Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Polyaromatic Hydrocarbons (PAHs): Structures, Synthesis and their Biological Profile

Author(s): Biswa Mohan Sahoo*, Bera Venkata Varaha Ravi Kumar, Bimal Krishna Banik and Preetismita Borah

Volume 17, Issue 8, 2020

Page: [625 - 640] Pages: 16

DOI: 10.2174/1570179417666200713182441

Price: $65

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are aromatic compounds with two or more fused benzene rings in their structural configurations. PAHs do not contain heteroatoms and substituents on the ring system. PAHs containing up to four rings are called light PAHs while those that contain more than four rings are considered as heavy PAHs. Heavy PAHs are more stable and more toxic than the light PAHs. Generally, the increase in the size and angularity of a PAH molecule results in an increase in hydrophobicity and electrochemical stability. Ring linkage patterns in PAHs may occur in such a way that the tertiary carbon atoms are centers of two or three interlinked rings. The examples of PAHs are naphthalene, anthracene, phenanthrene, acenaphthylene, acenaphthene, fluorene, fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, etc. PAHs can be produced either naturally or anthropogenically and have toxic properties. Due to the health risk posed by their exposure, there is a need to control the release of PAHs through air quality management. Refinery industries are required to monitor and regulate their discharges. There is an urgent need for the considerable efforts to be applied in the field of research to degrade and monitor potentially hazardous substances to control, predict and avoid negative effects of PAHs pollution.

Keywords: Polyaromatic hydrocarbon, structures, synthesis, properties, toxicity, biological profile.

Graphical Abstract

[1]
Bjorseth, A. Handbook of polycyclic aromatic hydrocarbons, 1st ed; Marcel Dekker Inc: New York, NY, 1983.
[2]
Blumer, M. Polycyclic aromatic compounds in nature. Sci. Am., 1976, 234(3), 35-45.
[http://dx.doi.org/10.1038/scientificamerican0376-34] [PMID: 1251182]
[3]
Rubailo, A.I. Polyaromatic hydrocarbons as priority pollutants. J. Siberian Federal Univ. Chem., 2008, 4, 344-354.
[4]
Ahad, J.M.E.; Jautzy, J.J.; Cumming, B.F.; Das, B.; Laird, K.R.; Sanei, H. Sources of polycyclic aromatic hydrocarbons (PAHs) to northwestern Saskatchewan lakes east of the Athabasca oil sands. Org. Geochem., 2015, 80, 35-45.
[http://dx.doi.org/10.1016/j.orggeochem.2015.01.001]
[5]
Zelinkova, Z.; Wenzl, T. The occurrence of 16 EPA PAHs in food-A Review. Polycycl. Aromat. Compd., 2015, 35(2-4), 248-284.
[http://dx.doi.org/10.1080/10406638.2014.918550] [PMID: 26681897]
[6]
Wakelam, V.; Herbst, E. Polycyclic aromatic hydrocarbons in dense cloud chemistry. Astrophys. J., 2008, 680, 371-383.
[http://dx.doi.org/10.1086/587734]
[7]
Meador, J.P. Polycyclic Aromatic hydrocarbons. Encyclopedia of Ecology; ,, 2008, pp. 2881-2891.
[8]
Banik, B.K.; Becker, F.F. Polycyclic aromatic compounds as anticancer agents: structure-activity relationships of chrysene and pyrene derivatives. Bioorg. Med. Chem., 2001, 9(3), 593-605.
[http://dx.doi.org/10.1016/S0968-0896(00)00297-2] [PMID: 11310593]
[9]
Schmidt, W. Structure and Chemistry of PAHs; Springer: Dordrecht,, 1987, 191, pp. 149-164.
[http://dx.doi.org/10.1007/978-94-009-4776-4_12]
[10]
Fetzer, J.C. The chemistry and analysis of large PAHs. Polycycl. Aromat. Compd., 2007, 27(2), 143-162.
[http://dx.doi.org/10.1080/10406630701268255]
[11]
Hussein, I.S.; Mansour, M.S.M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian. J. Petrol., 2016, 25(1), 107-123.
[http://dx.doi.org/10.1016/j.ejpe.2015.03.011]
[12]
Randic, M. Local aromaticity in polycyclic aromatic hydrocarbons: Electron delocalization versus magnetic indices. Chem. Rev., 2003, 103(9), 3449-3606.
[PMID: 12964878]
[13]
Scholl, R.; Seer, C. Introduction of several phthalic acid residues in aromatic compounds. Experiments with derivatives of diphenyl. Ber. Dtsch. Chem. Ges., 1911, 44(1), 1091-1103.
[http://dx.doi.org/10.1002/cber.191104401161]
[14]
Clar, E. Polycyclic hydrocarbons; John Wiley: New York, 1964, Vol. 1 and 2, .
[15]
Zander, M. Handbook of Polycyclic Aromatic Hydrocarbons, 1st ed; Marcel Dekker: New York, 1983.
[16]
Fletcher, J. Polycyclic Aromatic Hydrocarbons. Nomenclature of Organic Compounds, Chapter 4, Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
[17]
Cakmak, O.; Erenler, R.; Tutar, A.; Celik, N. Synthesis of new anthracene derivatives. J. Org. Chem., 2006, 71(5), 1795-1801.
[http://dx.doi.org/10.1021/jo051846u] [PMID: 16496963]
[18]
Somashekar, M.N.; Chetana, P.R. A Review on anthracene and its derivatives: Applications. Res. & Rev. J. Chem., 2016, 5(3), 45-52.
[19]
Corey, E.J. Catalytic enantioselective Diels--Alder reactions: methods, mechanistic fundamentals, pathways, and applications. Angew. Chem. Int. Ed. Engl., 2002, 41(10), 1650-1667.
[http://dx.doi.org/10.1002/1521-3773(20020517)41:10<1650:AID-ANIE1650>3.0.CO;2-B] [PMID: 19750685]
[20]
Agranat, I.; Shih, Y. The scope of the Haworth synthesis. J. Chem. Educ., 1976, 53(8), 488-489.
[http://dx.doi.org/10.1021/ed053p488]
[21]
Harvey, R.G. Polycyclic Aromatic Hydrocarbons, 1st ed; Wiley-VCH: New York, 1997.
[22]
Serevičius, T.; Komskis, R.; Adomėnas, P.; Adomėnienė, O.; Jankauskas, V.; Gruodis, A.; Kazlauskas, K.; Juršėnas, S. Non-symmetric 9,10-diphenylanthracene-based deep-blue emitters with enhanced charge transport properties. Phys. Chem. Chem. Phys., 2014, 16(15), 7089-7101.
[http://dx.doi.org/10.1039/C4CP00236A] [PMID: 24618908]
[23]
Minuti, L.; Taticchi, A.; Gacs-Baitz, E.; Marrocchi, A. Diels-Alder reactions of arylethenes. Synthesis of some phenacenes and fluorenoanthracenes. Tetrahedron, 1998, 54(36), 10891-10898.
[http://dx.doi.org/10.1016/S0040-4020(98)00642-5]
[24]
Iyengar, B.S.; Dorr, R.T.; Alberts, D.S.; Sólyom, A.M.; Krutzsch, M.; Remers, W.A. 1,4-disubstituted anthracene antitumor agents. J. Med. Chem., 1997, 40(23), 3734-3738.
[http://dx.doi.org/10.1021/jm970308+] [PMID: 9371238]
[25]
Tschurl, M.; Boesl, U.; Gilb, S. The electron affinity of phenanthrene. J. Chem. Phys., 2006, 125(19)194310
[http://dx.doi.org/10.1063/1.2387175] [PMID: 17129106]
[26]
Gad, S.E. Phenanthrene. Encyclopedia of Toxicology, 3rd ed; Elsevier Inc., 2014, pp. 865-867.
[http://dx.doi.org/10.1016/B978-0-12-386454-3.00901-5]
[27]
Wang, Z. Haworth Phenanthrene Synthesis. Comprehensive Organic Name Reactions and Reagents; John Wiley & Sons, Inc., 2010, pp. 1342-1345.
[http://dx.doi.org/10.1002/9780470638859]
[28]
Guédouar, H. AsmaBeltifa, F.; Mansour, H.; Hassine, B. Synthesis and characterization of phenanthrene derivatives with anticancer property against human colon and epithelial cancer cell lines. C. R. Chim., 2017, 20(8), 841-849.
[http://dx.doi.org/10.1016/j.crci.2017.03.008]
[29]
Levin, W.; Wood, A.W.; Chang, R.L.; Yagi, H.; Mah, H.D.; Jerina, D.M.; Conney, A.H. Evidence for bay region activation of chrysene 1,2-dihydrodiol to an ultimate carcinogen. Cancer Res., 1978, 38(6), 1831-1834.
[PMID: 647691]
[30]
Bachmann, W.E.; Struve, W.S. The synthesis of derivatives of chrysene. J. Org. Chem., 1939, 4(4), 456-463.
[http://dx.doi.org/10.1021/jo01216a012]
[31]
Banik, B.K.; Basu, M.K.; Becker, F.F. Novel disubstituted chrysene as a potent agent against colon cancer. Oncol. Lett., 2010, 1(6), 1033-1035.
[http://dx.doi.org/10.3892/ol.2010.167] [PMID: 22870108]
[32]
Banik, B.K.; Becker, F.F. Synthesis, electrophilic substitution and structure-activity relationship studies of polycyclic aromatic compounds towards the development of anticancer agents. Curr. Med. Chem., 2001, 8(12), 1513-1533.
[http://dx.doi.org/10.2174/0929867013372120] [PMID: 11562280]
[33]
Gray, J.P. Benzo(a)pyrene, Encyclopedia of toxicology, 3rd ed; Elsevier, 2014, pp. 423-428.
[http://dx.doi.org/10.1016/B978-0-12-386454-3.00250-5]
[34]
Harvey, R.G.; Lim, K.; Dai, Q. A convenient new synthesis of benzo[a]pyrene. J. Org. Chem., 2004, 69(4), 1372-1373.
[http://dx.doi.org/10.1021/jo030313n] [PMID: 14961695]
[35]
Tang, X.Q. A convenient synthesis of benzo[s]picene. J. Org. Chem., 1995, 60(11), 3568-3568.
[http://dx.doi.org/10.1021/jo00116a056]
[36]
Becker, F.F.; Banik, B.K. Polycyclic aromatic compounds as anticancer agents: synthesis and biological evaluation of methoxy dibenzofluorene derivatives. Front Chem., 2014, 2(55), 55.
[http://dx.doi.org/10.3389/fchem.2014.00055] [PMID: 25136549]
[37]
Wang, L.; Shevlin, P.B. Formation of benzo[ghi]fluoranthenes by palladium catalyzed intramolecular coupling. Tetrahedron Lett., 2000, 41(3), 285-288.
[http://dx.doi.org/10.1016/S0040-4039(99)01940-1]
[38]
Kaufman, M.; Williams, F. Acenaphthylene: Its polymers and copolymers. J. Appl. Chem. (Lond.), 1951, 1(11), 489-503.
[http://dx.doi.org/10.1002/jctb.5010011104]
[39]
Arthur, G.; Anderson, J.; Anderson, R.G. Preparation of acenaphthylene from acenaphthene-1. J. Am. Chem. Soc., 1955, 77(24), 6610-6611.
[http://dx.doi.org/10.1021/ja01629a054]
[40]
Campbell, A.W.; Cromwell, N.H.; Hager, J.J. Isolation and identification of acenaphthylene and pyrene from the products of the pyrolysis of natural gas. J. Am. Chem. Soc., 1936, 58(6), 1051-1052.
[http://dx.doi.org/10.1021/ja01297a065]
[41]
Bayat, M.; Amiri, Z. Chemoselective synthesis of novel spiropyrano acenaphthylene derivatives via one-pot four-component reaction. Tetrahedron Lett., 2017, 58(45), 4260-4263.
[http://dx.doi.org/10.1016/j.tetlet.2017.09.077]
[42]
Chanda, S.; Mehendale, H.M. Acenaphthene. Encyclopedia of Toxicology, 2nd ed; Elsevier, 2005, pp. 11-13.
[http://dx.doi.org/10.1016/B0-12-369400-0/00007-7]
[43]
Klein, S.J. Acenaphthene, Encyclopedia of Toxicology, 3rd ed; Elsevier, 2014, pp. 17-19.
[http://dx.doi.org/10.1016/B978-0-12-386454-3.00214-1]
[44]
Bergmann, E.D.; Szmuszkovicz, J.A. New Synthesis of acenaphthene. J. Am. Chem. Soc., 1953, 75(11), 2760-2761.
[http://dx.doi.org/10.1021/ja01107a501]
[45]
Kim, K.H.; Jahan, S.A.; Kabir, E.; Brown, R.J. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int., 2013, 60, 71-80.
[http://dx.doi.org/10.1016/j.envint.2013.07.019] [PMID: 24013021]
[46]
Landis-Piwowar, K.R.; Chen, D.; Cui, Q.C.; Minic, V.; Becker, F.F.; Banik, B.K.; Dou, Q.P. Apoptotic-inducing activity of novel polycyclic aromatic compounds in human leukemic cells. Int. J. Mol. Med., 2006, 17(5), 931-935.
[http://dx.doi.org/10.3892/ijmm.17.5.931] [PMID: 16596283]
[47]
Ramdahl, T. Polycyclic aromatic ketones in environmental samples. Environ. Sci. Technol., 1983, 17(11), 666-670.
[http://dx.doi.org/10.1021/es00117a008] [PMID: 22257286]
[48]
Armstrong, B.; Hutchinson, E.; Unwin, J.; Fletcher, T. Lung cancer risk after exposure to polycyclic aromatic hydrocarbons: A review and meta-analysis. Environ. Health Perspect., 2004, 112(9), 970-978.
[http://dx.doi.org/10.1289/ehp.6895] [PMID: 15198916]
[49]
Diggs, D.L.; Huderson, A.C.; Harris, K.L.; Myers, J.N.; Banks, L.D.; Rekhadevi, P.V.; Niaz, M.S.; Ramesh, A. Polycyclic aromatic hydrocarbons and digestive tract can-cers: a perspective. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev, 2011, 29(4), 324-357.
[http://dx.doi.org/10.1080/10590501.2011.629974] [PMID: 22107166]
[50]
Becher, G.; Bjørseth, A. Determination of exposure to polycyclic aromatic hydrocarbons by analysis of human urine. Cancer Lett., 1983, 17(3), 301-311.
[http://dx.doi.org/10.1016/0304-3835(83)90168-4] [PMID: 6831387]
[51]
Unwin, J.; Cocker, J.; Scobbie, E.; Chambers, H. An assessment of occupational exposure to polycyclic aromatic hydrocarbons in the UK. Ann. Occup. Hyg., 2006, 50(4), 395-403.
[PMID: 16551675]
[52]
Seto, H.; Ohkubo, T.; Kanoh, T.; Koike, M.; Nakamura, K.; Kawahara, Y. Determination of polycyclic aromatic hydrocarbons in the lung. Arch. Environ. Contam. Toxicol., 1993, 24(4), 498-503.
[http://dx.doi.org/10.1007/BF01146169] [PMID: 8507106]
[53]
Moorthy, B.; Chu, C.; Carlin, D.J. Polycyclic aromatic hydrocarbons: from metabolism to lung cancer. Toxicol. Sci., 2015, 145(1), 5-15.
[http://dx.doi.org/10.1093/toxsci/kfv040] [PMID: 25911656]
[54]
Harris, K.L.; Banks, L.D.; Mantey, J.A.; Huderson, A.C.; Ramesh, A. Bioaccessibility of polycyclic aromatic hydrocarbons: relevance to toxicity and carcinogenesis. Expert Opin. Drug Metab. Toxicol., 2013, 9(11), 1465-1480.
[http://dx.doi.org/10.1517/17425255.2013.823157] [PMID: 23898780]
[55]
Becker, F.F.; Mukhopadhyay, C.; Hackfeld, L.; Banik, I.; Banik, B.K. Polycyclic aromatic compounds as anticancer agents: Synthesis and biological evaluation of dibenzofluorene derivatives. Bioorg. Med. Chem., 2000, 8(12), 2693-2699.
[http://dx.doi.org/10.1016/S0968-0896(00)00213-3] [PMID: 11131160]
[56]
Banik, I.; Becker, F.F.; Banik, B.K. Stereoselective synthesis of β-lactams with polyaromatic imines: Entry to new and novel anticancer agents. J. Med. Chem., 2003, 46(1), 12-15.
[http://dx.doi.org/10.1021/jm0255825] [PMID: 12502355]
[57]
Maliszewska, K.B. Sources, concentrations, fate and effects of polycyclic aromatic hydrocarbons (PAHs) in the environment. Part A: PAHs in air. Pol. J. Environ. Stud., 1999, 8, 131-136.
[58]
Bisht, S.; Pandey, P.; Bhargava, B.; Sharma, S.; Kumar, V.; Sharma, K.D. Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Braz. J. Microbiol., 2015, 46(1), 7-21.
[http://dx.doi.org/10.1590/S1517-838246120131354] [PMID: 26221084]
[59]
He, Y.; Chi, J. Phytoremediation of sediments polluted with phenanthrene and pyrene by four submerged aquatic plants. J. Soils Sediments, 2016, 16, 309-317.
[http://dx.doi.org/10.1007/s11368-015-1221-4]
[60]
Cerniglia, C.E. Biodegradation of polycyclic aromatic hydrocarbons. Curr. Opin. Biotechnol., 1993, 4, 331-338.
[http://dx.doi.org/10.1016/0958-1669(93)90104-5]
[61]
Bumpus, J.A. Biodegradation of polycyclic hydrocarbons by Phanerochaete chrysosporium. Appl. Environ. Microbiol., 1989, 55(1), 154-158.
[http://dx.doi.org/10.1128/AEM.55.1.154-158.1989] [PMID: 2705768]
[62]
Chang, B.V.; Shiung, L.C.; Yuan, S.Y. Anaerobic biodegradation of polycyclic aromatic hydrocarbon in soil. Chemosphere, 2002, 48(7), 717-724.
[http://dx.doi.org/10.1016/S0045-6535(02)00151-0] [PMID: 12201202]
[63]
Kanaly, R.A.; Harayama, S. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J. Bacteriol., 2000, 182(8), 2059-2067.
[http://dx.doi.org/10.1128/JB.182.8.2059-2067.2000] [PMID: 10735846]
[64]
Weissenfels, W.D.; Beyer, M.; Klein, J. Degradation of phenanthrene, fluorene and fluoranthene by pure bacterial cultures. Appl. Microbiol. Biotechnol., 1990, 32(4), 479-484.
[http://dx.doi.org/10.1007/BF00903787] [PMID: 1366395]
[65]
Baboshin, M.A.; Golovleva, L.A. Biodegradation of polycyclic aromatic hydrocarbons (PAH) by aerobic bacteria and its kinetics aspects. Mikrobiologiia, 2012, 81(6), 695-706.
[PMID: 23610919]
[66]
Barnsley, E.A. The bacterial degradation of fluoranthene and benzo[alpyrene. Can. J. Microbiol., 1975, 21(7), 1004-1008.
[http://dx.doi.org/10.1139/m75-148] [PMID: 1148939]
[67]
Leahy, J.G.; Colwell, R.R. Microbial degradation of hydrocarbons in the environment. Microbiol. Rev., 1990, 54(3), 305-315.
[http://dx.doi.org/10.1128/MMBR.54.3.305-315.1990] [PMID: 2215423]
[68]
Marquès, M.; Mari, M.; Audí-Miró, C.; Sierra, J.; Soler, A.; Nadal, M.; Domingo, J.L. Photodegradation of polycyclic aromatic hydrocarbons in soils under a climate change base scenario. Chemosphere, 2016, 148, 495-503.
[http://dx.doi.org/10.1016/j.chemosphere.2016.01.069] [PMID: 26841292]
[69]
Zhang, L.; Li, P.; Gong, Z.; Li, X. Photocatalytic degradation of polycyclic aromatic hydrocarbons on soil surfaces using TiO(2) under UV light. J. Hazard. Mater., 2008, 158(2-3), 478-484.
[http://dx.doi.org/10.1016/j.jhazmat.2008.01.119] [PMID: 18372106]
[70]
Gu, J.; Dong, D.; Kong, L.; Zheng, Y.; Li, X. Photocatalytic degradation of phenanthrene on soil surfaces in the presence of nanometer anatase TiO2 under UV-light. J. Environ. Sci. (China), 2012, 24(12), 2122-2126.
[http://dx.doi.org/10.1016/S1001-0742(11)61063-2] [PMID: 23534208]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy