Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Evaluation Method of Mechanical Properties of Living NSCLC Cells Based on Nano-indentation

Author(s): Ya Li and Haidong Liu*

Volume 15, Issue 5, 2019

Page: [541 - 546] Pages: 6

DOI: 10.2174/1573413715666190509112358

Price: $65

Abstract

Background: In AFM study of cell mechanical properties, the apparent elastic modulus of a cell is affected by many factors, especially the AFM tip geometry, indentation site of the cell, the application of the mathematical model and testing conditions.

Methods: In this study, indentation experiments of living cells under different conditions were performed aiming to build an accurate evaluation system of mechanical properties of lung cancer cells based on AFM. Comparisons of the effects of spherical and pyramid AFM tips, Hertz model of semiinfinite and finite thickness, cell nuclear and cytoplasmic indentation regions on the cell apparent elastic modulus were accomplished.

Results: Compared with the calculated results by spherical tip, the elastic modulus distribution of non-small lung cancer cells (NSCLC) by pyramid tip was observed to be similar while the absolute values increased obviously, which were more than twice the numerical values by the spherical tip (p<0.05). The apparent elastic modulus values were the overvalued cause of the underestimation of the contact region in pyramidal tip measurement. Two different indentations over nucleus or lamellipodium of NCI-H520 cell and NCI-H1299 cell were analyzed. Consequently, the exact elastic modulus over the nucleus area can be calculated accurately using the semi-infinite Hertz model while the finite thickness Hertz model should be used for elasticity assessment of cell lamellipodium with a small thickness.

Conclusion: This evaluation system provides technological support for accurate evaluation of viscoelastic properties of living cancer cells.

Keywords: Atomic force microscopy, non-small lung cancer, cell mechanics, elastic modulus, evaluation system, Hertz model.

« Previous
Graphical Abstract

[1]
Amiri, I.; Barati, B.; Sanati, P.; Hosseinnia, A.; Khosravi, H.; Pourmehdi, S.; Emami, A.; Ali, J. Optical stretcher of biological cells using sub-nanometer optical tweezers generated by an add/drop microring resonator system. Nanosci. Nanotechnol. Lett., 2014, 6, 111-117.
[2]
Elbourne, A.; Chapman, J.; Gelmi, A.; Cozzolino, D.; Crawford, R.J.; Truong, V.K. Bacterial-nanostructure interactions: the role of cell elasticity and adhesion forces. J. Colloid Interface Sci., 2019, 546, 192-210.
[3]
Hussein, A.K.; Li, D.; Kolsi, L.; Kata, S.; Sahoo, B. A review of nano fluid role to improve the performance of the heat pipe solar collectors. Energy Procedia, 2017, 109, 417-424.
[4]
Darling, E.M.; Topel, M.; Zauscher, S.; Vail, T.P.; Guilak, F. Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes. J. Biomech., 2008, 41, 454-464.
[5]
Miroshnikova, Y.A.; Le, H.Q.; Schneider, D.; Thalheim, T.; Rubsam, M.; Bremicker, N.; Polleux, J.; Kamprad, N.; Tarantola, M.; Wang, I.; Balland, M.; Niessen, C.M.; Galle, J.; Wickström, S.A. Adhesion forces and cortical tension couple cell proliferation and differentiation to drive epidermal stratification. Nat. Cell Biol., 2018, 20, 69-80.
[6]
Dong, Y.M.; Tang, D.Y.; Li, C.S. The impact of solvent and modifier on ZnO thin-film transistors fabricated by a sol-gel process. Sci. China Technol. Sci., 2014, 57, 2153-2160.
[7]
Yang, R.H.; Liu, L.Q.; Zhang, C.L.; Xi, N.; Yang, J. Investigation of penetration using atomic force microscope: Potential biomarkers of cell membrane. Micro Nano Lett., 2015, 10, 248-252.
[8]
Dufrene, Y.F.; Ando, T.; Garcia, R.; Alsteens, D.; Martinez-Martin, D.; Engel, A.; Gerber, C.; Muller, D.J. Imaging modes of atomic force microscopy for application in molecular and cell biology. Nat. Nanotechnol., 2017, 12, 295-307.
[9]
Li, Q.S.; Lee, G.Y.H.; Ong, C.N.; Lim, C.T. AFM indentation study of breast cancer cells. Biochem. Biophys. Res. Commun., 2008, 374, 609-613.
[10]
Faria, E.C.; Ma, N.; Gazi, E.; Gardner, P.; Brown, M.; Clarke, N.W.; Snook, R.D. Measurement of elastic properties of prostate cancer cells using AFM. Analyst , 2008, 133, 1498-1500.
[11]
Suresh, S.; Spatz, J.; Mills, J.P.; Micoulet, A.; Dao, M.; Lim, C.T.; Beil, M.; Seufferlein, T. Connections between single-cell biomechanics and human disease states: Gastrointestinal cancer and malaria. Acta Biomater., 2005, 1, 15-30.
[12]
Zhang, G.; Long, M.; Wu, Z.Z.; Yu, W.Q. Mechanical properties of hepatocellular carcinoma cells. World J. Gastroenterol., 2002, 8, 243-246.
[13]
Korb, T.; Schlüter, K.; Enns, A.; Spiegel, H-U.; Senninger, N.; Nicolson, G.L.; Haier, J. Integrity of actin fibers and microtubules influences metastatic tumor cell adhesion. Exp. Cell Res., 2004, 299, 236-247.
[14]
Igawa, S.; Hayashi, I.; Tanaka, N.; Hiruma, H.; Majima, M.; Kawakami, T.; Hirose, M.; Masuda, N.; Kobayashi, H. Nitric oxide generated by iNOS reduces deformability of Lewis lung carcinoma cells. Cancer Sci., 2004, 95, 342-347.
[15]
Hussein, A.K. Applications of nanotechnology in renewable energies—A comprehensive overview and understanding. Renew. Sustain. Energy Rev., 2015, 42, 460-476.
[16]
Hussein, A.; Walunj, A.; Kolsi, L. Applications of nanotechnology to enhance the performance of the direct absorption solar collectors. J. Therm. Eng., 2016, 2, 529-540.
[17]
Li, D.; Ma, T.; Liu, C.; Zheng, Y.; Wang, Z.; Liu, X. Thermal performance of a PCM-filled double glazing unit with different optical properties of phase change material. Energy Build., 2016, 119, 143-152.
[18]
Hussein, A.K. Applications of nanotechnology to improve the performance of solar collectors–Recent advances and overview. Renew. Sustain. Energy Rev., 2016, 62, 767-792.
[19]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2015. CA Cancer J. Clin., 2015, 65, 5-29.
[20]
Bilodeau, G.G. Regular pyramid punch problem. J. Appl. Mech., 1992, 59, 519-523.
[21]
Lin, D.C.; Dimitriadis, E.K.; Horkay, F. Robust strategies for automated AFM force curve analysis—I. Non-adhesive indentation of soft, inhomogeneous materials. J. Biomech. Eng., 2007, 129, 430-440.
[22]
Harris, A.R.; Charras, G. Experimental validation of atomic force microscopy-based cell elasticity measurements. Nanotechnology, 2011, 22345102

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy