Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Protein Interaction Domains and Post-Translational Modifications: Structural Features and Drug Discovery Applications

Author(s): Marian Vincenzi, Flavia Anna Mercurio and Marilisa Leone*

Volume 27, Issue 37, 2020

Page: [6306 - 6355] Pages: 50

DOI: 10.2174/0929867326666190620101637

Price: $65

Abstract

Background: Many pathways regarding healthy cells and/or linked to diseases onset and progression depend on large assemblies including multi-protein complexes. Protein-protein interactions may occur through a vast array of modules known as Protein Interaction Domains (PIDs).

Objective: This review concerns with PIDs recognizing post-translationally modified peptide sequences and intends to provide the scientific community with state of art knowledge on their 3D structures, binding topologies and potential applications in the drug discovery field.

Method: Several databases, such as the Pfam (Protein family), the SMART (Simple Modular Architecture Research Tool) and the PDB (Protein Data Bank), were searched to look for different domain families and gain structural information on protein complexes in which particular PIDs are involved. Recent literature on PIDs and related drug discovery campaigns were retrieved through Pubmed and analyzed.

Results and Conclusion: PIDs are rather versatile as concerned with their binding preferences. Many of them recognize specifically only determined amino acid stretches with post-translational modifications, a few others are able to interact with several post-translationally modified sequences or with unmodified ones. Many PIDs can be linked to different diseases including cancer. The tremendous amount of available structural data led to the structure-based design of several molecules targeting protein-protein interactions mediated by PIDs, including peptides, peptidomimetics and small compounds. More studies are needed to fully role out, among different families, PIDs that can be considered reliable therapeutic targets, however, attacking PIDs rather than catalytic domains of a particular protein may represent a route to obtain selective inhibitors.

Keywords: Protein binding modules, post-translational modifications, peptides, small molecules, binding sites, structural biology, drug discovery.

[1]
Pawson, T.; Nash, P. Assembly of cell regulatory systems through protein interaction domains. Science, 2003, 300(5618), 445-452.
[http://dx.doi.org/10.1126/science.1083653] [PMID: 12702867]
[2]
Pawson, T.; Raina, M.; Nash, P. Interaction domains: from simple binding events to complex cellular behavior. FEBS Lett., 2002, 513(1), 2-10.
[http://dx.doi.org/10.1016/S0014-5793(01)03292-6] [PMID: 11911873]
[3]
Mayer, B.J. The discovery of modular binding domains: building blocks of cell signalling. Nat. Rev. Mol. Cell Biol., 2015, 16(11), 691-698.
[http://dx.doi.org/10.1038/nrm4068] [PMID: 26420231]
[4]
Ghoorah, A.W.; Devignes, M.D.; Alborzi, S.Z.; Smaïl-Tabbone, M.; Ritchie, D.W. A structure-based classification and analysis of protein domain family binding sites and their interactions. Biology (Basel), 2015, 4(2), 327-343.
[http://dx.doi.org/10.3390/biology4020327] [PMID: 25860777]
[5]
El-Gebali, S.; Mistry, J.; Bateman, A.; Eddy, S.R.; Luciani, A.; Potter, S.C.; Qureshi, M.; Richardson, L.J.; Salazar, G.A.; Smart, A.; Sonnhammer, E.L.L.; Hirsh, L.; Paladin, L.; Piovesan, D.; Tosatto, S.C.E.; Finn, R.D. The Pfam protein families database in 2019. Nucleic Acids Res., 2019, 47(D1), D427-D432.
[http://dx.doi.org/10.1093/nar/gky995] [PMID: 30357350]
[6]
Chandonia, J.M.; Fox, N.K.; Brenner, S.E. SCOPe: classification of large macromolecular structures in the structural classification of proteins-extended database. Nucleic Acids Res., 2019, 47(D1), D475-D481.
[http://dx.doi.org/10.1093/nar/gky1134] [PMID: 30500919]
[7]
Dawson, N.L.; Lewis, T.E.; Das, S.; Lees, J.G.; Lee, D.; Ashford, P.; Orengo, C.A.; Sillitoe, I. CATH: an expanded resource to predict protein function through structure and sequence. Nucleic Acids Res., 2017, 45(D1), D289-D295.
[http://dx.doi.org/10.1093/nar/gkw1098] [PMID: 27899584]
[8]
Reinhardt, H.C.; Yaffe, M.B. Phospho-Ser/Thr-binding domains: navigating the cell cycle and DNA damage response. Nat. Rev. Mol. Cell Biol., 2013, 14(9), 563-580.
[http://dx.doi.org/10.1038/nrm3640] [PMID: 23969844]
[9]
Yaffe, M.B.; Elia, A.E.H. Phosphoserine/threonine-binding domains. Curr. Opin. Cell Biol., 2001, 13(2), 131-138.
[http://dx.doi.org/10.1016/S0955-0674(00)00189-7] [PMID: 11248545]
[10]
Kouzarides, T. Acetylation: a regulatory modification to rival phosphorylation? EMBO J., 2000, 19(6), 1176-1179.
[http://dx.doi.org/10.1093/emboj/19.6.1176] [PMID: 10716917]
[11]
Kim, J.; Daniel, J.; Espejo, A.; Lake, A.; Krishna, M.; Xia, L.; Zhang, Y.; Bedford, M.T. Tudor, MBT and chromo domains gauge the degree of lysine methylation. EMBO Rep., 2006, 7(4), 397-403.
[http://dx.doi.org/10.1038/sj.embor.7400625] [PMID: 16415788]
[12]
Hoppmann, V.; Thorstensen, T.; Kristiansen, P.E.; Veiseth, S.V.; Rahman, M.A.; Finne, K.; Aalen, R.B.; Aasland, R. The CW domain, a new histone recognition module in chromatin proteins. EMBO J., 2011, 30(10), 1939-1952.
[http://dx.doi.org/10.1038/emboj.2011.108] [PMID: 21522130]
[13]
Haase, V.H. The VHL tumor suppressor: master regulator of HIF. Curr. Pharm. Des., 2009, 15(33), 3895-3903.
[http://dx.doi.org/10.2174/138161209789649394] [PMID: 19671042]
[14]
Pawson, T. Protein modules and signalling networks. Nature, 1995, 373(6515), 573-580.
[http://dx.doi.org/10.1038/373573a0] [PMID: 7531822]
[15]
Pawson, T.; Nash, P. Protein-protein interactions define specificity in signal transduction. Genes Dev., 2000, 14(9), 1027-1047.
[PMID: 10809663]
[16]
Pawson, T. Dynamic control of signaling by modular adaptor proteins. Curr. Opin. Cell Biol., 2007, 19(2), 112-116.
[http://dx.doi.org/10.1016/j.ceb.2007.02.013] [PMID: 17317137]
[17]
Berridge, M.J.; Cobbold, P.H.; Cuthbertson, K.S. Spatial and temporal aspects of cell signalling. Philos. Trans. R. Soc. Lond. B Biol. Sci., 1988, 320(1199), 325-343.
[http://dx.doi.org/10.1098/rstb.1988.0080] [PMID: 2906142]
[18]
Liu, B.A.; Engelmann, B.W.; Nash, P.D. The language of SH2 domain interactions defines phosphotyrosine-mediated signal transduction. FEBS Lett., 2012, 586(17), 2597-2605.
[http://dx.doi.org/10.1016/j.febslet.2012.04.054] [PMID: 22569091]
[19]
Yaffe, M.B. Phosphotyrosine-binding domains in signal transduction. Nat. Rev. Mol. Cell Biol., 2002, 3(3), 177-186.
[http://dx.doi.org/10.1038/nrm759] [PMID: 11994738]
[20]
Liu, B.A.; Engelmann, B.W.; Nash, P.D. High-throughput analysis of peptide-binding modules. Proteomics, 2012, 12(10), 1527-1546.
[http://dx.doi.org/10.1002/pmic.201100599] [PMID: 22610655]
[21]
Sheng, R.; Jung, D.J.; Silkov, A.; Kim, H.; Singaram, I.; Wang, Z.G.; Xin, Y.; Kim, E.; Park, M.J.; Thiagarajan-Rosenkranz, P.; Smrt, S.; Honig, B.; Baek, K.; Ryu, S.; Lorieau, J.; Kim, Y.M.; Cho, W. Lipids regulate lck protein activity through their interactions with the Lck Src homology 2 domain. J. Biol. Chem., 2016, 291(34), 17639-17650.
[http://dx.doi.org/10.1074/jbc.M116.720284] [PMID: 27334919]
[22]
Leone, M.; Yu, E.C.; Liddington, R.C.; Pasquale, E.B.; Pellecchia, M. The PTB domain of tensin: NMR solution structure and phosphoinositides binding studies. Biopolymers, 2008, 89(1), 86-92.
[http://dx.doi.org/10.1002/bip.20862] [PMID: 17922498]
[23]
Kraskouskaya, D.; Duodu, E.; Arpin, C.C.; Gunning, P.T. Progress towards the development of SH2 domain inhibitors. Chem. Soc. Rev., 2013, 42(8), 3337-3370.
[http://dx.doi.org/10.1039/c3cs35449k] [PMID: 23396540]
[24]
Kasembeli, M.M.; Xu, X.; Tweardy, D.J. SH2 domain binding to phosphopeptide ligands: potential for drug targeting. Front. Biosci., 2009, 14, 1010-1022.
[http://dx.doi.org/10.2741/3292] [PMID: 19273114]
[25]
Sawyer, T.K. Src homology-2 domains: structure, mechanisms, and drug discovery. Biopolymers, 1998, 47(3), 243-261.
[http://dx.doi.org/10.1002/(SICI)1097-0282(1998)47:3<243:AID-BIP4>3.0.CO;2-P] [PMID: 9817027]
[26]
Pawson, T.; Gish, G.D.; Nash, P. SH2 domains, interaction modules and cellular wiring. Trends Cell Biol., 2001, 11(12), 504-511.
[http://dx.doi.org/10.1016/S0962-8924(01)02154-7] [PMID: 11719057]
[27]
Machida, K.; Mayer, B.J. The SH2 domain: versatile signaling module and pharmaceutical target. Biochim. Biophys. Acta, 2005, 1747(1), 1-25.
[http://dx.doi.org/10.1016/j.bbapap.2004.10.005] [PMID: 15680235]
[28]
Songyang, Z. Recognition and regulation of primary-sequence motifs by signaling modular domains. Prog. Biophys. Mol. Biol., 1999, 71(3-4), 359-372.
[http://dx.doi.org/10.1016/S0079-6107(98)00045-5] [PMID: 10354704]
[29]
Liu, H.; Huang, H.; Voss, C.; Kaneko, T.; Qin, W.; Sidhu, S.; Li, S.S. Surface loops in a single SH2 domain are capable of encoding the spectrum of specificity of the SH2 family. Mol. Cell. Proteomics, 2019, 18(2), 372-382.
[http://dx.doi.org/10.1074/mcp.RA118.001123 ] [PMID: 30482845]
[30]
Liu, B.A.; Nash, P.D. Evolution of SH2 domains and phosphotyrosine signalling networks. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2012, 367(1602), 2556-2573.
[http://dx.doi.org/10.1098/rstb.2012.0107] [PMID: 22889907]
[31]
Schlessinger, J.; Lemmon, M.A. SH2 and PTB domains in tyrosine kinase signaling. Sci. STKE, 2003, 2003(191), RE12.
[http://dx.doi.org/10.1126/stke.2003.191.re12 ] [PMID: 12865499]
[32]
Roque, A.C.; Lowe, C.R. Lessons from nature: On the molecular recognition elements of the phosphoprotein binding-domains. Biotechnol. Bioeng., 2005, 91(5), 546-555.
[http://dx.doi.org/10.1002/bit.20561] [PMID: 15959902]
[33]
Myslinski, J.M.; DeLorbe, J.E.; Clements, J.H.; Martin, S.F. Protein-ligand interactions: thermodynamic effects associated with increasing nonpolar surface area. J. Am. Chem. Soc., 2011, 133(46), 18518-18521.
[http://dx.doi.org/10.1021/ja2068752] [PMID: 22007755]
[34]
Roskoski, R., Jr Src protein-tyrosine kinase structure, mechanism, and small molecule inhibitors. Pharmacol. Res., 2015, 94, 9-25.
[http://dx.doi.org/10.1016/j.phrs.2015.01.003] [PMID: 25662515]
[35]
Vidal, M.; Gigoux, V.; Garbay, C. SH2 and SH3 domains as targets for anti-proliferative agents. Crit. Rev. Oncol. Hematol., 2001, 40(2), 175-186.
[http://dx.doi.org/10.1016/S1040-8428(01)00142-1] [PMID: 11682324]
[36]
Filippakopoulos, P.; Müller, S.; Knapp, S. SH2 domains: modulators of nonreceptor tyrosine kinase activity. Curr. Opin. Struct. Biol., 2009, 19(6), 643-649.
[http://dx.doi.org/10.1016/j.sbi.2009.10.001] [PMID: 19926274]
[37]
Shakespeare, W.C. SH2 domain inhibition: a problem solved? Curr. Opin. Chem. Biol., 2001, 5(4), 409-415.
[http://dx.doi.org/10.1016/S1367-5931(00)00222-2] [PMID: 11470604]
[38]
Marseigne, I.; Roques, B.P. Synthesis of new amino-acids mimicking sulfated and phosphorylated tyrosine residues. J. Org. Chem., 1988, 53(15), 3621-3624.
[http://dx.doi.org/10.1021/jo00250a043]
[39]
Burke, T.R.; Smyth, M.S.; Nomizu, M.; Otaka, A.; Roller, P.P. Preparation of Fluoro-4-(Phosphonomethyl)-D,L-Phenylalanine and Hydroxy-4-(Phosphonomethyl)-D,L-Phenylalanine suitably protected for solid-phase synthesis of peptides containing hydrolytically stable analogs of o-phosphotyrosine. J. Org. Chem., 1993, 58(6), 1336-1340.
[http://dx.doi.org/10.1021/jo00058a009]
[40]
Leone, M.; Barile, E.; Dahl, R.; Pellecchia, M. Design and NMR studies of cyclic peptides targeting the N-terminal domain of the protein tyrosine phosphatase YopH. Chem. Biol. Drug Des., 2011, 77(1), 12-19.
[http://dx.doi.org/10.1111/j.1747-0285.2010.01058.x] [PMID: 21118379]
[41]
Song, Y.L.; Peach, M.L.; Roller, P.P.; Qiu, S.; Wang, S.; Long, Y.Q. Discovery of a novel nonphosphorylated pentapeptide motif displaying high affinity for Grb2-SH2 domain by the utilization of 3′-substituted tyrosine derivatives. J. Med. Chem., 2006, 49(5), 1585-1596.
[http://dx.doi.org/10.1021/jm050910x] [PMID: 16509576]
[42]
Morlacchi, P.; Robertson, F.M.; Klostergaard, J.; McMurray, J.S. Targeting SH2 domains in breast cancer. Future Med. Chem., 2014, 6(17), 1909-1926.
[http://dx.doi.org/10.4155/fmc.14.120] [PMID: 25495984]
[43]
Verdura, S.; Cuyàs, E.; Llorach-Parés, L.; Pérez-Sánchez, A.; Micol, V.; Nonell-Canals, A.; Joven, J.; Valiente, M.; Sánchez-Martínez, M.; Bosch-Barrera, J.; Menendez, J.A. Silibinin is a direct inhibitor of STAT3., Food Chem. Toxicol., 2018, 116(Pt B), 161-172.
[http://dx.doi.org/10.1016/j.fct.2018.04.028]
[44]
Susva, M.; Missbach, M.; Green, J. Src inhibitors: drugs for the treatment of osteoporosis, cancer or both? Trends Pharmacol. Sci., 2000, 21(12), 489-495.
[http://dx.doi.org/10.1016/S0165-6147(00)01567-4] [PMID: 11121839]
[45]
Violette, S.M.; Guan, W.; Bartlett, C.; Smith, J.A.; Bardelay, C.; Antoine, E.; Rickles, R.J.; Mandine, E.; van Schravendijk, M.R.; Adams, S.E.; Lynch, B.A.; Shakespeare, W.C.; Yang, M.; Jacobsen, V.A.; Takeuchi, C.S.; Macek, K.J.; Bohacek, R.S.; Dalgarno, D.C.; Weigele, M.; Lesuisse, D.; Sawyer, T.K.; Baron, R. Bone-targeted Src SH2 inhibitors block Src cellular activity and osteoclast-mediated resorption. Bone, 2001, 28(1), 54-64.
[http://dx.doi.org/10.1016/S8756-3282(00)00427-0] [PMID: 11165943]
[46]
Porter, C.J.; Matthews, J.M.; Mackay, J.P.; Pursglove, S.E.; Schmidberger, J.W.; Leedman, P.J.; Pero, S.C.; Krag, D.N.; Wilce, M.C.J.; Wilce, J.A. Grb7 SH2 domain structure and interactions with a cyclic peptide inhibitor of cancer cell migration and proliferation. BMC Struct. Biol., 2007, 7(58), 58.
[http://dx.doi.org/10.1186/1472-6807-7-58] [PMID: 17894853]
[47]
Farooq, A.; Zhou, M.M. PTB or not to be: promiscuous, tolerant and Bizarro domains come of age. IUBMB Life, 2004, 56(9), 547-557.
[http://dx.doi.org/10.1080/15216540400013895] [PMID: 15590561]
[48]
DiNitto, J.P.; Lambright, D.G. Membrane and juxtamembrane targeting by PH and PTB domains. Biochim. Biophys. Acta, 2006, 1761(8), 850-867.
[http://dx.doi.org/10.1016/j.bbalip.2006.04.008] [PMID: 16807090]
[49]
Uhlik, M.T.; Temple, B.; Bencharit, S.; Kimple, A.J.; Siderovski, D.P.; Johnson, G.L. Structural and evolutionary division of phosphotyrosine binding (PTB) domains. J. Mol. Biol., 2005, 345(1), 1-20.
[http://dx.doi.org/10.1016/j.jmb.2004.10.038] [PMID: 15567406]
[50]
Harrison, S.C. Peptide-surface association: the case of PDZ and PTB domains. Cell, 1996, 86(3), 341-343.
[http://dx.doi.org/10.1016/S0092-8674(00)80105-1] [PMID: 8756715]
[51]
Chen, L.; Liu, C.; Ko, F.C.F.; Xu, N.; Ng, I.O.L.; Yam, J.W.P.; Zhu, G. Solution structure of the phosphotyrosine binding (PTB) domain of human tensin2 protein in complex with deleted in liver cancer 1 (DLC1) peptide reveals a novel peptide binding mode. J. Biol. Chem., 2012, 287(31), 26104-26114.
[http://dx.doi.org/10.1074/jbc.M112.360206] [PMID: 22645138]
[52]
Burke, T.R. Jr.; Yao, Z.J.; Liu, D.G.; Voigt, J.; Gao, Y. Phosphoryltyrosyl mimetics in the design of peptide-based signal transduction inhibitors. Biopolymers, 2001, 60(1), 32-44.
[http://dx.doi.org/10.1002/1097-0282(2001)60:1<32:AID-BIP1002>3.0.CO;2-I] [PMID: 11376431]
[53]
Giorgetti-Peraldi, S.; Ottinger, E.; Wolf, G.; Ye, B.; Burke, T.R. Jr.; Shoelson, S.E. Cellular effects of phosphotyrosine-binding domain inhibitors on insulin receptor signaling and trafficking. Mol. Cell. Biol., 1997, 17(3), 1180-1188.
[http://dx.doi.org/10.1128/MCB.17.3.1180] [PMID: 9032245]
[54]
Zhou, M.M.; Ravichandran, K.S.; Olejniczak, E.F.; Petros, A.M.; Meadows, R.P.; Sattler, M.; Harlan, J.E.; Wade, W.S.; Burakoff, S.J.; Fesik, S.W. Structure and ligand recognition of the phosphotyrosine binding domain of Shc. Nature, 1995, 378(6557), 584-592.
[http://dx.doi.org/10.1038/378584a0] [PMID: 8524391]
[55]
Stolt, P.C.; Jeon, H.; Song, H.K.; Herz, J.; Eck, M.J.; Blacklow, S.C. Origins of peptide selectivity and phosphoinositide binding revealed by structures of disabled-1 PTB domain complexes. Structure, 2003, 11(5), 569-579.
[http://dx.doi.org/10.1016/S0969-2126(03)00068-6] [PMID: 12737822]
[56]
Zhou, M.M.; Huang, B.; Olejniczak, E.T.; Meadows, R.P.; Shuker, S.B.; Miyazaki, M.; Trüb, T.; Shoelson, S.E.; Fesik, S.W. Structural basis for IL-4 receptor phosphopeptide recognition by the IRS-1 PTB domain. Nat. Struct. Biol., 1996, 3(4), 388-393.
[http://dx.doi.org/10.1038/nsb0496-388] [PMID: 8599766]
[57]
Eck, M.J.; Dhe-Paganon, S.; Trüb, T.; Nolte, R.T.; Shoelson, S.E. Structure of the IRS-1 PTB domain bound to the juxtamembrane region of the insulin receptor. Cell, 1996, 85(5), 695-705.
[http://dx.doi.org/10.1016/S0092-8674(00)81236-2] [PMID: 8646778]
[58]
Duncan, R.R.; Shipston, M.J.; Chow, R.H. Double C2 protein. A review. Biochimie, 2000, 82(5), 421-426.
[http://dx.doi.org/10.1016/S0300-9084(00)00214-5] [PMID: 10865129]
[59]
Corbalan-Garcia, S.; Gómez-Fernández, J.C. Signaling through C2 domains: more than one lipid target. Biochim. Biophys. Acta, 2014, 1838(6), 1536-1547.
[http://dx.doi.org/10.1016/j.bbamem.2014.01.008] [PMID: 24440424]
[60]
Cho, W.; Stahelin, R.V. Membrane binding and subcellular targeting of C2 domains. Biochim. Biophys. Acta, 2006, 1761(8), 838-849.
[http://dx.doi.org/10.1016/j.bbalip.2006.06.014] [PMID: 16945584]
[61]
Corbalán-García, S.; Gómez-Fernández, J.C. The C2 domains of classical and novel PKCs as versatile decoders of membrane signals. Biofactors, 2010, 36(1), 1-7.
[PMID: 20049899]
[62]
Nalefski, E.A.; Falke, J.J. The C2 domain calcium-binding motif: structural and functional diversity. Protein Sci., 1996, 5(12), 2375-2390.
[http://dx.doi.org/10.1002/pro.5560051201] [PMID: 8976547]
[63]
Bai, J.; Chapman, E.R. The C2 domains of synaptotagmin--partners in exocytosis. Trends Biochem. Sci., 2004, 29(3), 143-151.
[http://dx.doi.org/10.1016/j.tibs.2004.01.008] [PMID: 15003272]
[64]
Pinheiro, P.S.; Houy, S.; Sørensen, J.B. C2-domain containing calcium sensors in neuroendocrine secretion. J. Neurochem., 2016, 139(6), 943-958.
[http://dx.doi.org/10.1111/jnc.13865] [PMID: 27731902]
[65]
Pallanck, L. A tale of two C2 domains. Trends Neurosci., 2003, 26(1), 2-4.
[http://dx.doi.org/10.1016/S0166-2236(02)00007-3] [PMID: 12495852]
[66]
Rizo, J.; Südhof, T.C. C2-domains, structure and function of a universal Ca2+-binding domain. J. Biol. Chem., 1998, 273(26), 15879-15882.
[http://dx.doi.org/10.1074/jbc.273.26.15879] [PMID: 9632630]
[67]
Benes, C.H.; Wu, N.; Elia, A.E.; Dharia, T.; Cantley, L.C.; Soltoff, S.P. The C2 domain of PKCdelta is a phosphotyrosine binding domain. Cell, 2005, 121(2), 271-280.
[http://dx.doi.org/10.1016/j.cell.2005.02.019] [PMID: 15851033]
[68]
Nicolaes, G.A.; Kulharia, M.; Voorberg, J.; Kaijen, P.H.; Wroblewska, A.; Wielders, S.; Schrijver, R.; Sperandio, O.; Villoutreix, B.O. Rational design of small molecules targeting the C2 domain of coagulation factor VIII. Blood, 2014, 123(1), 113-120.
[http://dx.doi.org/10.1182/blood-2013-05-503227] [PMID: 24227818]
[69]
Schrijver, I.; Houissa-Kastally, R.; Jones, C.D.; Garcia, K.C.; Zehnder, J.L. Novel factor V C2-domain mutation (R2074H) in two families with factor V deficiency and bleeding. Thromb. Haemost., 2002, 87(2), 294-299.
[http://dx.doi.org/10.1055/s-0037-1612988] [PMID: 11858490]
[70]
Harenberg, J.; Marx, S.; Krejczy, M.; Wehling, M. New anticoagulants - promising and failed developments. Br. J. Pharmacol., 2012, 165(2), 363-372.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01578.x] [PMID: 21740405]
[71]
Smith, A.J.; Daut, J.; Schwappach, B. Membrane proteins as 14-3-3 clients in functional regulation and intracellular transport. Physiology (Bethesda), 2011, 26(3), 181-191.
[http://dx.doi.org/10.1152/physiol.00042.2010] [PMID: 21670164]
[72]
Mohammad, D.H.; Yaffe, M.B. 14-3-3 proteins, FHA domains and BRCT domains in the DNA damage response. DNA Repair (Amst.), 2009, 8(9), 1009-1017.
[http://dx.doi.org/10.1016/j.dnarep.2009.04.004] [PMID: 19481982]
[73]
Bridges, D.; Moorhead, G.B. 14-3-3 proteins: a number of functions for a numbered protein. Sci. STKE, 2005, 2005(296), re10.
[http://dx.doi.org/10.1126/stke.2962005re10 ] [PMID: 16091624]
[74]
Chevalier, D.; Morris, E.R.; Walker, J.C. 14-3-3 and FHA domains mediate phosphoprotein interactions. Annu. Rev. Plant Biol., 2009, 60, 67-91.
[http://dx.doi.org/10.1146/annurev.arplant.59.032607.092844] [PMID: 19575580]
[75]
Obsil, T.; Obsilova, V. Structural basis of 14-3-3 protein functions. Semin. Cell Dev. Biol., 2011, 22(7), 663-672.
[http://dx.doi.org/10.1016/j.semcdb.2011.09.001] [PMID: 21920446]
[76]
Zheng, W.; Cole, P.A. Serotonin N-acetyltransferase: mechanism and inhibition. Curr. Med. Chem., 2002, 9(12), 1187-1199.
[http://dx.doi.org/10.2174/0929867023370013] [PMID: 12052171]
[77]
Sluchanko, N.N.; Gusev, N.B. Moonlighting chaperone-like activity of the universal regulatory 14-3-3 proteins. FEBS J., 2017, 284(9), 1279-1295.
[http://dx.doi.org/10.1111/febs.13986] [PMID: 27973707]
[78]
Bartel, M.; Schäfer, A.; Stevers, L.M.; Ottmann, C. Small molecules, peptides and natural products: getting a grip on 14-3-3 protein-protein modulation. Future Med. Chem., 2014, 6(8), 903-921.
[http://dx.doi.org/10.4155/fmc.14.47] [PMID: 24962282]
[79]
Aghazadeh, Y.; Papadopoulos, V. The role of the 14-3-3 protein family in health, disease, and drug development. Drug Discov. Today, 2016, 21(2), 278-287.
[http://dx.doi.org/10.1016/j.drudis.2015.09.012] [PMID: 26456530]
[80]
Camoni, L.; Di Lucente, C.; Visconti, S.; Aducci, P. The phytotoxin fusicoccin promotes platelet aggregation via 14-3-3-glycoprotein Ib-IX-V interaction. Biochem. J., 2011, 436(2), 429-436.
[http://dx.doi.org/10.1042/BJ20102037] [PMID: 21395556]
[81]
Molzan, M.; Kasper, S.; Röglin, L.; Skwarczynska, M.; Sassa, T.; Inoue, T.; Breitenbuecher, F.; Ohkanda, J.; Kato, N.; Schuler, M.; Ottmann, C. Stabilization of physical RAF/14-3-3 interaction by cotylenin A as treatment strategy for RAS mutant cancers. ACS Chem. Biol., 2013, 8(9), 1869-1875.
[http://dx.doi.org/10.1021/cb4003464] [PMID: 23808890]
[82]
Almawi, A.W.; Matthews, L.A.; Guarné, A. FHA domains: Phosphopeptide binding and beyond. Prog. Biophys. Mol. Biol., 2017, 127, 105-110.
[http://dx.doi.org/10.1016/j.pbiomolbio.2016.12.003] [PMID: 27939759]
[83]
Durocher, D.; Jackson, S.P. The FHA domain. FEBS Lett., 2002, 513(1), 58-66.
[http://dx.doi.org/10.1016/S0014-5793(01)03294-X] [PMID: 11911881]
[84]
Weiling, H.; Xiaowen, Y.; Chunmei, L.; Jianping, X. Function and evolution of ubiquitous bacterial signaling adapter phosphopeptide recognition domain FHA. Cell. Signal., 2013, 25(3), 660-665.
[http://dx.doi.org/10.1016/j.cellsig.2012.11.019] [PMID: 23200850]
[85]
Mahajan, A.; Yuan, C.; Lee, H.; Chen, E.S.W.; Wu, P.Y.; Tsai, M.D. Structure and function of the phosphothreonine-specific FHA domain. Sci. Signal., 2008, 1(51), re12.
[http://dx.doi.org/10.1126/scisignal.151re12] [PMID: 19109241]
[86]
Durocher, D.; Taylor, I.A.; Sarbassova, D.; Haire, L.F.; Westcott, S.L.; Jackson, S.P.; Smerdon, S.J.; Yaffe, M.B. The molecular basis of FHA domain: phosphopeptide binding specificity and implications for phospho-dependent signaling mechanisms. Mol. Cell, 2000, 6(5), 1169-1182.
[http://dx.doi.org/10.1016/S1097-2765(00)00114-3] [PMID: 11106755]
[87]
Luh, L.M.; Hänsel, R.; Löhr, F.; Kirchner, D.K.; Krauskopf, K.; Pitzius, S.; Schäfer, B.; Tufar, P.; Corbeski, I.; Güntert, P.; Dötsch, V. Molecular crowding drives active Pin1 into nonspecific complexes with endogenous proteins prior to substrate recognition. J. Am. Chem. Soc., 2013, 135(37), 13796-13803.
[http://dx.doi.org/10.1021/ja405244v] [PMID: 23968199]
[88]
Liang, X.; Van Doren, S.R. Mechanistic insights into phosphoprotein-binding FHA domains. Acc. Chem. Res., 2008, 41(8), 991-999.
[http://dx.doi.org/10.1021/ar700148u] [PMID: 18656966]
[89]
Li, J.; Williams, B.L.; Haire, L.F.; Goldberg, M.; Wilker, E.; Durocher, D.; Yaffe, M.B.; Jackson, S.P.; Smerdon, S.J. Structural and functional versatility of the FHA domain in DNA-damage signaling by the tumor suppressor kinase Chk2. Mol. Cell, 2002, 9(5), 1045-1054.
[http://dx.doi.org/10.1016/S1097-2765(02)00527-0] [PMID: 12049740]
[90]
Carloni, V.; Lulli, M.; Madiai, S.; Mello, T.; Hall, A.; Luong, T.V.; Pinzani, M.; Rombouts, K.; Galli, A. CHK2 overexpression and mislocalisation within mitotic structures enhances chromosomal instability and hepatocellular carcinoma progression. Gut, 2018, 67(2), 348-361.
[http://dx.doi.org/10.1136/gutjnl-2016-313114] [PMID: 28360097]
[91]
Khader, M.; Eckl, P.M. Thymoquinone: an emerging natural drug with a wide range of medical applications. Iran. J. Basic Med. Sci., 2014, 17(12), 950-957.
[PMID: 25859298]
[92]
Kumar, S.; Kim, J. PLK-1 targeted inhibitors and their potential against tumorigenesis. BioMed Res. Int., 2015, 2015705745
[http://dx.doi.org/10.1155/2015/705745] [PMID: 26557691]
[93]
Staub, O.; Rotin, D. WW domains. Structure, 1996, 4(5), 495-499.
[http://dx.doi.org/10.1016/S0969-2126(96)00054-8] [PMID: 8736547]
[94]
Macias, M.J. Wiesner, S.; Sudol, M. WW and SH3 domains, two different scaffolds to recognize proline-rich ligands. FEBS Lett., 2002, 513(1), 30-37.
[http://dx.doi.org/10.1016/S0014-5793(01)03290-2] [PMID: 11911877]
[95]
Salah, Z.; Alian, A.; Aqeilan, R.I. WW domain-containing proteins: retrospectives and the future. Front. Biosci., 2012, 17, 331-348.
[http://dx.doi.org/10.2741/3930] [PMID: 22201747]
[96]
Dodson, E.J.; Fishbain-Yoskovitz, V.; Rotem-Bamberger, S.; Schueler-Furman, O. Versatile communication strategies among tandem WW domain repeats. Exp. Biol. Med. (Maywood), 2015, 240(3), 351-360.
[http://dx.doi.org/10.1177/1535370214566558] [PMID: 25710931]
[97]
Salah, Z.; Aqeilan, R.I. WW domain interactions regulate the Hippo tumor suppressor pathway. Cell Death Dis., 2011, 2e172
[http://dx.doi.org/10.1038/cddis.2011.53]
[98]
Zygulska, A.L.; Krzemieniecki, K.; Pierzchalski, P. Hippo pathway - brief overview of its relevance in cancer. J. Physiol. Pharmacol., 2017, 68(3), 311-335.
[PMID: 28820389]
[99]
Schelhorn, C.; Martín-Malpartida, P.; Suñol, D.; Macias, M.J. Structural analysis of the Pin1-CPEB1 interaction and its potential role in CPEB1 degradation. Sci. Rep., 2015, 5, 14990.
[http://dx.doi.org/10.1038/srep14990] [PMID: 26456073]
[100]
Wang, C.; Dong, X.; Han, L.; Su, X.D.; Zhang, Z.; Li, J.; Song, J. Identification of WD40 repeats by secondary structure-aided profile-profile alignment. J. Theor. Biol., 2016, 398, 122-129.
[http://dx.doi.org/10.1016/j.jtbi.2016.03.025] [PMID: 27021623]
[101]
Stirnimann, C.U.; Petsalaki, E.; Russell, R.B.; Müller, C.W. WD40 proteins propel cellular networks. Trends Biochem. Sci., 2010, 35(10), 565-574.
[http://dx.doi.org/10.1016/j.tibs.2010.04.003] [PMID: 20451393]
[102]
Jain, B.P.; Pandey, S. WD40 repeat proteins: signalling scaffold with diverse functions. Protein J., 2018, 37(5), 391-406.
[http://dx.doi.org/10.1007/s10930-018-9785-7] [PMID: 30069656]
[103]
Xu, C.; Min, J. Structure and function of WD40 domain proteins. Protein Cell, 2011, 2(3), 202-214.
[http://dx.doi.org/10.1007/s13238-011-1018-1] [PMID: 21468892]
[104]
Hao, B.; Oehlmann, S.; Sowa, M.E.; Harper, J.W.; Pavletich, N.P. Structure of a Fbw7-Skp1-cyclin E complex: multisite-phosphorylated substrate recognition by SCF ubiquitin ligases. Mol. Cell, 2007, 26(1), 131-143.
[http://dx.doi.org/10.1016/j.molcel.2007.02.022] [PMID: 17434132]
[105]
Song, R.; Wang, Z.D.; Schapira, M. Disease association and druggability of WD40 repeat proteins. J. Proteome Res., 2017, 16(10), 3766-3773.
[http://dx.doi.org/10.1021/acs.jproteome.7b00451] [PMID: 28956604]
[106]
Schapira, M.; Tyers, M.; Torrent, M.; Arrowsmith, C.H. WD40 repeat domain proteins: a novel target class? Nat. Rev. Drug Discov., 2017, 16(11), 773-786.
[http://dx.doi.org/10.1038/nrd.2017.179] [PMID: 29026209]
[107]
Sackton, K.L.; Dimova, N.; Zeng, X.; Tian, W.; Zhang, M.; Sackton, T.B.; Meaders, J.; Pfaff, K.L.; Sigoillot, F.; Yu, H.; Luo, X.; King, R.W. Synergistic blockade of mitotic exit by two chemical inhibitors of the APC/C. Nature, 2014, 514(7524), 646-649.
[http://dx.doi.org/10.1038/nature13660] [PMID: 25156254]
[108]
Lowery, D.M.; Mohammad, D.H.; Elia, A.E.; Yaffe, M.B. The Polo-box domain: a molecular integrator of mitotic kinase cascades and Polo-like kinase function. Cell Cycle, 2004, 3(2), 128-131.
[http://dx.doi.org/10.4161/cc.3.2.660] [PMID: 14712072]
[109]
Park, J.E.; Soung, N.K.; Johmura, Y.; Kang, Y.H.; Liao, C.; Lee, K.H.; Park, C.H.; Nicklaus, M.C.; Lee, K.S. Polo-box domain: a versatile mediator of polo-like kinase function. Cell. Mol. Life Sci., 2010, 67(12), 1957-1970.
[http://dx.doi.org/10.1007/s00018-010-0279-9] [PMID: 20148280]
[110]
Watanabe, N.; Osada, H. Small molecules that target phosphorylation dependent protein-protein interaction. Bioorg. Med. Chem., 2016, 24(15), 3246-3254.
[http://dx.doi.org/10.1016/j.bmc.2016.03.023] [PMID: 27017542]
[111]
Jang, Y.J.; Lin, C.Y.; Ma, S.; Erikson, R.L. Functional studies on the role of the C-terminal domain of mammalian polo-like kinase. Proc. Natl. Acad. Sci. USA, 2002, 99(4), 1984-1989.
[http://dx.doi.org/10.1073/pnas.042689299] [PMID: 11854496]
[112]
Cheng, K.Y.; Lowe, E.D.; Sinclair, J.; Nigg, E.A.; Johnson, L.N. The crystal structure of the human polo-like kinase-1 polo box domain and its phospho-peptide complex. EMBO J., 2003, 22(21), 5757-5768.
[http://dx.doi.org/10.1093/emboj/cdg558] [PMID: 14592974]
[113]
Schmucker, S.; Sumara, I. Molecular dynamics of PLK1 during mitosis. Mol. Cell. Oncol., 2014, 1(2)e954507
[http://dx.doi.org/10.1080/23723548.2014.954507] [PMID: 27308323]
[114]
McInnes, C.; Estes, K.; Baxter, M.; Yang, Z.; Farag, D.B.; Johnston, P.; Lazo, J.S.; Wang, J.; Wyatt, M.D. Targeting subcellular localization through the polo-box domain: non-ATP competitive inhibitors recapitulate a PLK1 phenotype. Mol. Cancer Ther., 2012, 11(8), 1683-1692.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0006-T] [PMID: 22848093]
[115]
Elia, A.E.; Rellos, P.; Haire, L.F.; Chao, J.W.; Ivins, F.J.; Hoepker, K.; Mohammad, D.; Cantley, L.C.; Smerdon, S.J.; Yaffe, M.B. The molecular basis for phosphodependent substrate targeting and regulation of Plks by the Polo-box domain. Cell, 2003, 115(1), 83-95.
[http://dx.doi.org/10.1016/S0092-8674(03)00725-6] [PMID: 14532005]
[116]
Tsvetkov, L.M.; Tsekova, R.T.; Xu, X.; Stern, D.F. The Plk1 Polo box domain mediates a cell cycle and DNA damage regulated interaction with Chk2. Cell Cycle, 2005, 4(4), 609-617.
[http://dx.doi.org/10.4161/cc.4.4.1599] [PMID: 15876876]
[117]
Tsvetkov, L.; Stern, D.F. Interaction of chromatin-associated Plk1 and Mcm7. J. Biol. Chem., 2005, 280(12), 11943-11947.
[http://dx.doi.org/10.1074/jbc.M413514200] [PMID: 15654075]
[118]
Preisinger, C.; Körner, R.; Wind, M.; Lehmann, W.D.; Kopajtich, R.; Barr, F.A. Plk1 docking to GRASP65 phosphorylated by Cdk1 suggests a mechanism for Golgi checkpoint signalling. EMBO J., 2005, 24(4), 753-765.
[http://dx.doi.org/10.1038/sj.emboj.7600569] [PMID: 15678101]
[119]
Śledź, P.; Lang, S.; Stubbs, C.J.; Abell, C. High-throughput interrogation of ligand binding mode using a fluorescence-based assay. Angew. Chem. Int. Ed. Engl., 2012, 51(31), 7680-7683.
[http://dx.doi.org/10.1002/anie.201202660] [PMID: 22730171]
[120]
Berg, A.; Berg, T. Inhibitors of the polo-box domain of polo-like kinase 1. ChemBioChem, 2016, 17(8), 650-656.
[http://dx.doi.org/10.1002/cbic.201500580] [PMID: 26662918]
[121]
Park, J.E.; Hymel, D.; Burke, T.R. Jr.; Lee, K.S. Current progress and future perspectives in the development of anti-polo-like kinase 1 therapeutic agents. F1000 Res., 2017, 6, 1024.
[http://dx.doi.org/10.12688/f1000research.11398.1] [PMID: 28721210]
[122]
Kitada, S.; Leone, M.; Sareth, S.; Zhai, D.; Reed, J.C.; Pellecchia, M. Discovery, characterization, and structure-activity relationships studies of proapoptotic polyphenols targeting B-cell lymphocyte/leukemia-2 proteins. J. Med. Chem., 2003, 46(20), 4259-4264.
[http://dx.doi.org/10.1021/jm030190z] [PMID: 13678404]
[123]
Leone, M.; Zhai, D.; Sareth, S.; Kitada, S.; Reed, J.C.; Pellecchia, M. Cancer prevention by tea polyphenols is linked to their direct inhibition of antiapoptotic Bcl-2-family proteins. Cancer Res., 2003, 63(23), 8118-8121.
[PMID: 14678963]
[124]
Srinivasrao, G.; Park, J.E.; Kim, S.; Ahn, M.; Cheong, C.; Nam, K.Y.; Gunasekaran, P.; Hwang, E.; Kim, N.H.; Shin, S.Y.; Lee, K.S.; Ryu, E.; Bang, J.K. Design and synthesis of a cell-permeable, drug-like small molecule inhibitor targeting the polo-box domain of polo-like kinase 1. PLoS One, 2014, 9(9)e107432
[http://dx.doi.org/10.1371/journal.pone.0107432] [PMID: 25211362]
[125]
Leung, C.C.Y.; Glover, J.N.M. BRCT domains: easy as one, two, three. Cell Cycle, 2011, 10(15), 2461-2470.
[http://dx.doi.org/10.4161/cc.10.15.16312] [PMID: 21734457]
[126]
Periasamy, J.; Kurdekar, V.; Jasti, S.; Nijaguna, M.B.; Boggaram, S.; Hurakadli, M.A.; Raina, D.; Kurup, L.M.; Chintha, C.; Manjunath, K.; Goyal, A.; Sadasivam, G.; Bharatham, K.; Padigaru, M.; Potluri, V.; Venkitaraman, A.R. Targeting phosphopeptide recognition by the human BRCA1 tandem BRCT domain to interrupt BRCA1-Dependent signaling. Cell Chem. Biol., 2018, 25(6), 677-690.e12.
[http://dx.doi.org/10.1016/j.chembiol.2018.02.012] [PMID: 29606576]
[127]
Wu, Q.; Jubb, H.; Blundell, T.L. Phosphopeptide interactions with BRCA1 BRCT domains: More than just a motif. Prog. Biophys. Mol. Biol., 2015, 117(2-3), 143-148.
[http://dx.doi.org/10.1016/j.pbiomolbio.2015.02.003] [PMID: 25701377]
[128]
Shiozaki, E.N.; Gu, L.; Yan, N.; Shi, Y. Structure of the BRCT repeats of BRCA1 bound to a BACH1 phosphopeptide: implications for signaling. Mol. Cell, 2004, 14(3), 405-412.
[http://dx.doi.org/10.1016/S1097-2765(04)00238-2] [PMID: 15125843]
[129]
Campbell, S.J.; Edwards, R.A.; Glover, J.N.M. Comparison of the structures and peptide binding specificities of the BRCT domains of MDC1 and BRCA1. Structure, 2010, 18(2), 167-176.
[http://dx.doi.org/10.1016/j.str.2009.12.008] [PMID: 20159462]
[130]
Na, Z.; Pan, S.; Uttamchandani, M.; Yao, S.Q. Discovery of cell-permeable inhibitors that target the BRCT domain of BRCA1 protein by using a small-molecule microarray. Angew. Chem. Int. Ed. Engl., 2014, 53(32), 8421-8426.
[http://dx.doi.org/10.1002/anie.201405169] [PMID: 24961672]
[131]
Underhill, C.; Toulmonde, M.; Bonnefoi, H. A review of PARP inhibitors: from bench to bedside. Ann. Oncol., 2011, 22(2), 268-279.
[http://dx.doi.org/10.1093/annonc/mdq322] [PMID: 20643861]
[132]
Prokova, V.; Mavridou, S.; Papakosta, P.; Kardassis, D. Characterization of a novel transcriptionally active domain in the transforming growth factor beta-regulated Smad3 protein. Nucleic Acids Res., 2005, 33(12), 3708-3721.
[http://dx.doi.org/10.1093/nar/gki679] [PMID: 15994459]
[133]
Nakao, A.; Röijer, E.; Imamura, T.; Souchelnytskyi, S.; Stenman, G.; Heldin, C.H.; ten Dijke, P. Identification of Smad2, a human Mad-related protein in the transforming growth factor beta signaling pathway. J. Biol. Chem., 1997, 272(5), 2896-2900.
[http://dx.doi.org/10.1074/jbc.272.5.2896] [PMID: 9006934]
[134]
Imoto, S.; Sugiyama, K.; Sekine, Y.; Matsuda, T. Roles for lysine residues of the MH2 domain of Smad3 in transforming growth factor-beta signaling. FEBS Lett., 2005, 579(13), 2853-2862.
[http://dx.doi.org/10.1016/j.febslet.2005.04.023] [PMID: 15907489]
[135]
Mochizuki, T.; Miyazaki, H.; Hara, T.; Furuya, T.; Imamura, T.; Watabe, T.; Miyazono, K. Roles for the MH2 domain of Smad7 in the specific inhibition of transforming growth factor-beta superfamily signaling. J. Biol. Chem., 2004, 279(30), 31568-31574.
[http://dx.doi.org/10.1074/jbc.M313977200] [PMID: 15148321]
[136]
Shi, Y.; Wang, Y.F.; Jayaraman, L.; Yang, H.; Massagué, J.; Pavletich, N.P. Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TGF-beta signaling. Cell, 1998, 94(5), 585-594.
[http://dx.doi.org/10.1016/S0092-8674(00)81600-1] [PMID: 9741623]
[137]
Wu, J.W.; Hu, M.; Chai, J.; Seoane, J.; Huse, M.; Li, C.; Rigotti, D.J.; Kyin, S.; Muir, T.W.; Fairman, R.; Massagué, J.; Shi, Y. Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-beta signaling. Mol. Cell, 2001, 8(6), 1277-1289.
[http://dx.doi.org/10.1016/S1097-2765(01)00421-X] [PMID: 11779503]
[138]
Wu, G.; Chen, Y.G.; Ozdamar, B.; Gyuricza, C.A.; Chong, P.A.; Wrana, J.L.; Massagué, J.; Shi, Y. Structural basis of Smad2 recognition by the Smad anchor for receptor activation. Science, 2000, 287(5450), 92-97.
[http://dx.doi.org/10.1126/science.287.5450.92] [PMID: 10615055]
[139]
Minoo, P.; Hu, L.; Zhu, N.; Borok, Z.; Bellusci, S.; Groffen, J.; Kardassis, D.; Li, C. SMAD3 prevents binding of NKX2.1 and FOXA1 to the SpB promoter through its MH1 and MH2 domains. Nucleic Acids Res., 2008, 36(1), 179-188.
[http://dx.doi.org/10.1093/nar/gkm871] [PMID: 18003659]
[140]
Chacko, B.M.; Qin, B.Y.; Tiwari, A.; Shi, G.; Lam, S.; Hayward, L.J.; De Caestecker, M.; Lin, K. Structural basis of heteromeric smad protein assembly in TGF-beta signaling. Mol. Cell, 2004, 15(5), 813-823.
[http://dx.doi.org/10.1016/j.molcel.2004.07.016] [PMID: 15350224]
[141]
Lee, Y.S.; Kim, J.H.; Kim, S.T.; Kwon, J.Y.; Hong, S.; Kim, S.J.; Park, S.H. Smad7 and Smad6 bind to discrete regions of Pellino-1 via their MH2 domains to mediate TGF-beta1-induced negative regulation of IL-1R/TLR signaling. Biochem. Biophys. Res. Commun., 2010, 393(4), 836-843.
[http://dx.doi.org/10.1016/j.bbrc.2010.02.094] [PMID: 20171181]
[142]
Eldeen, M.B.; Deshmane, S.L.; Simbiri, K.; Khalili, K.; Amini, S.; Sawaya, B.E. MH2 domain of Smad3 reduces HIV-1 Tat-induction of cytokine secretion. J. Neuroimmunol., 2006, 176(1-2), 174-180.
[http://dx.doi.org/10.1016/j.jneuroim.2006.04.004] [PMID: 16750572]
[143]
You, L.; Nie, J.; Sun, W.J.; Zheng, Z.Q.; Yang, X.J. Lysine acetylation: enzymes, bromodomains and links to different diseases. Essays Biochem., 2012, 52, 1-12.
[http://dx.doi.org/10.1042/bse0520001] [PMID: 22708559]
[144]
Ferri, E.; Petosa, C.; McKenna, C.E. Bromodomains: Structure, function and pharmacology of inhibition. Biochem. Pharmacol., 2016, 106, 1-18.
[http://dx.doi.org/10.1016/j.bcp.2015.12.005] [PMID: 26707800]
[145]
Pervaiz, M.; Mishra, P.; Günther, S. Bromodomain drug discovery - the past, the present, and the future. Chem. Rec., 2018, 18(12), 1808-1817.
[http://dx.doi.org/10.1002/tcr.201800074] [PMID: 30289209]
[146]
Gallenkamp, D.; Gelato, K.A.; Haendler, B.; Weinmann, H. Bromodomains and their pharmacological inhibitors. ChemMedChem, 2014, 9(3), 438-464.
[http://dx.doi.org/10.1002/cmdc.201300434] [PMID: 24497428]
[147]
Zeng, L.; Zhou, M.M. Bromodomain: an acetyl-lysine binding domain. FEBS Lett., 2002, 513(1), 124-128.
[http://dx.doi.org/10.1016/S0014-5793(01)03309-9] [PMID: 11911891]
[148]
He, F.; Umehara, T.; Saito, K.; Harada, T.; Watanabe, S.; Yabuki, T.; Kigawa, T.; Takahashi, M.; Kuwasako, K.; Tsuda, K.; Matsuda, T.; Aoki, M.; Seki, E.; Kobayashi, N.; Güntert, P.; Yokoyama, S.; Muto, Y. Structural insight into the zinc finger CW domain as a histone modification reader. Structure, 2010, 18(9), 1127-1139.
[http://dx.doi.org/10.1016/j.str.2010.06.012] [PMID: 20826339]
[149]
Stec, I.; Nagl, S.B.; van Ommen, G.J.B.; den Dunnen, J.T. The PWWP domain: a potential protein-protein interaction domain in nuclear proteins influencing differentiation? FEBS Lett., 2000, 473(1), 1-5.
[http://dx.doi.org/10.1016/S0014-5793(00)01449-6] [PMID: 10802047]
[150]
Pek, J.W.; Anand, A.; Kai, T. Tudor domain proteins in development. Development, 2012, 139(13), 2255-2266.
[http://dx.doi.org/10.1242/dev.073304] [PMID: 22669818]
[151]
Brand, M.; Measures, A.R.; Wilson, B.G.; Cortopassi, W.A.; Alexander, R.; Höss, M.; Hewings, D.S.; Rooney, T.P.; Paton, R.S.; Conway, S.J. Small molecule inhibitors of bromodomain-acetyl-lysine interactions. ACS Chem. Biol., 2015, 10(1), 22-39.
[http://dx.doi.org/10.1021/cb500996u] [PMID: 25549280]
[152]
Marmorstein, R.; Berger, S.L. Structure and function of bromodomains in chromatin-regulating complexes. Gene, 2001, 272(1-2), 1-9.
[http://dx.doi.org/10.1016/S0378-1119(01)00519-4] [PMID: 11470504]
[153]
Owen, D.J.; Ornaghi, P.; Yang, J.C.; Lowe, N.; Evans, P.R.; Ballario, P.; Neuhaus, D.; Filetici, P.; Travers, A.A. The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p. EMBO J., 2000, 19(22), 6141-6149.
[http://dx.doi.org/10.1093/emboj/19.22.6141] [PMID: 11080160]
[154]
Pérez-Salvia, M.; Esteller, M. Bromodomain inhibitors and cancer therapy: From structures to applications. Epigenetics, 2017, 12(5), 323-339.
[http://dx.doi.org/10.1080/15592294.2016.1265710] [PMID: 27911230]
[155]
Muller, S.; Filippakopoulos, P.; Knapp, S. Bromodomains as therapeutic targets. Expert Rev. Mol. Med., 2011, 12e29
[http://dx.doi.org/10.1017/S1462399411001992]
[156]
Filippakopoulos, P.; Knapp, S. Targeting bromodomains: epigenetic readers of lysine acetylation. Nat. Rev. Drug Discov., 2014, 13(5), 337-356.
[http://dx.doi.org/10.1038/nrd4286] [PMID: 24751816]
[157]
Bannister, A.J.; Zegerman, P.; Partridge, J.F.; Miska, E.A.; Thomas, J.O.; Allshire, R.C.; Kouzarides, T. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature, 2001, 410(6824), 120-124.
[http://dx.doi.org/10.1038/35065138] [PMID: 11242054]
[158]
Fischle, W.; Wang, Y.; Jacobs, S.A.; Kim, Y.; Allis, C.D.; Khorasanizadeh, S. Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev., 2003, 17(15), 1870-1881.
[http://dx.doi.org/10.1101/gad.1110503] [PMID: 12897054]
[159]
Pray-Grant, M.G.; Daniel, J.A.; Schieltz, D.; Yates, J.R., III; Grant, P.A. Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation. Nature, 2005, 433(7024), 434-438.
[http://dx.doi.org/10.1038/nature03242] [PMID: 15647753]
[160]
Blus, B.J.; Wiggins, K.; Khorasanizadeh, S. Epigenetic virtues of chromodomains. Crit. Rev. Biochem. Mol. Biol., 2011, 46(6), 507-526.
[http://dx.doi.org/10.3109/10409238.2011.619164] [PMID: 22023491]
[161]
Eissenberg, J.C. Molecular biology of the chromo domain: an ancient chromatin module comes of age. Gene, 2001, 275(1), 19-29.
[http://dx.doi.org/10.1016/S0378-1119(01)00628-X] [PMID: 11574148]
[162]
Kaustov, L.; Ouyang, H.; Amaya, M.; Lemak, A.; Nady, N.; Duan, S.; Wasney, G.A.; Li, Z.; Vedadi, M.; Schapira, M.; Min, J.; Arrowsmith, C.H. Recognition and specificity determinants of the human cbx chromodomains. J. Biol. Chem., 2011, 286(1), 521-529.
[http://dx.doi.org/10.1074/jbc.M110.191411] [PMID: 21047797]
[163]
Maurer-Stroh, S.; Dickens, N.J.; Hughes-Davies, L.; Kouzarides, T.; Eisenhaber, F.; Ponting, C.P. The tudor domain ‘royal family’: tudor, plant agenet, chromo, PWWP and MBT domains. Trends Biochem. Sci., 2003, 28(2), 69-74.
[http://dx.doi.org/10.1016/S0968-0004(03)00004-5] [PMID: 12575993]
[164]
Jacobs, S.A.; Khorasanizadeh, S. Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science, 2002, 295(5562), 2080-2083.
[http://dx.doi.org/10.1126/science.1069473] [PMID: 11859155]
[165]
Stuckey, J.I.; Dickson, B.M.; Cheng, N.; Liu, Y.; Norris, J.L.; Cholensky, S.H.; Tempel, W.; Qin, S.; Huber, K.G.; Sagum, C.; Black, K.; Li, F.; Huang, X.P.; Roth, B.L.; Baughman, B.M.; Senisterra, G.; Pattenden, S.G.; Vedadi, M.; Brown, P.J.; Bedford, M.T.; Min, J.; Arrowsmith, C.H.; James, L.I.; Frye, S.V. A cellular chemical probe targeting the chromodomains of Polycomb repressive complex 1. Nat. Chem. Biol., 2016, 12(3), 180-187.
[http://dx.doi.org/10.1038/nchembio.2007] [PMID: 26807715]
[166]
Stuckey, J.I.; Simpson, C.; Norris-Drouin, J.L.; Cholensky, S.H.; Lee, J.; Pasca, R.; Cheng, N.; Dickson, B.M.; Pearce, K.H.; Frye, S.V.; James, L.I. Structure-activity relationships and kinetic studies of peptidic antagonists of CBX chromodomains. J. Med. Chem., 2016, 59(19), 8913-8923.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00801] [PMID: 27571219]
[167]
Bernard, D.; Martinez-Leal, J.F.; Rizzo, S.; Martinez, D.; Hudson, D.; Visakorpi, T.; Peters, G.; Carnero, A.; Beach, D.; Gil, J. CBX7 controls the growth of normal and tumor-derived prostate cells by repressing the Ink4a/Arf locus. Oncogene, 2005, 24(36), 5543-5551.
[http://dx.doi.org/10.1038/sj.onc.1208735] [PMID: 15897876]
[168]
Lasko, P. Tudor domain. Curr. Biol., 2010, 20(16), R666-R667.
[http://dx.doi.org/10.1016/j.cub.2010.05.056] [PMID: 20728048]
[169]
Pellizzoni, L.; Kataoka, N.; Charroux, B.; Dreyfuss, G. A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing. Cell, 1998, 95(5), 615-624.
[http://dx.doi.org/10.1016/S0092-8674(00)81632-3] [PMID: 9845364]
[170]
Siomi, H.; Siomi, M.C. On the road to reading the RNA-interference code. Nature, 2009, 457(7228), 396-404.
[http://dx.doi.org/10.1038/nature07754] [PMID: 19158785]
[171]
Ghildiyal, M.; Zamore, P.D. Small silencing RNAs: an expanding universe. Nat. Rev. Genet., 2009, 10(2), 94-108.
[http://dx.doi.org/10.1038/nrg2504] [PMID: 19148191]
[172]
Liu, K.; Chen, C.; Guo, Y.; Lam, R.; Bian, C.; Xu, C.; Zhao, D.Y.; Jin, J.; MacKenzie, F.; Pawson, T.; Min, J. Structural basis for recognition of arginine methylated Piwi proteins by the extended Tudor domain. Proc. Natl. Acad. Sci. USA, 2010, 107(43), 18398-18403.
[http://dx.doi.org/10.1073/pnas.1013106107] [PMID: 20937909]
[173]
Yang, Y.; Lu, Y.; Espejo, A.; Wu, J.; Xu, W.; Liang, S.; Bedford, M.T. TDRD3 is an effector molecule for arginine-methylated histone marks. Mol. Cell, 2010, 40(6), 1016-1023.
[http://dx.doi.org/10.1016/j.molcel.2010.11.024] [PMID: 21172665]
[174]
Cloos, P.A.; Christensen, J.; Agger, K.; Maiolica, A.; Rappsilber, J.; Antal, T.; Hansen, K.H.; Helin, K. The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature, 2006, 442(7100), 307-311.
[http://dx.doi.org/10.1038/nature04837] [PMID: 16732293]
[175]
Huang, Y.; Fang, J.; Bedford, M.T.; Zhang, Y.; Xu, R.M. Recognition of histone H3 lysine-4 methylation by the double tudor domain of JMJD2A. Science, 2006, 312(5774), 748-751.
[http://dx.doi.org/10.1126/science.1125162] [PMID: 16601153]
[176]
Klose, R.J.; Yamane, K.; Bae, Y.; Zhang, D.; Erdjument-Bromage, H.; Tempst, P.; Wong, J.; Zhang, Y. The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature, 2006, 442(7100), 312-316.
[http://dx.doi.org/10.1038/nature04853] [PMID: 16732292]
[177]
FitzGerald, J.E.; Grenon, M.; Lowndes, N.F. 53BP1: function and mechanisms of focal recruitment. Biochem. Soc. Trans., 2009, 37(Pt 4), 897-904.
[http://dx.doi.org/10.1042/BST0370897] [PMID: 19614615]
[178]
Botuyan, M.V.; Lee, J.; Ward, I.M.; Kim, J.E.; Thompson, J.R.; Chen, J.; Mer, G. Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell, 2006, 127(7), 1361-1373.
[http://dx.doi.org/10.1016/j.cell.2006.10.043] [PMID: 17190600]
[179]
Lu, R.; Wang, G.G. Tudor: a versatile family of histone methylation ‘readers’. Trends Biochem. Sci., 2013, 38(11), 546-555.
[http://dx.doi.org/10.1016/j.tibs.2013.08.002] [PMID: 24035451]
[180]
Tripsianes, K.; Madl, T.; Machyna, M.; Fessas, D.; Englbrecht, C.; Fischer, U.; Neugebauer, K.M.; Sattler, M. Structural basis for dimethylarginine recognition by the Tudor domains of human SMN and SPF30 proteins. Nat. Struct. Mol. Biol., 2011, 18(12), 1414-1420.
[http://dx.doi.org/10.1038/nsmb.2185] [PMID: 22101937]
[181]
Taverna, S.D.; Li, H.; Ruthenburg, A.J.; Allis, C.D.; Patel, D.J. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat. Struct. Mol. Biol., 2007, 14(11), 1025-1040.
[http://dx.doi.org/10.1038/nsmb1338] [PMID: 17984965]
[182]
Tang, J.; Cho, N.W.; Cui, G.; Manion, E.M.; Shanbhag, N.M.; Botuyan, M.V.; Mer, G.; Greenberg, R.A. Acetylation limits 53BP1 association with damaged chromatin to promote homologous recombination. Nat. Struct. Mol. Biol., 2013, 20(3), 317-325.
[http://dx.doi.org/10.1038/nsmb.2499] [PMID: 23377543]
[183]
Upadhyay, A.K.; Judge, R.A.; Li, L.; Pithawalla, R.; Simanis, J.; Bodelle, P.M.; Marin, V.L.; Henry, R.F.; Petros, A.M.; Sun, C. Targeting lysine specific demethylase 4A (KDM4A) tandem TUDOR domain - A fragment based approach. Bioorg. Med. Chem. Lett., 2018, 28(10), 1708-1713.
[http://dx.doi.org/10.1016/j.bmcl.2018.04.050] [PMID: 29691138]
[184]
Young, L.C.; Hendzel, M.J. The oncogenic potential of Jumonji D2 (JMJD2/KDM4) histone demethylase overexpression. Biochem. Cell Biol., 2013, 91(6), 369-377.
[http://dx.doi.org/10.1139/bcb-2012-0054] [PMID: 24219278]
[185]
Perry, J.; Zhao, Y. The CW domain, a structural module shared amongst vertebrates, vertebrate-infecting parasites and higher plants. Trends Biochem. Sci., 2003, 28(11), 576-580.
[http://dx.doi.org/10.1016/j.tibs.2003.09.007] [PMID: 14607086]
[186]
Liu, Y.; Liu, S.; Zhang, X.; Liang, X.; Zahid, K.R.; Liu, K.; Liu, J.; Deng, L.; Yang, J.; Qi, C. Structure and function of CW domain containing proteins. Curr. Protein Pept. Sci., 2016, 17(5), 497-506.
[http://dx.doi.org/10.2174/1389203717666160125115130] [PMID: 26806410]
[187]
Liu, Y.; Tempel, W.; Zhang, Q.; Liang, X.; Loppnau, P.; Qin, S.; Min, J. Family-wide characterization of histone binding abilities of human CW domain-containing proteins. J. Biol. Chem., 2016, 291(17), 9000-9013.
[http://dx.doi.org/10.1074/jbc.M116.718973] [PMID: 26933034]
[188]
Hong, G.; Qiu, H.; Wang, C.; Jadhav, G.; Wang, H.; Tickner, J.; He, W.; Xu, J. The emerging role of MORC family proteins in cancer development and bone homeostasis. J. Cell. Physiol., 2017, 232(5), 928-934.
[http://dx.doi.org/10.1002/jcp.25665] [PMID: 27791268]
[189]
Andrews, F.H.; Tong, Q.; Sullivan, K.D.; Cornett, E.M.; Zhang, Y.; Ali, M.; Ahn, J.; Pandey, A.; Guo, A.H.; Strahl, B.D.; Costello, J.C.; Espinosa, J.M.; Rothbart, S.B.; Kutateladze, T.G. Multivalent chromatin engagement and inter-domain crosstalk regulate MORC3 ATPase. Cell Rep., 2016, 16(12), 3195-3207.
[http://dx.doi.org/10.1016/j.celrep.2016.08.050] [PMID: 27653685]
[190]
Qin, S.; Min, J. Structure and function of the nucleosome-binding PWWP domain. Trends Biochem. Sci., 2014, 39(11), 536-547.
[http://dx.doi.org/10.1016/j.tibs.2014.09.001] [PMID: 25277115]
[191]
Hu, J.; Wang, Y. p53 and the PWWP domain containing effector proteins in chromatin damage repair. Cell Dev. Biol., 2013, 2, 112.
[http://dx.doi.org/10.4172/2168-9296.1000112 ] [PMID: 25264544]
[192]
Rona, G.B.; Eleutherio, E.C.A.; Pinheiro, A.S. PWWP domains and their modes of sensing DNA and histone methylated lysines. Biophys. Rev., 2016, 8(1), 63-74.
[http://dx.doi.org/10.1007/s12551-015-0190-6] [PMID: 28510146]
[193]
Wu, H.; Zeng, H.; Lam, R.; Tempel, W.; Amaya, M.F.; Xu, C.; Dombrovski, L.; Qiu, W.; Wang, Y.; Min, J. Structural and histone binding ability characterizations of human PWWP domains. PLoS One, 2011, 6(6)e18919
[http://dx.doi.org/10.1371/journal.pone.0018919] [PMID: 21720545]
[194]
Rondelet, G.; Dal Maso, T.; Willems, L.; Wouters, J. Structural basis for recognition of histone H3K36me3 nucleosome by human de novo DNA methyltransferases 3A and 3B. J. Struct. Biol., 2016, 194(3), 357-367.
[http://dx.doi.org/10.1016/j.jsb.2016.03.013] [PMID: 26993463]
[195]
Liu, Y.; Liu, K.; Qin, S.; Xu, C.; Min, J. Epigenetic targets and drug discovery: part 1: histone methylation. Pharmacol. Ther., 2014, 143(3), 275-294.
[http://dx.doi.org/10.1016/j.pharmthera.2014.03.007] [PMID: 24704322]
[196]
Guo, Y.; Nady, N.; Qi, C.; Allali-Hassani, A.; Zhu, H.; Pan, P.; Adams-Cioaba, M.A.; Amaya, M.F.; Dong, A.; Vedadi, M.; Schapira, M.; Read, R.J.; Arrowsmith, C.H.; Min, J. Methylation-state-specific recognition of histones by the MBT repeat protein L3MBTL2. Nucleic Acids Res., 2009, 37(7), 2204-2210.
[http://dx.doi.org/10.1093/nar/gkp086] [PMID: 19233876]
[197]
Eryilmaz, J.; Pan, P.; Amaya, M.F.; Allali-Hassani, A.; Dong, A.; Adams-Cioaba, M.A.; Mackenzie, F.; Vedadi, M.; Min, J. Structural studies of a four-MBT repeat protein MBTD1. PLoS One, 2009, 4(10)e7274
[http://dx.doi.org/10.1371/journal.pone.0007274] [PMID: 19841675]
[198]
Kireev, D.; Wigle, T.J.; Norris-Drouin, J.; Herold, J.M.; Janzen, W.P.; Frye, S.V. Identification of non-peptide malignant brain tumor (MBT) repeat antagonists by virtual screening of commercially available compounds. J. Med. Chem., 2010, 53(21), 7625-7631.
[http://dx.doi.org/10.1021/jm1007374] [PMID: 20931980]
[199]
Bonasio, R.; Lecona, E.; Reinberg, D. MBT domain proteins in development and disease. Semin. Cell Dev. Biol., 2010, 21(2), 221-230.
[http://dx.doi.org/10.1016/j.semcdb.2009.09.010] [PMID: 19778625]
[200]
Wang, W.K.; Tereshko, V.; Boccuni, P.; MacGrogan, D.; Nimer, S.D.; Patel, D.J. Malignant brain tumor repeats: a three-leaved propeller architecture with ligand/peptide binding pockets. Structure, 2003, 11(7), 775-789.
[http://dx.doi.org/10.1016/S0969-2126(03)00127-8] [PMID: 12842041]
[201]
Min, J.; Allali-Hassani, A.; Nady, N.; Qi, C.; Ouyang, H.; Liu, Y.; MacKenzie, F.; Vedadi, M.; Arrowsmith, C.H. L3MBTL1 recognition of mono- and dimethylated histones. Nat. Struct. Mol. Biol., 2007, 14(12), 1229-1230.
[http://dx.doi.org/10.1038/nsmb1340] [PMID: 18026117]
[202]
James, L.I.; Barsyte-Lovejoy, D.; Zhong, N.; Krichevsky, L.; Korboukh, V.K.; Herold, J.M.; MacNevin, C.J.; Norris, J.L.; Sagum, C.A.; Tempel, W.; Marcon, E.; Guo, H.; Gao, C.; Huang, X.P.; Duan, S.; Emili, A.; Greenblatt, J.F.; Kireev, D.B.; Jin, J.; Janzen, W.P.; Brown, P.J.; Bedford, M.T.; Arrowsmith, C.H.; Frye, S.V. Discovery of a chemical probe for the L3MBTL3 methyllysine reader domain. Nat. Chem. Biol., 2013, 9(3), 184-191.
[http://dx.doi.org/10.1038/nchembio.1157] [PMID: 23292653]
[203]
Honda, H.; Takubo, K.; Oda, H.; Kosaki, K.; Tazaki, T.; Yamasaki, N.; Miyazaki, K.; Moore, K.A.; Honda, Z.; Suda, T.; Lemischka, I.R. Hemp, an mbt domain-containing protein, plays essential roles in hematopoietic stem cell function and skeletal formation. Proc. Natl. Acad. Sci. USA, 2011, 108(6), 2468-2473.
[http://dx.doi.org/10.1073/pnas.1003403108] [PMID: 21252303]
[204]
Gurvich, N.; Perna, F.; Farina, A.; Voza, F.; Menendez, S.; Hurwitz, J.; Nimer, S.D. L3MBTL1 polycomb protein, a candidate tumor suppressor in del(20q12) myeloid disorders, is essential for genome stability. Proc. Natl. Acad. Sci. USA, 2010, 107(52), 22552-22557.
[http://dx.doi.org/10.1073/pnas.1017092108] [PMID: 21149733]
[205]
Yamauchi, M.; Sricholpech, M. Lysine post-translational modifications of collagen. Essays Biochem., 2012, 52, 113-133.
[http://dx.doi.org/10.1042/bse0520113] [PMID: 22708567]
[206]
Canut, H.; Albenne, C.; Jamet, E. Post-translational modifications of plant cell wall proteins and peptides: A survey from a proteomics point of view. Biochim. Biophys. Acta, 2016, 1864(8), 983-990.
[http://dx.doi.org/10.1016/j.bbapap.2016.02.022] [PMID: 26945515]
[207]
Kaelin, W.G. Proline hydroxylation and gene expression. Annu. Rev. Biochem., 2005, 74, 115-128.
[http://dx.doi.org/10.1146/annurev.biochem.74.082803.133142] [PMID: 15952883]
[208]
Ivan, M.; Kondo, K.; Yang, H.; Kim, W.; Valiando, J.; Ohh, M.; Salic, A.; Asara, J.M.; Lane, W.S.; Kaelin, W.G. Jr. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science, 2001, 292(5516), 464-468.
[http://dx.doi.org/10.1126/science.1059817] [PMID: 11292862]
[209]
Min, J.H.; Yang, H.; Ivan, M.; Gertler, F.; Kaelin, W.G. Jr.; Pavletich, N.P. Structure of an HIF-1alpha -pVHL complex: hydroxyproline recognition in signaling. Science, 2002, 296(5574), 1886-1889.
[http://dx.doi.org/10.1126/science.1073440] [PMID: 12004076]
[210]
Buckley, D.L.; Van Molle, I.; Gareiss, P.C.; Tae, H.S.; Michel, J.; Noblin, D.J.; Jorgensen, W.L.; Ciulli, A.; Crews, C.M. Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1α interaction. J. Am. Chem. Soc., 2012, 134(10), 4465-4468.
[http://dx.doi.org/10.1021/ja209924v] [PMID: 22369643]
[211]
Muchnik, E.; Kaplan, J. HIF prolyl hydroxylase inhibitors for anemia. Expert Opin. Investig. Drugs, 2011, 20(5), 645-656.
[http://dx.doi.org/10.1517/13543784.2011.566861] [PMID: 21406036]
[212]
Buckley, D.L.; Gustafson, J.L.; Van Molle, I.; Roth, A.G.; Tae, H.S.; Gareiss, P.C.; Jorgensen, W.L.; Ciulli, A.; Crews, C.M. Small-molecule inhibitors of the interaction between the E3 ligase VHL and HIF1α. Angew. Chem. Int. Ed. Engl., 2012, 51(46), 11463-11467.
[http://dx.doi.org/10.1002/anie.201206231] [PMID: 23065727]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy