Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Quantitative and Qualitative Bibliometric Scope Toward the Synthesis of Rose Oxide as a Natural Product in Perfumery

Author(s): Ghodsi Mohammadi Ziarani*, Fatemeh Mohajer, Seyedh Mahboobeh Jamali and Nader Ale Ebrahim

Volume 17, Issue 8, 2020

Page: [610 - 624] Pages: 15

DOI: 10.2174/1872208314666200722161044

Price: $65

Abstract

Rose Oxide is a monoterpene along with cyclic ether used in fragrance to produce rosy notes, in general, there are 4 stereoisomeric structures of the Rose Oxide, which the cis-configured Rose Oxide has a very unique and strong note in perfumery. In this review, several approaches were reported on account of the Rose Oxide applied in perfumery from 1864 to 2019 via quantitative and qualitative approaches.

Keywords: Rose oxide, 4-methyl-2-(2-methylprop-1-en-1-yl)tetrahydro-2H-pyran, natural product, rose oil, perfume, citronellol, cyclic ether.

Graphical Abstract

[1]
Chenevert, R.; Ziarani, M. Chemoenzymatic enantioselective synthesis of (-)-indolizidine 167B. Heterocycles, 1999, 51(3), 593-598.
[http://dx.doi.org/10.3987/COM-98-8421]
[2]
Ziarani, M.; Mohajer, F.; Moradi, R. The study of several synthesis methods of indolizidine (±)-209I and (±)-209B as natural alkaloids. Curr. Org. Chem., 2020, 24(5), 516-535.
[http://dx.doi.org/10.2174/1385272824666200226113022]
[3]
Ziarani, G.M.; Mohajer, F.; Kheilkordi, Z. Recent Progress Towards Synthesis of the Indolizidine Alkaloid 195B. Curr. Org. Synth., 2020, 17(2), 82-90.
[http://dx.doi.org/10.2174/1570179417666200124104010 PMID: 31976841]
[4]
Mohammadi Ziarani, G.; Chenevert, R.; Badiei, A. Chemoenzymatic enantioselective formal synthesis of (-)-Gephyrotoxin-223. Iran. J. Chem. Chem. Eng., 2006, 25(1), 31-38.
[5]
Mohammadi Ziarani, G.; Chenevert, R.; Badiei, A. A short method for the synthesis of alpha-tocopherol side chain. Iran. J. Chem. Chem. Eng., 2007, 26(4), 1-10.
[6]
Chênevert, R.; Ziarani, G.M.; Morin, M.P.; Dasser, M. Enzymatic desymmetrization of meso cis-2, 6-and cis, cis-2, 4, 6-substituted piperidines. Chemoenzymatic synthesis of (5S, 9S)-(+)-indolizidine 209D. Tetrahedron Asymmetry, 1999, 10(16), 3117-3122.
[http://dx.doi.org/10.1016/S0957-4166(99)00315-8]
[7]
Nonato, F.R.; Santana, D.G.; de Melo, F.M.; dos Santos, G.G.L.; Brustolim, D.; Camargo, E.A.; de Sousa, D.P.; Soares, M.B.P.; Villarreal, C.F. Anti-inflammatory properties of rose oxide. Int. Immunopharmacol., 2012, 14(4), 779-784.
[http://dx.doi.org/10.1016/j.intimp.2012.10.015 PMID: 23122727]
[8]
Seidel, C.F.; Stoll, M. Zur Kenntnis des Rosenöls. 1. Mitteilung. Über die tiefsiedenden Bestandteile des bulgarischen Rosenöls. Helv. Chim. Acta, 1959, 42(6), 1830-1844.
[http://dx.doi.org/10.1002/hlca.19590420611]
[9]
Naves, Y.R.; Tullen, P. Etudes sur les matières végétales volatiles CLXXIX. Synthèses des cis‐et trans‐[méthyl‐2‐propène‐1]‐yl‐2‐méthyl‐4‐tétrahydropyrannes. Helv. Chim. Acta, 1961, 44(7), 1867-1872.
[http://dx.doi.org/10.1002/hlca.19610440705]
[10]
Dietrich, A.; Maas, B.; Karl, V.; Kreis, P.; Lehmann, D.; Weber, B.; Mosandl, A. Stereoisomeric flavor compounds part. LV: Stereodifferentiation of some chiral volatiles on heptakis (2, 3‐di‐O‐acetyl‐6‐O‐tert‐butyldimethylsilyl)‐β‐cyclodextrin. J. High Resolut. Chromatogr., 1992, 15(3), 176-179.
[http://dx.doi.org/10.1002/jhrc.1240150308]
[11]
Yamamoto, T.; Matsuda, H.; Utsumi, Y.; Hagiwara, T.; Kanisawa, T. Synthesis and odor of optically active rose oxide. Tetrahedron Lett., 2002, 43(50), 9077-9080.
[http://dx.doi.org/10.1016/S0040-4039(02)02311-0]
[12]
Kaneko, N.; Ishii, H.; Sato, A.; Kanisawa, T.; Watanabe, S. In 12th International Congress of Flavours, Fragrances and Essential Oils. Proceedings, 1992, 1992, 53.
[13]
Kropp, P.J.; Worsham, P.R.; Davidson, R.I.; Jones, T.H. Photochemistry of alkyl halides. 8. Formation of a bridgehead alkene. J. Am. Chem. Soc., 1982, 104(14), 3972-3980.
[http://dx.doi.org/10.1021/ja00378a033]
[14]
Maróstica, M.R., Jr; Pastore, G.M. Biotransformation of citronellol in rose-oxide using cassava wastewater as a medium. Food Sci. Technol., 2006, 26(3), 690-696.
[http://dx.doi.org/10.1590/S0101-20612006000300032]
[15]
Boersma, Y.L.; Scheltinga, P.C.; Dröge, M.J.; Bos, R.; Quax, W.J. A validated gas chromatographic method for the evaluation of enzymatic enantioselectivity in kinetic resolution applications. J. Sep. Sci., 2005, 28(6), 501-505.
[http://dx.doi.org/10.1002/jssc.200400022 PMID: 15881078]
[16]
Ong, P.K.; Acree, T.E. Similarities in the aroma chemistry of Gewürztraminer variety wines and lychee (Litchi chinesis sonn.) fruit. J. Agric. Food Chem., 1999, 47(2), 665-670.
[http://dx.doi.org/10.1021/jf980452j PMID: 10563950]
[17]
Mackenzie, J. Considerations for the safe design of processes using hydrogen peroxide and organics. Plant/Operations Progress, 1991, 10(3), 164-170.
[http://dx.doi.org/10.1002/prsb.720100310]
[18]
Alsters, P.L.; Jary, W.; Nardello-Rataj, V.; Aubry, J-M. “Dark” singlet oxygenation of β-citronellol: A key step in the manufacture of rose oxide. Org. Process Res. Dev., 2009, 14(1), 259-262.
[http://dx.doi.org/10.1021/op900076g]
[19]
Dwivedi, P.; Singh, M.; Singh, U.; Jatav, S.; Sangwan, R.; Mishra, B. Iodosylbenzene (PhIO) mediated synthesis of rose oxide from β-citronellol and its application for in situ rose oxide enrichment led valorization of citronella essential oil. J. Clean. Prod., 2018, 172, 1765-1771.
[http://dx.doi.org/10.1016/j.jclepro.2017.12.016]
[20]
Schrader, J.; Berger, R. Biotechnological production of terpenoid flavor and fragrance compounds. Biotechnology, 2001, 10, 373-422.
[http://dx.doi.org/10.1002/9783527620999.ch13k]
[21]
Ghanbari Baghestan, A.; Khaniki, H.; Kalantari, A.; Akhtari-Zavare, M.; Farahmand, E.; Tamam, E.; Ale Ebrahim, N.; Sabani, H.; Danaee, M. A Crisis in “Open Access”: Should Communication Scholarly Outputs Take 77 Years to Become Open Access? SAGE Open, 2019, 9(3), 1-8.
[http://dx.doi.org/10.1177/2158244019871044]
[22]
Ale Ebrahim, S.; Ashtari, A.; Zamani Pedram, M.; Ale Ebrahim, N. Publication trends in drug delivery and magnetic nanoparticles. Nanoscale Res. Lett., 2019, 14(1), 164.
[http://dx.doi.org/10.1186/s11671-019-2994-y PMID: 31098855]
[23]
Das, A-K. Introduction to research evaluation metrics and related indicators.Open Access for Researchers, Module 4: Research Evaluation Metrics; Sen, B. K.; Mishra, S., Eds.; United Nations Educational, Scientific and Cultural Organization: UNESCO: Paris, 7, place de Fontenoy, 75352 Paris 07 SP, France,, 2015.
[24]
Thelwall, M. Bibliometrics to webometrics. J. Inf. Sci., 2008, 34(4), 605-621.
[http://dx.doi.org/10.1177/0165551507087238]
[25]
Aghaei Chadegani, A.; Salehi, H.; Yunus, M.M.; Farhadi, H.; Fooladi, M.; Farhadi, M.; Ale Ebrahim, N. A comparison between two main academic literature collections: Web of science and scopus databases. Asian Soc. Sci., 2013, 9(5), 18-26.
[http://dx.doi.org/10.5539/ass.v9n5p18]
[26]
The data supporting the findings of the article is available in the Zenodo at, https://zenodo.org/record/3797579 reference number 3797579
[27]
Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetrics, 2017, 11(4), 959-975.
[http://dx.doi.org/10.1016/j.joi.2017.08.007]
[28]
Kalantari, A.; Kamsin, A.; Kamaruddin, H.S.; Ale Ebrahim, N.; Gani, A.; Ebrahimi, A.; Shamshirband, S. a bibliometric approach to tracking big data research trends. J. Big Data, 2017, 4(30), 1-18.
[http://dx.doi.org/10.1186/s40537-017-0088-1]
[29]
Rene, N. Y.; Paul, T. 2 (2-methyl-1-propene)-yl-4-methyl-tetrahydro-pyrans and 2 (2-methyl-2-propene)-yl-4-methyl-tetrahydro-pyrans. 1965, 3166575
[30]
Markus, R.L.; Montclair, N.J. Process For The Preparation Of The Rose Oxide. U.S. Patent 3,166,576, 1965.
[31]
Bose, D.; Pfoertner, K.; Corp, G. Process for the preparation of rose oxide. U.S. Patent 3,657,278, 1972.
[32]
Taneja, S.; Dhar, K.; Atal, C. N-Iodosuccinimide for the synthesis of rose oxide. J. Org. Chem., 1978, 43(5), 997-998.
[http://dx.doi.org/10.1021/jo00399a043]
[33]
Torii, S.; Uneyama, K.; Ono, M. A novel synthesis of dl-marmelolactone and dl-rose oxide by electrochemical oxyselenenylation-deselenenylation sequence. Tetrahedron Lett., 1980, 21(27), 2653-2654.
[http://dx.doi.org/10.1016/S0040-4039(00)92830-2]
[34]
Fehr, C. Process for the preparation of rose oxide. U.S. Patent 4,429,139, 1984.
[35]
Tani, K.; Yamagata, T.; Akutagawa, S.; Kumobayashi, H.; Taketomi, T.; Takaya, H.; Miyashita, A.; Noyori, R.; Otsuka, S. Metal-assisted terpenoid synthesis. 7. Highly enantioselective isomerization of prochiral allylamines catalyzed by chiral diphosphine rhodium(I) complexes. Preparation of optically active enamines. J. Am. Chem. Soc., 1984, 106(18), 5208-5217.
[http://dx.doi.org/10.1021/ja00330a029]
[36]
Wolfe, J.P.; Buchwald, S.L. Scope and limitations of the Pd/BINAP-catalyzed amination of aryl bromides. J. Org. Chem., 2000, 65(4), 1144-1157.
[http://dx.doi.org/10.1021/jo9916986 PMID: 10814066]
[37]
Taneja, S.C.; Sethi, V.K.; Andotra, S.S.; Koul, S.; Qazi, G.N. Rose Oxides: A Facile Chemo and Chemo‐Enzymatic Approach. Synth. Commun., 2005, 35(17), 2297-2303.
[http://dx.doi.org/10.1080/00397910500186425]
[38]
Meyer, S.; Tietze, D.; Rau, S.; Schäfer, B.; Kreisel, G. Photosensitized oxidation of citronellol in microreactors. J. Photochem. Photobiol. Chem., 2007, 186(2), 248-253.
[http://dx.doi.org/10.1016/j.jphotochem.2006.08.014]
[39]
Coulombel, L.; Weïwer, M.; Duñach, E. Aluminium triflate catalysed cyclisation of unsaturated alcohols: Novel synthesis of rose oxide and analogues. European J. Org. Chem., 2009, 2009(33), 5788-5795.
[http://dx.doi.org/10.1002/ejoc.200900841]
[40]
Böhme, K.; Brauer, H. Generation of singlet oxygen from hydrogen peroxide disproportionation catalyzed by molybdate ions. Inorg. Chem., 1992, 31(16), 3468-3471.
[http://dx.doi.org/10.1021/ic00042a024]
[41]
Pimentel, M.R.; Molina, G.; Bertucci, T.C.; Pastore, G.M. Biotransformation of citronellol in rose oxide by Pseudomonas spp. Chem. Eng. Trans., 2012, 27, 295-300.
[42]
Piantini, U.; Schrader, J.; Wawrzun, A.; Wüst, M. A biocatalytic route towards rose oxide using chloroperoxidase. Food Chem., 2011, 129(3), 1025-1029.
[http://dx.doi.org/10.1016/j.foodchem.2011.05.068 PMID: 25212332]
[43]
Schenck, G. Photochemische reaktionen IV. Die photosynthese von cyclischen Schwefelsäureestern durch Addition von SO2 an o-Chinone. Naturwissenschaften, 1948, 35, 28-29.
[44]
Ziegenbalg, D.; Kreisel, G.; Weiß, D.; Kralisch, D. OLEDs as prospective light sources for microstructured photoreactors. Photochem. Photobiol. Sci., 2014, 13(7), 1005-1015.
[http://dx.doi.org/10.1039/C3PP50302J PMID: 24752647]
[45]
Eschinasi, E. New synthesis of rosoxides cis-and trans-2-(2-Methyl-1-propen-1-yl)-4-methyltetrahydropyran. J. Org. Chem., 1970, 35(4), 1097-1100.
[http://dx.doi.org/10.1021/jo00829a051]
[46]
Tsukasa, H. Synthesis of Rose Oxide. J. Oleo Sci., 1983, 32(1), 42-44.
[http://dx.doi.org/10.5650/jos1956.32.42]
[47]
Luh, T-Y.; Stock, L.M. Photoreduction of bridgehead halides with organotin hydride. J. Org. Chem., 1977, 42(16), 2790-2792.
[http://dx.doi.org/10.1021/jo00436a036]
[48]
Wagner, A.; Heitz, M-P.; Mioskowski, C. Syntheses of tetrahydropyrans by pph/CBR4 induced cyclization of acetals: Application to a synthesis of rose oxide. Tetrahedron Lett., 1989, 30(15), 1971-1974.
[http://dx.doi.org/10.1016/S0040-4039(00)99627-8]
[49]
Garbers, C.; Scott, F. Terpenoid synthesis. V. Electrophilic addition reactions in the synthesis of the ocimenones, the rose oxides, and a pheromone of Ips paraconfusus. Tetrahedron Lett., 1976, 17(19), 1625-1628.
[http://dx.doi.org/10.1016/S0040-4039(01)91634-X]
[50]
Cohen, T.; Lin, M. Two-flask preparation of alpha-lithio cyclic ethers from gamma-and delta-lactones Reductive lithiation as a route, via radical intermediates, to axial 2-lithiotetrahydropyrans and their equilibration to the equatorial isomers. J. Am. Chem. Soc., 1984, 106(4), 1130-1131.
[http://dx.doi.org/10.1021/ja00316a060]
[51]
Snowden, R.L.; Linder, S.M.; Muller, B.L.; Schulte‐Elte, K.H. β‐cleavage of bis (homoallylic) potassium alkoxides. preparation of 3‐hydroxypropyl and 4‐hydroxybutyl propenyl ketones from γ‐and δ‐lactones. synthesis of (±)‐rose oxide. Helv. Chim. Acta, 1987, 70(7), 1879-1885.
[http://dx.doi.org/10.1002/hlca.19870700722]
[52]
Ho, T-L.; Din, Z.U. A rose oxide synthesis. Synth. Commun., 1982, 12(14), 1099-1102.
[http://dx.doi.org/10.1080/00397918208065975]
[53]
Fujisawa, T.; Sato, T. Ketones from Carboxylic Acids and Grignard Reagents: Methyl 6‐Oxodecanoate. Org. Synth., 2003, 66, 116.
[http://dx.doi.org/10.1002/0471264180.os066.15]
[54]
Aquino, M.; Cardani, S.; Fronza, G.; Fuganti, C.; Fernandez, R.P.; Tagliani, A. Baker’s yeast reduction of arylalkyl and arylalkenil γ-and δ-keto acids. Tetrahedron, 1991, 47(37), 7887-7896.
[http://dx.doi.org/10.1016/S0040-4020(01)81944-X]
[55]
Fronza, G.; Fuganti, C.; Grasselli, P.; Terreni, M. On the mode of baker’s yeast reduction of methyl substituted arylalkyl gamma and delta keto acids. Synthesis of cis-(+)-rose oxide. Tetrahedron, 1992, 48(35), 7363-7372.
[http://dx.doi.org/10.1016/S0040-4020(01)88272-7]
[56]
Oppolzer, W.; Petrzilka, M. An enantioselective total synthesis of natural. Luciduline. Helv. Chim. Acta, 1978, 61(8), 2755-2762.
[http://dx.doi.org/10.1002/hlca.19780610802]
[57]
Trost, B.; Salzmann, T.; Hiroi, K. New synthetic reactions sulfenylations and dehydrosulfenylations of esters and ketones. J. Am. Chem. Soc., 1976, 98(16), 4887-4902.
[http://dx.doi.org/10.1021/ja00432a034]
[58]
Gravel, D.; Bordeleau, J. Photochemical rearrangement of 2-phenylthio-1, 3-cyclohexanediols to deoxysugars. Application to a stereospecific synthesis of (+)-cis-rose oxide. Tetrahedron Lett., 1998, 39(44), 8035-8038.
[http://dx.doi.org/10.1016/S0040-4039(98)01795-X]
[59]
Heidemann, T.; Königsmann, L. Process for the preparation of cis-rose Oxide. U.S. Patent 8,846,956, 2015.
[60]
Tyman, J.; Willis, B. The reaction of 3-alkene-1-ols with aldehydes: A synthesis of (±)-cis-2-(2′ methyl-1′-propenyl)-4-methyltetrahydropyran. Tetrahedron Lett., 1970, 11(51), 4507-4508.
[http://dx.doi.org/10.1016/S0040-4039(01)83962-9]
[61]
Noble, A.; McCarver, S.J.; MacMillan, D.W.C. Merging photoredox and nickel catalysis: decarboxylative cross-coupling of carboxylic acids with vinyl halides. J. Am. Chem. Soc., 2015, 137(2), 624-627.
[http://dx.doi.org/10.1021/ja511913h PMID: 25521443]
[62]
Ogawa, T.; Matsui, M. A new approach to 1-thioglycosides by lowering the nucleophilicity of sulfur through trialkylstannylation. Carbohydr. Res., 1977, 54(1), C17-C21.
[http://dx.doi.org/10.1016/S0008-6215(00)80569-8 PMID: 191192]
[63]
Černý, M.; Pacák, J. Desoxyzucker III. Über Reaktionen der 2-O-Tosyl-1, 6: 3, 4-dianhydro-β-D-galaktopyranose Darstellung von 4-Desoxy-D-xylohexose (4-Desoxy-D-glucose) und 4-Desoxy-D-arabinohexose (4-Desoxy-D-altrose). Collect. Czech. Chem. Commun., 1962, 27(1), 94-105.
[http://dx.doi.org/10.1135/cccc19620094]
[64]
Corey, E.J.; Suggs, J.W. Pyridinium chlorochromate. An efficient reagent for oxidation of primary and secondary alcohols to carbonyl compounds. Tetrahedron Lett., 1975, 16(31), 2647-2650.
[http://dx.doi.org/10.1016/S0040-4039(00)75204-X]
[65]
Ogawa, T.; Takasaka, N.; Matsui, M. Synthesis of (-)-cis-rose Oxide from D-glucose. Carbohydr. Res., 1978, 60(1), C4-C6.
[http://dx.doi.org/10.1016/S0008-6215(00)83483-7]
[66]
Hoffman, W. Prepration of Rose Oxide Pridominantly Containg Z Isomer. U.S. Patent 4,429,144, 1984.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy