 39-47.
[http://dx.doi.org/10.1016/j.ejphar.2018.02.028 ] [PMID: 29476877]
[53]
Chang, B.; Quan, Q.; Li, Y.; Qiu, H.; Peng, J.; Gu, Y. Treatment of osteoporosis, with a focus on 2 monoclonal antibodies. Med. Sci. Monit., 2018, 24, 8758-8766.
[http://dx.doi.org/10.12659/MSM.912309 ] [PMID: 30508820]
[54]
Clarke, B.L. Anti-sclerostin antibodies: utility in treatment of osteoporosis. Maturitas, 2014, 78(3), 199-204.
[http://dx.doi.org/10.1016/j.maturitas.2014.04.016 ] [PMID: 24842796]
[55]
van Lierop, A.H.; Hamdy, N.A.; Hamersma, H.; van Bezooijen, R.L.; Power, J.; Loveridge, N.; Papapoulos, S.E. Patients with sclerosteosis and disease carriers: human models of the effect of sclerostin on bone turnover. J. Bone Miner. Res., 2011, 26(12), 2804-2811.
[http://dx.doi.org/10.1002/jbmr.474 ] [PMID: 21786318]
[56]
Robling, A.G.; Drake, M.T.; Papapoulos, S.E. Sclerostin: From bedside to bench, and back to bedside. Bone, 2017, 96, 1-2.
[http://dx.doi.org/10.1016/j.bone.2017.01.019 ] [PMID: 28115280]
[57]
Lewiecki, E.M.; Dinavahi, R.V.; Lazaretti-Castro, M.; Ebeling, P.R.; Adachi, J.D.; Miyauchi, A.; Gielen, E.; Milmont, C.E.; Libanati, C.; Grauer, A. One year of romosozumab followed by two years of denosumab maintains fracture risk reductions: results of the FRAME extension study. J. Bone Miner. Res., 2019, 34(3), 419-428.
[http://dx.doi.org/10.1002/jbmr.3622 ] [PMID: 30508316]
[58]
Cosman, F.; Crittenden, D.B.; Adachi, J.D.; Binkley, N.; Czerwinski, E.; Ferrari, S.; Hofbauer, L.C.; Lau, E.; Lewiecki, E.M.; Miyauchi, A.; Zerbini, C.A.; Milmont, C.E.; Chen, L.; Maddox, J.; Meisner, P.D.; Libanati, C.; Grauer, A. Romosozumab treatment in postmenopausal women with osteoporosis. N. Engl. J. Med., 2016, 375(16), 1532-1543.
[http://dx.doi.org/10.1056/NEJMoa1607948 ] [PMID: 27641143]
[59]
Cosman, F.; Crittenden, D.B.; Ferrari, S.; Khan, A.; Lane, N.E.; Lippuner, K.; Matsumoto, T.; Milmont, C.E.; Libanati, C.; Grauer, A. FRAME study: the foundation effect of building bone with 1 year of romosozumab leads to continued lower fracture risk after transition to denosumab. J. Bone Miner. Res., 2018, 33(7), 1219-1226.
[http://dx.doi.org/10.1002/jbmr.3427 ] [PMID: 29573473]
[60]
Langdahl, B.L.; Libanati, C.; Crittenden, D.B.; Bolognese, M.A.; Brown, J.P.; Daizadeh, N.S.; Dokoupilova, E.; Engelke, K.; Finkelstein, J.S.; Genant, H.K.; Goemaere, S.; Hyldstrup, L.; Jodar-Gimeno, E.; Keaveny, T.M.; Kendler, D.; Lakatos, P.; Maddox, J.; Malouf, J.; Massari, F.E.; Molina, J.F.; Ulla, M.R.; Grauer, A. Romosozumab (sclerostin monoclonal antibody) versus teriparatide in postmenopausal women with osteoporosis transitioning from oral bisphosphonate therapy: a randomised, open-label, phase 3 trial. Lancet, 2017, 390(10102), 1585-1594.
[http://dx.doi.org/10.1016/S0140-6736(17)31613-6 ] [PMID: 28755782]
[61]
Saag, K.G.; Petersen, J.; Brandi, M.L.; Karaplis, A.C.; Lorentzon, M.; Thomas, T.; Maddox, J.; Fan, M.; Meisner, P.D.; Grauer, A. Romosozumab or alendronate for fracture prevention in women with osteoporosis. N. Engl. J. Med., 2017, 377(15), 1417-1427.
[http://dx.doi.org/10.1056/NEJMoa1708322 ] [PMID: 28892457]
[62]
Genant, H.K.; Engelke, K.; Bolognese, M.A.; Mautalen, C.; Brown, J.P.; Recknor, C.; Goemaere, S.; Fuerst, T.; Yang, Y.C.; Grauer, A.; Libanati, C. Effects of romosozumab compared with teriparatide on bone density and mass at the spine and hip in postmenopausal women with low bone mass. J. Bone Miner. Res., 2017, 32(1), 181-187.
[http://dx.doi.org/10.1002/jbmr.2932 ] [PMID: 27487526]
[63]
Wu, M.; Chen, G.; Li, Y.P. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res., 2016, 4, 16009.
[http://dx.doi.org/10.1038/boneres.2016.9 ] [PMID: 27563484]
[64]
Xian, L.; Wu, X.; Pang, L.; Lou, M.; Rosen, C.J.; Qiu, T.; Crane, J.; Frassica, F.; Zhang, L.; Rodriguez, J.P.; Jia, X.; Yakar, S.; Shouhong, X.; Efstratiadis, A.; Wan, M.; Cao, X. IGF-1 released from bone matrix stimulates osteoblastic differentiation of MSCs by activation of mTOR during bone remodeling. Nat. Med., 2012, 18(7), 1095-1101.
[http://dx.doi.org/10.1038/nm.2793 ] [PMID: 22729283]
[65]
Irelli, A.; Sirufo, M.M.; Scipioni, T.; De Pietro, F.; Pancotti, A.; Ginaldi, L.; De Martinis, M. mTOR links tumor immunity and bone metabolism: what are the clinical implications? Int. J. Mol. Sci., 2019, 20(23), 5841.
[http://dx.doi.org/10.3390/ijms20235841 ] [PMID: 31766386]
[66]
de Queiroz Fernandes, J.; de Lima, V.N.; Bonardi, J.P.; Filho, O.M.; Queiroz, S.B.F. Bone regeneration with recombinant human bone morphogenetic protein 2: a systematic review. J. Maxillofac. Oral Surg., 2018, 17(1), 13-18.
[http://dx.doi.org/10.1007/s12663-016-0988-1 ] [PMID: 29382988]
[67]
Oryan, A.; Kamali, A.; Moshiri, A. Potential mechanisms and applications of statins on osteogenesis: Current modalities, conflicts and future directions. J. Control. Release, 2015, 215, 12-24.
[http://dx.doi.org/10.1016/j.jconrel.2015.07.022 ] [PMID: 26226345]
[68]
Ruaro, B.; Casabella, A.; Paolino, S.; Pizzorni, C.; Ghio, M.; Seriolo, C.; Molfetta, L.; Odetti, P.; Smith, V.; Cutolo, M. Dickkopf-1 (Dkk-1) serum levels in systemic sclerosis and rheumatoid arthritis patients: correlation with the Trabecular Bone Score (TBS). Clin. Rheumatol., 2018, 37(11), 3057-3062.
[http://dx.doi.org/10.1007/s10067-018-4322-9 ] [PMID: 30291470]
[69]
Wu, M.; Chen, M.; Ma, Y.; Yang, J.; Han, R.; Yuan, Y.; Hu, X.; Wang, M.; Zhang, X.; Xu, S.; Liu, R.; Jiang, G.; Xu, J.; Shuai, Z.; Zou, Y.; Pan, G.; Pan, F. Dickkopf-1 in ankylosing spondylitis: Review and meta-analysis. Clin. Chim. Acta, 2018, 481, 177-183.
[http://dx.doi.org/10.1016/j.cca.2018.03.010 ] [PMID: 29544750]
[70]
Jin, Y.; Xu, L.; Wu, X.; Feng, J.; Shu, M.; Gu, H.; Gao, G.; Zhang, J.; Dong, B.; Chen, X. Synergistic efficacy of the demethylation agent decitabine in combination with the protease inhibitor bortezomib for treating multiple myeloma through the Wnt/βcatenin pathway. Oncol. Res., 2019, 27(6), 729-737.
[http://dx.doi.org/10.3727/096504018X15443011011637 ] [PMID: 30837032]
[71]
Wang, M.; Park, S.; Nam, Y.; Nielsen, J.; Low, S.A.; Srinivasarao, M.; Low, P.S. Bone-fracture-targeted dasatinib-oligoaspartic acid conjugate potently accelerates fracture repair. Bioconjug. Chem., 2018, 29(11), 3800-3809.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00660 ] [PMID: 30380292]
[72]
Gaur, T.; Wixted, J.J.; Hussain, S.; O’Connell, S.L.; Morgan, E.F.; Ayers, D.C.; Komm, B.S.; Bodine, P.V.; Stein, G.S.; Lian, J.B. Secreted frizzled related protein 1 is a target to improve fracture healing. J. Cell. Physiol., 2009, 220(1), 174-181.
[http://dx.doi.org/10.1002/jcp.21747 ] [PMID: 19301255]
[73]
Schweiger, J.U.; Schweiger, U.; Hüppe, M.; Kahl, K.G.; Greggersen, W.; Jauch-Chara, K.; Fassbinder, E. The use of antidepressive agents and bone mineral density in women: a meta-analysis. Int. J. Environ. Res. Public Health, 2018, 15(7), 15.
[http://dx.doi.org/10.3390/ijerph15071373 ] [PMID: 29966324]
[74]
Yadav, V.K.; Balaji, S.; Suresh, P.S.; Liu, X.S.; Lu, X.; Li, Z.; Guo, X.E.; Mann, J.J.; Balapure, A.K.; Gershon, M.D.; Medhamurthy, R.; Vidal, M.; Karsenty, G.; Ducy, P. Pharmacological inhibition of gut-derived serotonin synthesis is a potential bone anabolic treatment for osteoporosis. Nat. Med., 2010, 16(3), 308-312.
[http://dx.doi.org/10.1038/nm.2098 ] [PMID: 20139991]
[75]
Bone, H.G.; Dempster, D.W.; Eisman, J.A.; Greenspan, S.L.; McClung, M.R.; Nakamura, T.; Papapoulos, S.; Shih, W.J.; Rybak-Feiglin, A.; Santora, A.C.; Verbruggen, N.; Leung, A.T.; Lombardi, A. Odanacatib for the treatment of postmenopausal osteoporosis: development history and design and participant characteristics of LOFT, the long-term odanacatib fracture trial. Osteoporos. Int., 2015, 26(2), 699-712.
[http://dx.doi.org/10.1007/s00198-014-2944-6 ] [PMID: 25432773]
[76]
Antebi, B.; Pelled, G.; Gazit, D. Stem cell therapy for osteoporosis. Curr. Osteoporos. Rep., 2014, 12(1), 41-47.
[http://dx.doi.org/10.1007/s11914-013-0184-x ] [PMID: 24407712]
[77]
Kim, G.; Park, Y.S.; Lee, Y.; Jin, Y.M.; Choi, D.H.; Ryu, K.H.; Park, Y.J.; Park, K.D.; Jo, I. Tonsil-derived mesenchymal stem cell embedded in situ crosslinkable gelatin hydrogel therapy recovers postmenopausal osteoporosis through bone regeneration. Plos One, 2018, 13(7), e0200111.
[http://dx.doi.org/10.1371/journal.pone.0200111 ] [PMID: 29975738]
[78]
Yang, Y.; Fang, S. Small non-coding RNAs-based bone regulation and targeting therapeutic strategies. Mol. Cell. Endocrinol., 2017, 456, 16-35.
[http://dx.doi.org/10.1016/j.mce.2016.11.018 ] [PMID: 27888003]
[79]
Feng, Q.; Zheng, S.; Zheng, J. The emerging role of microRNAs in bone remodeling and its therapeutic implications for osteoporosis. Biosci. Rep., 2018, 38(3), BSR20180453.
[http://dx.doi.org/10.1042/BSR20180453 ] [PMID: 29848766]
[80]
Liang, C.; Guo, B.; Wu, H.; Shao, N.; Li, D.; Liu, J.; Dang, L.; Wang, C.; Li, H.; Li, S.; Lau, W.K.; Cao, Y.; Yang, Z.; Lu, C.; He, X.; Au, D.W.; Pan, X.; Zhang, B.T.; Lu, C.; Zhang, H.; Yue, K.; Qian, A.; Shang, P.; Xu, J.; Xiao, L.; Bian, Z.; Tan, W.; Liang, Z.; He, F.; Zhang, L.; Lu, A.; Zhang, G. Aptamer-functionalized lipid nanoparticles targeting osteoblasts as a novel RNA interference-based bone anabolic strategy. Nat. Med., 2015, 21(3), 288-294.
[http://dx.doi.org/10.1038/nm.3791 ] [PMID: 25665179]
[81]
Zhao, R.; Xie, P.; Zhang, K.; Tang, Z.; Chen, X.; Zhu, X.; Fan, Y.; Yang, X.; Zhang, X. Selective effect of epigenetic regulation of osteoblastic cell function by HANPs has significant implication on defining design parameters for a potential therapeutic use of nanomaterials. Acta Biomater., 2017, 59, 338-350.
[http://dx.doi.org/10.1016/j.actbio.2017.07.009 ] [PMID: 28698163]
[82]
Tucker, W.O.; Kinghorn, A.B.; Fraser, L.A.; Cheung, Y.W.; Tanner, J.A. Selection and characterization of a DNA aptamer specifically targeting human HECT ubiquitin ligase WWP1. Int. J. Mol. Sci., 2018, 19(3), 19.
[http://dx.doi.org/10.3390/ijms19030763 ] [PMID: 29518962]
[83]
Lee, M.S.; Su, C.M.; Yeh, J.C.; Wu, P.R.; Tsai, T.Y.; Lou, S.L. Synthesis of composite magnetic nanoparticles Fe3O4 with alendronate for osteoporosis treatment. Int. J. Nanomedicine, 2016, 11, 4583-4594.
[http://dx.doi.org/10.2147/IJN.S112415 ] [PMID: 27695319]
[84]
Abdelkarem, H.M.; Fadda, L.H.; El-Sayed, E.M.; Radwan, O.K. Potential role of L-arginine and vitamin E against bone loss induced by nano-zinc oxide in rats. J. Diet. Suppl., 2018, 15(3), 300-310.
[http://dx.doi.org/10.1080/19390211.2017.1343889 ] [PMID: 28759296]
[85]
Moon, N.; Effiong, L.; Song, L.; Gardner, T.R. Soung, DY Tart Cherry prevents bone loss through inhibition of RANKL in TNF-overexpressing mice. Nutrients, 2019, 11, 63.
[http://dx.doi.org/10.3390/nu11010063]
[86]
Chai, L.J.; Zhang, Y.; Zhang, P.Y.; Bi, Y.N.; Yuan, X.M.; Li, Y.H.; Wang, Y.Y.; Song, L.; Sun, L.K.; Zhou, K. The antiosteoporosis effects of Zhuanggu Guanjie Pill in vitro and in vivo. BioMed Research. Int., 2018, 5, 1-11.
[http://dx.doi.org/10.1155/2018/9075318 ]
[87]
Cho, Y.; Lee, S.; Kim, J.; Kang, J.W.; Baek, Y.H.; Seo, B.K.; Lee, J.D. The efficacy and safety of herbal medicine BHH10 in postmenopausal women with osteoporosis: study protocol for a phase II, multicenter, randomized, double-blinded, placebo-controlled clinical trial. Trials, 2018, 19(1), 482.
[http://dx.doi.org/10.1186/s13063-018-2854-6 ] [PMID: 30201024]
[88]
Tabatabaei-Malazy, O.; Salari, P.; Khashayar, P.; Larijani, B. New horizons in treatment of osteoporosis. Daru, 2017, 25(1), 2.
[http://dx.doi.org/10.1186/s40199-017-0167-z ] [PMID: 28173850]
[89]
Ciccarelli, F.; De Martinis, M.; Sirufo, M.M.; Ginaldi, L. Psoriasis induced by anti-Tumor Necrosis Factor-alpha agents: a comprehensive review of the literature. Acta Dermatovenerol. Croat., 2016, 24(3), 169-174.
[PMID: 27663916]
[90]
Moseley, K.F.; Naidoo, J.; Bingham, C.O.; Carducci, M.A.; Forde, P.M.; Gibney, G.T.; Lipson, E.J.; Shah, A.A.; Sharfman, W.H.; Cappelli, L.C. Immune-related adverse events with immune checkpoint inhibitors affecting the skeleton: a seminal case series. J. Immunother. Cancer, 2018, 6(1), 104.
[http://dx.doi.org/10.1186/s40425-018-0417-8 ] [PMID: 30305172 ]

© 2025 Bentham Science Publishers | Privacy Policy