Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

阿尔茨海默氏病中的神经炎症:小胶质细胞,分子参与者和治疗选择

卷 16, 期 7, 2019

页: [659 - 674] 页: 16

弟呕挨: 10.2174/1567205016666190503151648

价格: $65

摘要

阿尔茨海默氏病是世界上最常见的痴呆症。 其病理学特征是β-淀粉样蛋白积累,细胞外老年斑和细胞内神经原纤维缠结的形成,以及神经元坏死和凋亡。 神经炎症已被广泛认为是参与AD发病机制的关键过程。 在这篇评论中,我们简要总结了小胶质细胞参与阿尔茨海默氏病神经炎症过程的过程。 还讨论了其在AD发作和进展中的作用。许多分子,包括白介素,肿瘤坏死因子α,趋化因子,炎症小体,都参与了与AD相关的神经炎症的复杂过程,在本综述中将对其进行选择性讨论。 在本文的结尾,从炎症相关的角度,我们讨论了一些潜在的治疗选择。

关键词: 阿尔茨海默病,神经炎症,小胶质细胞,β-淀粉样蛋白,痴呆,趋化酶。

« Previous
[1]
Cai Z, Hussain MD, Yan LJ. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer’s disease. Int J Neurosci 124(5): 307-21. (2014)
[http://dx.doi.org/10.3109/00207454.2013.833510] [PMID: 23930978]
[2]
Gold M, El Khoury J. β-amyloid, microglia, and the inflammasome in Alzheimer’s disease. Semin Immunopathol 37(6): 607-11. (2015)
[http://dx.doi.org/10.1007/s00281-015-0518-0] [PMID: 26251237]
[3]
Li Y, Tan MS, Jiang T, Tan L. Microglia in Alzheimer’s disease. BioMed Res Int 2014437483 (2014)
[PMID: 25197646]
[4]
Imamoto K. Origin of microglia: cell transformation from blood monocytes into macrophagic ameboid cells and microglia. Prog Clin Biol Res 59A: 125-39. (1981)
[PMID: 6975481]
[5]
Marín-Teva JL, Almendros A, Calvente R, Cuadros MA, Navascués J. Proliferation of actively migrating ameboid microglia in the developing quail retina. Anat Embryol (Berl) 200(3): 289-300. (1999)
[http://dx.doi.org/10.1007/s004290050280] [PMID: 10463344]
[6]
Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, Hong JS. Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci 20(16): 6309-16. (2000)
[http://dx.doi.org/10.1523/JNEUROSCI.20-16-06309.2000] [PMID: 10934283]
[7]
Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23(11): 549-55. (2002)
[http://dx.doi.org/10.1016/S1471-4906(02)02302-5] [PMID: 12401408]
[8]
Goerdt S, Orfanos CE. Other functions, other genes: alternative activation of antigen-presenting cells. Immunity 10(2): 137-42. (1999)
[http://dx.doi.org/10.1016/S1074-7613(00)80014-X] [PMID: 10072066]
[9]
Koenigsknecht-Talboo J, Landreth GE. Microglial phagocytosis induced by fibrillar beta-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J Neurosci 25(36): 8240-9. (2005)
[http://dx.doi.org/10.1523/JNEUROSCI.1808-05.2005] [PMID: 16148231]
[10]
Pey P, Pearce RK, Kalaitzakis ME, Griffin WS, Gentleman SM. Phenotypic profile of alternative activation marker CD163 is different in Alzheimer’s and Parkinson’s disease. Acta Neuropathol Commun 2: 21. (2014)
[http://dx.doi.org/10.1186/2051-5960-2-21] [PMID: 24528486]
[11]
Finder VH. Alzheimer’s disease: a general introduction and pathomechanism. J Alzheimers Dis 22(Suppl. 3): 5-19. (2010)
[http://dx.doi.org/10.3233/JAD-2010-100975] [PMID: 20858960]
[12]
Fischer P, Zehetmayer S, Jungwirth S, Weissgram S, Krampla W, Hinterberger M, et al. Risk factors for Alzheimer dementia in a community-based birth cohort at the age of 75 years. Dement Geriatr Cogn Disord 25(6): 501-7. (2008)
[http://dx.doi.org/10.1159/000128577] [PMID: 18446027]
[13]
Weiner MF, Hynan LS, Rossetti H, Womack KB. The relationship of cardiovascular risk factors to Alzheimer disease in Choctaw Indians. Am J Geriatr Psychiatry 19(5): 423-9. (2011)
[http://dx.doi.org/10.1097/JGP.0b013e3181e89a46] [PMID: 20808139]
[14]
DeCarli CS. When two are worse than one: stroke and Alzheimer disease Neurology 67(8): 1326-7. (2006;)
[http://dx.doi.org/10.1212/01.wnl.0000244911.16867.11] [PMID: 17060553]
[15]
Koepsell TD, Kurland BF, Harel O, Johnson EA, Zhou XH, Kukull WA. Education, cognitive function, and severity of neuropathology in Alzheimer disease. Neurology 70(19 Pt 2): 1732-9. (2008)
[http://dx.doi.org/10.1212/01.wnl.0000284603.85621.aa] [PMID: 18160675]
[16]
Placanica L, Zhu L, Li YM. Gender- and age-dependent gamma-secretase activity in mouse brain and its implication in sporadic Alzheimer disease. PLoS One 4(4)e5088 (2009)
[http://dx.doi.org/10.1371/journal.pone.0005088] [PMID: 19352431]
[17]
Dubinina EE, Kovrugina SV, Konovalov PV. The factors of oxidative stress in neurodegenerative diseases (vascular dementia, Alzheimer disease). Adv Gerontol 20(4): 109-13. (2007)
[PMID: 18383721]
[18]
Wilson EN, Do Carmo S, Iulita MF, Hall H. Austin GL4, Jia DT, et al Microdose lithium NP03 diminishes pre-plaque oxidative damage and neuroinflammation in a rat model of Alzheimer’s-like amyloidosis. Curr Alzheimer Res 15(13): 1220-30. (2018)
[http://dx.doi.org/10.2174/1567205015666180904154446] [PMID: 30182855]
[19]
Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A, et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol 11(2): 155-61. (2010)
[http://dx.doi.org/10.1038/ni.1836] [PMID: 20037584]
[20]
Yu X, Guo C, Fisher PB, Subjeck JR, Wang XY. Scavenger receptors: emerging roles in cancer biology and immunology. Adv Cancer Res 128: 309-64. (2015)
[http://dx.doi.org/10.1016/bs.acr.2015.04.004] [PMID: 26216637]
[21]
Hickman SE, Allison EK, El Khoury J. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci 28(33): 8354-60. (2008)
[http://dx.doi.org/10.1523/JNEUROSCI.0616-08.2008] [PMID: 18701698]
[22]
Frenkel D, Wilkinson K, Zhao L, Hickman SE, Means TK, Puckett L, et al. Scara1 deficiency impairs clearance of soluble amyloid-β by mononuclear phagocytes and accelerates Alzheimer’s-like disease progression. Nat Commun 4: 2030. (2013)
[http://dx.doi.org/10.1038/ncomms3030] [PMID: 23799536]
[23]
Alarcón R, Fuenzalida C, Santibáñez M, von Bernhardi R. Expression of scavenger receptors in glial cells. Comparing the adhesion of astrocytes and microglia from neonatal rats to surface-bound beta-amyloid. J Biol Chem 280(34): 30406-15. (2005)
[http://dx.doi.org/10.1074/jbc.M414686200] [PMID: 15987691]
[24]
Brandenburg LO, Konrad M, Wruck CJ, Koch T, Lucius R, Pufe T. Functional and physical interactions between formyl-peptide-receptors and scavenger receptor MARCO and their involvement in amyloid beta 1-42-induced signal transduction in glial cells. J Neurochem 113(3): 749-60. (2010)
[http://dx.doi.org/10.1111/j.1471-4159.2010.06637.x] [PMID: 20141570]
[25]
Sheedy FJ, Grebe A, Rayner KJ, et al. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat Immunol 14(8): 812-20. (2013)
[http://dx.doi.org/10.1038/ni.2639] [PMID: 23812099]
[26]
Yamanaka M, Ishikawa T, Griep A, Axt D, Kummer MP, Heneka MT. PPARγ/RXRα-induced and CD36-mediated microglial amyloid-β phagocytosis results in cognitive improvement in amyloid precursor protein/presenilin 1 mice. J Neurosci 32(48): 17321-31. (2012)
[http://dx.doi.org/10.1523/JNEUROSCI.1569-12.2012] [PMID: 23197723]
[27]
Chen K, Iribarren P, Hu J, Chen J, Gong W, Cho EH, et al. Activation of Toll-like receptor 2 on microglia promotes cell uptake of Alzheimer disease-associated amyloid beta peptide. J Biol Chem 281(6): 3651-9. (2006)
[http://dx.doi.org/10.1074/jbc.M508125200] [PMID: 16339765]
[28]
Tahara K, Kim HD, Jin JJ, Maxwell JA, Li L, Fukuchi K. Role of toll-like receptor signalling in Abeta uptake and clearance. Brain 129(Pt 11): 3006-19. (2006)
[http://dx.doi.org/10.1093/brain/awl249] [PMID: 16984903]
[29]
Richard KL, Filali M, Préfontaine P, Rivest S. Toll-like receptor 2 acts as a natural innate immune receptor to clear amyloid beta 1-42 and delay the cognitive decline in a mouse model of Alzheimer’s disease. J Neurosci 28(22): 5784-93. (2008)
[http://dx.doi.org/10.1523/JNEUROSCI.1146-08.2008] [PMID: 18509040]
[30]
Song M, Jin J, Lim JE, Kou J, Pattanayak A, Rehman JA, et al. TLR4 mutation reduces microglial activation, increases Aβ deposits and exacerbates cognitive deficits in a mouse model of Alzheimer’s disease. J Neuroinflammation 8: 92. (2011)
[http://dx.doi.org/10.1186/1742-2094-8-92] [PMID: 21827663]
[31]
Liu S, Liu Y, Hao W, Wolf L, Kiliaan AJ, Penke B, et al. TLR2 is a primary receptor for Alzheimer’s amyloid β peptide to trigger neuroinflammatory activation. J Immunol 188(3): 1098-107. (2012)
[http://dx.doi.org/10.4049/jimmunol.1101121] [PMID: 22198949]
[32]
Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10(2): 417-26. (2002)
[http://dx.doi.org/10.1016/S1097-2765(02)00599-3] [PMID: 12191486]
[33]
Boyden ED, Dietrich WF. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet 38(2): 240-4. (2006)
[http://dx.doi.org/10.1038/ng1724] [PMID: 16429160]
[34]
Mariathasan S, Newton K, Monack DM, Vucic D, French DM, Lee WP, et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430(6996): 213-8. (2004)
[http://dx.doi.org/10.1038/nature02664] [PMID: 15190255]
[35]
Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, Roose-Girma M, et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440(7081): 228-32. (2006)
[http://dx.doi.org/10.1038/nature04515] [PMID: 16407890]
[36]
Rathinam VA, Jiang Z, Waggoner SN, Sharma S, Cole LE, Waggoner L, et al. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol 11(5): 395-402. (2010)
[http://dx.doi.org/10.1038/ni.1864] [PMID: 20351692]
[37]
Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9(8): 857-65. (2008)
[http://dx.doi.org/10.1038/ni.1636] [PMID: 18604209]
[38]
Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493(7434): 674-8. (2013)
[http://dx.doi.org/10.1038/nature11729] [PMID: 23254930]
[39]
McGeer EG, McGeer PL. Neuroinflammation in Alzheimer’s disease and mild cognitive impairment: a field in its infancy. J Alzheimers Dis 19(1): 355-61. (2010)
[http://dx.doi.org/10.3233/JAD-2010-1219] [PMID: 20061650]
[40]
Sochocka M, Koutsouraki ES, Gąsiorowski K, Leszek J. Vascular oxidative stress and mitochondrial failure in the pathobiology of Alzheimer’s disease: a new approach to therapy. CNS Neurol Disord Drug Targets 12(6): 870-81. (2013)
[http://dx.doi.org/10.2174/18715273113129990072] [PMID: 23469836]
[41]
Li J, Yang JY, Yao XC, Xue X, Zhang QC, Wang XX, et al. Oligomeric Aβ-induced microglial activation is possibly mediated by NADPH oxidase. Neurochem Res 38(2): 443-52. (2013)
[http://dx.doi.org/10.1007/s11064-012-0939-2] [PMID: 23229789]
[42]
Lee S, Lee J, Kim S, Park JY, Lee WH, Mori K, et al. A dual role of lipocalin 2 in the apoptosis and deramification of activated microglia. J Immunol 179(5): 3231-41. (2007)
[http://dx.doi.org/10.4049/jimmunol.179.5.3231] [PMID: 17709539]
[43]
Zheng Z, White C, Lee J, Peterson TS, Bush AI, Sun GY, et al. Altered microglial copper homeostasis in a mouse model of Alzheimer’s disease. J Neurochem 114(6): 1630-8. (2010)
[http://dx.doi.org/10.1111/j.1471-4159.2010.06888.x] [PMID: 20626553]
[44]
Krause DL, Norbert M. Neuroinflammation, microglia and implications for anti-inflammatory treatment in Alzheimer's disease Intern J Alzheimer's Dis 2010(2010-05-31) . 2010(1): 5429-38. (2010)
[http://dx.doi.org/10.4061/2010/732806]
[45]
Park KM, Bowers WJ. Tumor necrosis factor-alpha mediated signaling in neuronal homeostasis and dysfunction. Cell Signal 22(7): 977-83. (2010)
[http://dx.doi.org/10.1016/j.cellsig.2010.01.010] [PMID: 20096353]
[46]
Mhatre SD, Tsai CA, Rubin AJ, James ML, Andreasson KI. Microglial malfunction: the third rail in the development of Alzheimer’s disease. Trends Neurosci 38(10): 621-36. (2015)
[http://dx.doi.org/10.1016/j.tins.2015.08.006] [PMID: 26442696]
[47]
Regen F, Hellmann-Regen J, Costantini E, Reale M. Neuroinflammation and Alzheimer’s disease: implications for microglial activation. Curr Alzheimer Res 14(11): 1140-8. (2017)
[http://dx.doi.org/10.2174/1567205014666170203141717] [PMID: 28164764]
[48]
Solito E, Sastre M. Microglia function in Alzheimer’s disease. Front Pharmacol 3: 14. (2012)
[http://dx.doi.org/10.3389/fphar.2012.00014] [PMID: 22363284]
[49]
Kraft AD, Harry GJ. Features of microglia and neuroinflammation relevant to environmental exposure and neurotoxicity. Int J Environ Res Public Health 8(7): 2980-3018. (2011)
[http://dx.doi.org/10.3390/ijerph8072980] [PMID: 21845170]
[50]
El Khoury J. Neurodegeneration and the neuroimmune system. Nat Med 16(12): 1369-70. (2010)
[http://dx.doi.org/10.1038/nm1210-1369] [PMID: 21135838]
[51]
Sorce S, Stocker R, Seredenina T, Holmdahl R, Aguzzi A, Chio A, et al. NADPH oxidases as drug targets and biomarkers in neurodegenerative diseases: What is the evidence? Free Radic Biol Med 112: 387-96. (2017)
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.08.006] [PMID: 28811143]
[52]
Heneka MT, Nadrigny F, Regen T, Martinez-Hernandez A, Dumitrescu-Ozimek L, Terwel D, et al. Locus ceruleus controls Alzheimer’s disease pathology by modulating microglial functions through norepinephrine. Proc Natl Acad Sci USA 107(13): 6058-63. (2010)
[http://dx.doi.org/10.1073/pnas.0909586107] [PMID: 20231476]
[53]
Wang Y, Jin S, Sonobe Y, Cheng Y, Horiuchi H, Parajuli B, et al. Interleukin-1β induces blood-brain barrier disruption by downregulating Sonic hedgehog in astrocytes. PLoS One 9(10)e110024 (2014)
[http://dx.doi.org/10.1371/journal.pone.0110024] [PMID: 25313834]
[54]
Rivera-Escalera F, Matousek SB, Ghosh S, Olschowka JA, O’Banion MK. Interleukin-1β mediated amyloid plaque clearance is independent of CCR2 signaling in the APP/PS1 mouse model of Alzheimer’s disease. Neurobiol Dis 69: 124-33. (2014)
[http://dx.doi.org/10.1016/j.nbd.2014.05.018] [PMID: 24874542]
[55]
Erta M, Quintana A, Hidalgo J. Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci 2012; 8(9): 1254-66.
[http://dx.doi.org/10.7150/ijbs.4679] [PMID: 23136554]
[56]
Spooren A, Kolmus K, Laureys G, et al. Interleukin-6, a mental cytokine. Brain Res Brain Res Rev 67(1-2): 157-83. (2011)
[http://dx.doi.org/10.1016/j.brainresrev.2011.01.002] [PMID: 21238488]
[57]
Vukic V, Callaghan D, Walker D, Lue LF, Liu QY, Couraud PO, et al. Expression of inflammatory genes induced by beta-amyloid peptides in human brain endothelial cells and in Alzheimer’s brain is mediated by the JNK-AP1 signaling pathway. Neurobiol Dis 34(1): 95. (2009)
[http://dx.doi.org/10.1016/j.nbd.2008.12.007] [PMID: 19162185]
[58]
Kiyota T, Okuyama S, Swan RJ, Jacobsen MT, Gendelman HE, Ikezu T. CNS expression of anti-inflammatory cytokine interleukin-4 attenuates Alzheimer’s disease-like pathogenesis in APP+PS1 bigenic mice. FASEB J 24(8): 3093-102. (2010)
[http://dx.doi.org/10.1096/fj.10-155317] [PMID: 20371618]
[59]
Shimizu E, Kawahara K, Kajizono M, Sawada M, Nakayama H. IL-4-induced selective clearance of oligomeric beta-amyloid peptide(1-42) by rat primary type 2 microglia. J Immunol 181(9): 6503-13. (2008)
[http://dx.doi.org/10.4049/jimmunol.181.9.6503] [PMID: 18941241]
[60]
Zhao W, Xie W, Xiao Q, Beers DR, Appel SH. Protective effects of an anti-inflammatory cytokine, interleukin-4, on motoneuron toxicity induced by activated microglia. J Neurochem 99(4): 1176-87. (2006)
[http://dx.doi.org/10.1111/j.1471-4159.2006.04172.x] [PMID: 17018025]
[61]
Latta CH, Sudduth TL, Weekman EM, Brothers HM, Abner EL, Popa GJ, et al. Determining the role of IL-4 induced neuroinflammation in microglial activity and amyloid-beta using BV2 microglial cells and APP/PS1 transgenic mice. J Neuroinflammation 12: 41. (2015)
[http://dx.doi.org/10.1186/s12974-015-0243-6] [PMID: 25885682]
[62]
Dickensheets HL, Freeman SL, Smith MF, Donnelly RP. Interleukin-10 upregulates tumor necrosis factor receptor type-II (p75) gene expression in endotoxin-stimulated human monocytes. Blood 90(10): 4162-71. (1997)
[PMID: 9354687]
[63]
Zhou K, Zhong Q, Wang YC, Xiong XY, Meng ZY, Zhao T, et al. Regulatory T cells ameliorate intracerebral hemorrhage-induced inflammatory injury by modulating microglia/macrophage polarization through the IL-10/GSK3beta/PTEN axis. J Cereb Blood Flow Metab 37(3): 967-79. (2017)
[http://dx.doi.org/10.1177/0271678X16648712] [PMID: 27174997]
[64]
Chakrabarty Li. Andrew, CeballosDiaz, Carolina, James, et al.IL-10 alters immunoproteostasis in APP mice, increasing plaque burden and worsening cognitive behavior. Neuron 85(3): 519-33. (2015)
[http://dx.doi.org/10.1016/j.neuron.2014.11.020] [PMID: 25619653]
[65]
Guillot-Sestier MV, Doty KR, Gate D, Rodriguez J Jr, Leung BP, Rezai-Zadeh K, et al. Il10 deficiency rebalances innate immunity to mitigate Alzheimer-like pathology. Neuron 85(3): 534-48. (2015)
[http://dx.doi.org/10.1016/j.neuron.2014.12.068] [PMID: 25619654]
[66]
Gordon S. Alternative activation of macrophages. Nat Rev Immunol 3(1): 23-35. (2003)
[http://dx.doi.org/10.1038/nri978] [PMID: 12511873]
[67]
Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27: 451-83. (2009)
[http://dx.doi.org/10.1146/annurev.immunol.021908.132532] [PMID: 19105661]
[68]
Yang MS, Park EJ, Sohn S, Kwon HJ, Shin WH, Pyo HK, et al. Interleukin-13 and -4 induce death of activated microglia. Glia 38(4): 273-80. (2002)
[http://dx.doi.org/10.1002/glia.10057] [PMID: 12007140]
[69]
Shin WH, Lee DY, Park KW, Kim SU, Yang MS, Joe EH, et al. Microglia expressing interleukin-13 undergo cell death and contribute to neuronal survival in vivo. Glia 46(2): 142-52. (2004)
[http://dx.doi.org/10.1002/glia.10357] [PMID: 15042582]
[70]
Kawahara K, Suenobu M, Yoshida A, Koga K, Hyodo A, Ohtsuka H, et al. Intracerebral microinjection of interleukin-4/interleukin-13 reduces beta-amyloid accumulation in the ipsilateral side and improves cognitive deficits in young amyloid precursor protein 23 mice. Neuroscience 207: 243-60. (2012)
[http://dx.doi.org/10.1016/j.neuroscience.2012.01.049] [PMID: 22342341]
[71]
Park KW, Baik HH, Jin BK. IL-13-induced oxidative stress via microglial NADPH oxidase contributes to death of hippocampal neurons in vivo. J Immunol 183(7): 4666-74. (2009)
[http://dx.doi.org/10.4049/jimmunol.0803392] [PMID: 19752235]
[72]
Nam JH, Park KW, Park ES, Lee YB, Lee HG, Baik HH, et al. Interleukin-13/-4-induced oxidative stress contributes to death of hippocampal neurons in abeta1-42-treated hippocampus in vivo. Antioxid Redox Signal 16(12): 1369-83. (2012)
[http://dx.doi.org/10.1089/ars.2011.4175] [PMID: 22248368]
[73]
He P, Zhong Z, Lindholm K, Berning L, Lee W, Lemere C, et al. Deletion of tumor necrosis factor death receptor inhibits amyloid beta generation and prevents learning and memory deficits in Alzheimer’s mice. J Cell Biol 178(5): 829-41. (2007)
[http://dx.doi.org/10.1083/jcb.200705042] [PMID: 17724122]
[74]
Li R, Yang L, Lindholm K, Konishi Y, Yue X, Hampel H, et al. Tumor necrosis factor death receptor signaling cascade is required for amyloid-beta protein-induced neuron death. J Neurosci 24(7): 1760-71. (2004)
[http://dx.doi.org/10.1523/JNEUROSCI.4580-03.2004] [PMID: 14973251]
[75]
Cheng X, Yang L, He P, Li R, Shen Y. Differential activation of tumor necrosis factor receptors distinguishes between brains from Alzheimer’s disease and non-demented patients. J Alzheimers Dis 19(2): 621-30. (2009)
[http://dx.doi.org/10.3233/JAD-2010-1253] [PMID: 20110607]
[76]
Smits HA, Rijsmus A, van Loon JH, Wat JW, Verhoef J, Boven LA, et al. Amyloid-beta-induced chemokine production in primary human macrophages and astrocytes. J Neuroimmunol 127(1-2): 160-8. (2002)
[http://dx.doi.org/10.1016/S0165-5728(02)00112-1] [PMID: 12044988]
[77]
Ishizuka K, Kimura T, Igatayi R, Katsuragi S, Takamatsu J, Miyakawa T. Identification of monocyte chemoattractant protein-1 in senile plaques and reactive microglia of Alzheimer’s disease. Psychiatry Clin Neurosci 51(3): 135. (1997)
[http://dx.doi.org/10.1111/j.1440-1819.1997.tb02375.x] [PMID: 9225377]
[78]
Porcellini E, Ianni M, Carbone I, Franceschi M, Licastro F. Monocyte chemoattractant protein-1 promoter polymorphism and plasma levels in alzheimer’s disease Immunity & Ageing I & A 10(1): 3. (2013)
[http://dx.doi.org/10.1186/1742-4933-10-6]
[79]
Kiyota T, Gendelman HE, Weir RA, Higgins EE, Zhang G, Jain M. CCL2 affects beta-amyloidosis and progressive neurocognitive dysfunction in a mouse model of Alzheimer’s disease. Neurobiol Aging 34(4): 1060-8. (2013)
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.08.009] [PMID: 23040664]
[80]
El Khoury J, Toft M, Hickman SE, Means TK, Terada K, Geula C, et al. Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 13(4): 432-8. (2007)
[http://dx.doi.org/10.1038/nm1555] [PMID: 17351623]
[81]
Passos GF, Figueiredo CP, Prediger RD, Pandolfo P, Duarte FS, Medeiros R, et al. Role of the macrophage inflammatory protein-1alpha/CC chemokine receptor 5 signaling pathway in the neuroinflammatory response and cognitive deficits induced by beta-amyloid peptide. Am J Pathol 175(4): 1586-97. (2009)
[http://dx.doi.org/10.2353/ajpath.2009.081113] [PMID: 19729478]
[82]
Hwang CJ, Park MH, Hwang JY, Kim JH, Yun NY, Oh SY, et al. CCR5 deficiency accelerates lipopolysaccharide-induced astrogliosis, amyloid-beta deposit and impaired memory function. Oncotarget 7(11): 11984-99. (2016)
[http://dx.doi.org/10.18632/oncotarget.7453] [PMID: 26910914]
[83]
Lee YK, Kwak DH, Oh KW, Nam SY, Lee BJ, Yun YW, et al. CCR5 deficiency induces astrocyte activation, Abeta deposit and impaired memory function. Neurobiol Learn Mem 92(3): 356-63. (2009)
[http://dx.doi.org/10.1016/j.nlm.2009.04.003] [PMID: 19394434]
[84]
Lee JK, Schuchman EH, Jin HK, Bae JS. Soluble CCL5 derived from bone marrow-derived mesenchymal stem cells and activated by amyloid beta ameliorates Alzheimer’s disease in mice by recruiting bone marrow-induced microglia immune responses. Stem Cells 30(7): 1544-55. (2012)
[http://dx.doi.org/10.1002/stem.1125] [PMID: 22570192]
[85]
Kester MI, Wm VDF, Visser A, Blankenstein MA, Scheltens P, Oudejans CB. Decreased mRNA expression of CCL5 [RANTES] in Alzheimer’s disease blood samples. Clin Chem Lab Med 50(1): 61-5. (2012)
[PMID: 21942811]
[86]
Lin M-S, Hung K-S, Chiu W-T, Sun Y-Y, Tsai S-H, Lin J-W, et al. Curcumin enhances neuronal survival in N-methyl- d -aspartic acid toxicity by inducing RANTES expression in astrocytes via PI-3K and MAPK signaling pathways. Prog Neuropsychopharmacol Biol Psychiatry 35(4): 931-8. (2011)
[http://dx.doi.org/10.1016/j.pnpbp.2010.12.022] [PMID: 21199667]
[87]
Parachikova A, Cotman CW. Reduced CXCL12/CXCR4 results in impaired learning and is downregulated in a mouse model of Alzheimer disease. Neurobiol Dis 28(2): 143-53. (2007)
[http://dx.doi.org/10.1016/j.nbd.2007.07.001] [PMID: 17764962]
[88]
Wang Q, Xu Y, Chen JC, Qin YY, Liu M, Liu Y, et al. Stromal cell-derived factor 1α decreases β-amyloid deposition in Alzheimer’s disease mouse model. Brain Res 1459: 15. (2012)
[http://dx.doi.org/10.1016/j.brainres.2012.04.011] [PMID: 22560596]
[89]
Raman D, Milatovic S, Milatovic D, Splittgerber R, Fan G, Richmond A. Chemokines, macrophage inflammatory protein-2 and stromal cell-derived factor-1α, suppress amyloid β-induced neurotoxicity. Toxicol Appl Pharmacol 256(3): 300-13. (2011)
[http://dx.doi.org/10.1016/j.taap.2011.06.006] [PMID: 21704645]
[90]
Shen Y, Meri S. Yin and Yang: complement activation and regulation in Alzheimer’s disease. Prog Neurobiol 70(6): 463-72. (2003)
[http://dx.doi.org/10.1016/j.pneurobio.2003.08.001] [PMID: 14568360]
[91]
Rogers J, Cooper NR, Webster S, Schultz J, McGeer PL, Styren SD, et al. Complement activation by beta-amyloid in Alzheimer disease. Proc Natl Acad Sci USA 89(21): 10016-20. (1992)
[http://dx.doi.org/10.1073/pnas.89.21.10016] [PMID: 1438191]
[92]
Bradt BM, Kolb WP, Cooper NR. Complement-dependent proinflammatory properties of the Alzheimer’s disease beta-peptide. J Exp Med 188(3): 431-8. (1998)
[http://dx.doi.org/10.1084/jem.188.3.431] [PMID: 9687521]
[93]
Crehan H, Holton P, Wray S, Pocock J, Guerreiro R, Hardy J. Complement receptor 1 (CR1) and Alzheimer’s disease. Immunobiology 217(2): 244-50. (2012)
[http://dx.doi.org/10.1016/j.imbio.2011.07.017] [PMID: 21840620]
[94]
Zhu XC, Yu JT, Jiang T, Wang P, Cao L, Tan L. CR1 in Alzheimer’s disease. Mol Neurobiol 51(2): 753-65. (2015)
[http://dx.doi.org/10.1007/s12035-014-8723-8] [PMID: 24794147]
[95]
Antunez C, Boada M, Lopez-Arrieta J, Moreno-Rey C, Hernandez I, Marin J, et al. Genetic association of complement receptor 1 polymorphism rs3818361 in Alzheimer’s disease. Alzheimers Dement 7(4): e124-9. (2011)
[http://dx.doi.org/10.1016/j.jalz.2011.05.2412] [PMID: 21784344]
[96]
Shen N, Chen B, Jiang Y, Feng R, Liao M, Zhang L, et al. An updated analysis with 85,939 samples confirms the association between cr1 rs6656401 polymorphism and Alzheimer’s disease. Mol Neurobiol 51(3): 1017-23. (2015)
[http://dx.doi.org/10.1007/s12035-014-8761-2] [PMID: 24878768]
[97]
Luo J, Li S, Qin X, Song L, Peng Q, Chen S, et al. Meta-analysis of the association between CR1 polymorphisms and risk of late-onset Alzheimer’s disease. Neurosci Lett 578: 165-70. (2014)
[http://dx.doi.org/10.1016/j.neulet.2014.06.055] [PMID: 24996192]
[98]
Wyss-Coray T, Yan F, Lin AH, Lambris JD, Alexander JJ, Quigg RJ, et al. Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer’s mice. Proc Natl Acad Sci USA 99(16): 10837-42. (2002)
[http://dx.doi.org/10.1073/pnas.162350199] [PMID: 12119423]
[99]
Maier M, Ying P, Jiang L, Seabrook TJ, Carroll MC, Lemere CA. Complement C3-deficiency leads to accelerated aβ plaque deposition and neurodegeneration, and modulation of the microglia/macrophage phenotype in app transgenic mice. J Neurosci 28(25): 6333. (2008)
[http://dx.doi.org/10.1523/JNEUROSCI.0829-08.2008] [PMID: 18562603]
[100]
Chao CC, Hu S, Frey WH II, Ala TA, Tourtellotte WW, Peterson PK. Transforming growth factor beta in Alzheimer’s disease. Clin Diagn Lab Immunol 1(1): 109-10. (1994)
[PMID: 7496909]
[101]
Chao CC, Hu S, Kravitz FH, Tsang M, Anderson WR, Peterson PK. Transforming growth factor-beta protects human neurons against beta-amyloid-induced injury. Mol Chem Neuropathol 23(2-3): 159-78. (1994)
[http://dx.doi.org/10.1007/BF02815409] [PMID: 7702706]
[102]
Ren RF, Flanders KC. Transforming growth factors-beta protect primary rat hippocampal neuronal cultures from degeneration induced by beta-amyloid peptide. Brain Res 732(1-2): 16-24. (1996)
[http://dx.doi.org/10.1016/0006-8993(96)00458-1] [PMID: 8891264]
[103]
Wyss-Coray T, Lin C, Yan F, Yu GQ, Rohde M, McConlogue L, et al. TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat Med 7(5): 612-8. (2001)
[http://dx.doi.org/10.1038/87945] [PMID: 11329064]
[104]
Tichauer JE, von Bernhardi R. Transforming growth factor-beta stimulates beta amyloid uptake by microglia through Smad3-dependent mechanisms. J Neurosci Res 90(10): 1970-80. (2012)
[http://dx.doi.org/10.1002/jnr.23082] [PMID: 22715062]
[105]
Chen ST, Jen A, Gentleman SM, Jen LS. Effects of bFGF and TGFbeta on the expression of amyloid precursor and B-cell lymphoma protooncogene proteins in the rat retina. Neuroreport 10(3): 509-12. (1999)
[http://dx.doi.org/10.1097/00001756-199902250-00012] [PMID: 10208580]
[106]
Shen WX, Chen JH, Lu JH, Peng YP, Qiu YH. TGF-beta1 protection against Abeta1-42-induced neuroinflammation and neurodegeneration in rats. Int J Mol Sci 15(12): 22092-108. (2014)
[http://dx.doi.org/10.3390/ijms151222092] [PMID: 25470026]
[107]
Zhou X, Spittau B, Krieglstein K. TGFbeta signalling plays an important role in IL4-induced alternative activation of microglia. J Neuroinflammation 9: 210. (2012)
[http://dx.doi.org/10.1186/1742-2094-9-210] [PMID: 22947253]
[108]
Norden DM, Fenn AM, Dugan A, Godbout JP. TGFbeta produced by IL-10 redirected astrocytes attenuates microglial activation. Glia 62(6): 881-95. (2014)
[http://dx.doi.org/10.1002/glia.22647] [PMID: 24616125]
[109]
Kim ES, Kim RS, Ren RF, Hawver DB, Flanders KC. Transforming growth factor-beta inhibits apoptosis induced by beta-amyloid peptide fragment 25-35 in cultured neuronal cells. Brain Res Mol Brain Res 62(2): 122-30. (1998)
[http://dx.doi.org/10.1016/S0169-328X(98)00217-4] [PMID: 9813276]
[110]
Fang XX, Sun GL, Zhou Y, Qiu YH, Peng YP. TGF-beta1 protection against Abeta1-42-induced hippocampal neuronal inflammation and apoptosis by TbetaR-I. Neuroreport 29(2): 141-46. (2018)
[111]
Verghese PB, Castellano JM, Holtzman DM. Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurol 10(3): 241-52. (2011)
[http://dx.doi.org/10.1016/S1474-4422(10)70325-2] [PMID: 21349439]
[112]
Yu Y, Painter MM, Bu G, Kanekiyo T. Apolipoprotein E as a therapeutic target in alzheimer’s disease: a review of basic research and clinical evidence. CNS Drugs 30(9): 1-17. (2016)
[http://dx.doi.org/10.1007/s40263-016-0361-4] [PMID: 27328687]
[113]
Kok E, Haikonen S, Luoto T, Huhtala H, Goebeler S, Haapasalo H, et al. Apolipoprotein E-dependent accumulation of Alzheimer disease-related lesions begins in middle age. Ann Neurol 65(6): 650. (2009)
[http://dx.doi.org/10.1002/ana.21696] [PMID: 19557866]
[114]
Ringman JM, Elashoff D, Geschwind DH, Welsh BT, Gylys KH, Lee C, et al. Plasma signaling proteins in persons at genetic risk for Alzheimer disease: influence of APOE genotype. Arch Neurol 69(6): 757-64. (2012)
[http://dx.doi.org/10.1001/archneurol.2012.277] [PMID: 22689192]
[115]
Dorey E, Bamji-Mirza M, Najem D, Li Y, Liu H, Callaghan D, et al. Apolipoprotein E isoforms differentially regulate alzheimer’s disease and amyloid-beta-induced inflammatory response in vivo and in vitro. J Alzheimers Dis 57(4): 1265-79. (2017)
[http://dx.doi.org/10.3233/JAD-160133] [PMID: 28372324]
[116]
Guillemin GJ, Williams KR, Smith DG, Smythe GA, Croitoru-Lamoury J, Brew BJ. Quinolinic acid in the pathogenesis of Alzheimer’s disease. Adv Exp Med Biol 527: 167-76. (2003)
[http://dx.doi.org/10.1007/978-1-4615-0135-0_19] [PMID: 15206729]
[117]
Guillemin GJ, Brew BJ, Noonan CE, Takikawa O, Cullen KM. Indoleamine 2,3 dioxygenase and quinolinic acid immunoreactivity in Alzheimer’s disease hippocampus. Neuropathol Appl Neurobiol 31(4): 395-404. (2005)
[http://dx.doi.org/10.1111/j.1365-2990.2005.00655.x] [PMID: 16008823]
[118]
Kincses ZT, Toldi J, Vecsei L. Kynurenines, neurodegeneration and Alzheimer’s disease. J Cell Mol Med 14(8): 2045-54. (2010)
[http://dx.doi.org/10.1111/j.1582-4934.2010.01123.x] [PMID: 20629991]
[119]
Guillemin GJ, Brew BJ. Implications of the kynurenine pathway and quinolinic acid in Alzheimer’s disease. Redox Rep 7(4): 199-206. (2002)
[http://dx.doi.org/10.1179/135100002125000550] [PMID: 12396664]
[120]
Guillemin GJ, Croitoru-Lamoury J, Dormont D, Armati PJ, Brew BJ. Quinolinic acid upregulates chemokine production and chemokine receptor expression in astrocytes. Glia 41(4): 371-81. (2003)
[http://dx.doi.org/10.1002/glia.10175] [PMID: 12555204]
[121]
Lim GP, Yang F, Chu T, Chen P, Beech W, Teter B, et al. Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J Neurosci Official J Soc Neuroscience 20(15): 5709. (2000)
[http://dx.doi.org/10.1523/JNEUROSCI.20-15-05709.2000] [PMID: 10908610]
[122]
Jantzen PT, Connor KE, Dicarlo G, Wenk GL, Wallace JL, Rojiani AM, et al. Microglial activation and beta -amyloid deposit reduction caused by a nitric oxide-releasing nonsteroidal anti-inflammatory drug in amyloid precursor protein plus presenilin-1 transgenic mice. J Neurosci Official J Soc Neurosci 22(6): 2246-54. (2002)
[http://dx.doi.org/10.1523/JNEUROSCI.22-06-02246.2002] [PMID: 11896164]
[123]
Gupta PP, Pandey RD, Jha D, Shrivastav V, Kumar S. Role of traditional nonsteroidal anti-inflammatory drugs in Alzheimer’s disease: a meta-analysis of randomized clinical trials. Am J Alzheimers Dis Other Demen 30(2) (2015)
[http://dx.doi.org/10.1177/1533317514542644] [PMID: 25024454]
[124]
Chung SS, Kim BS, Lee NS, Park JW, Lee IK, Lee YS, et al. Glutathione peroxidase 3 mediates the antioxidant effect of peroxisome proliferator-activated receptor gamma in human skeletal muscle cells. Mol Cell Biol 29(1): 20-30. (2009)
[http://dx.doi.org/10.1128/MCB.00544-08] [PMID: 18936159]
[125]
Sodhi RK, Singh N, Jaggi AS. Neuroprotective mechanisms of peroxisome proliferator-activated receptor agonists in Alzheimer’s disease. Naunyn Schmiedebergs Arch Pharmacol 384(2): 115-24. (2011)
[http://dx.doi.org/10.1007/s00210-011-0654-6] [PMID: 21607645]
[126]
Watson GS, Cholerton BA, Reger MA, Baker LD, Plymate SR, Asthana S, et al. Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: a preliminary study. Am J Geriatr Psychiatry 13(11): 950-8. (2005)
[http://dx.doi.org/10.1176/appi.ajgp.13.11.950] [PMID: 16286438]
[127]
Yang Y, Shiao C, Hemingway JF, Jorstad NL, Shalloway BR, Chang R, et al. Suppressed retinal degeneration in aged wild type and appswe/ps1δe9 mice by bone marrow transplantation. PLoS One 8(6)e64246 (2013)
[http://dx.doi.org/10.1371/journal.pone.0064246] [PMID: 23750207]
[128]
Ryan J, Scali J. Carriã¨Re I, Amieva H, Rouaud O, Berr C, et al.Impact of a premature menopause on cognitive function in later life. Bjog An Intern J Obstetrics Gynaecol 121(13): 1729-39. (2015)
[http://dx.doi.org/10.1111/1471-0528.12828] [PMID: 24802975]
[129]
Laws KR, Irvine K, Gale TM. Sex differences in cognitive impairment in Alzheimer’s disease. World J Psychiatry 6(1): 54. (2016)
[http://dx.doi.org/10.5498/wjp.v6.i1.54] [PMID: 27014598]
[130]
Pike CJ, Carroll JC, Rosario ER, Barron AM. Protective actions of sex steroid hormones in Alzheimer’s disease. Front Neuroendocrinol 30(2): 239. (2009)
[http://dx.doi.org/10.1016/j.yfrne.2009.04.015] [PMID: 19427328]
[131]
Chao HM, Spencer RL, Frankfurt M, Mcewen BS. The effects of aging and hormonal manipulation on amyloid precursor protein app695 mrna expression in the rat hippocampus. J Neuroendocrinol 6(5): 517-21. (2010)
[http://dx.doi.org/10.1111/j.1365-2826.1994.tb00614.x] [PMID: 7827621]
[132]
Nord LC, Sundqvist J, Andersson E, Fried G. Analysis of oestrogen regulation of alpha-, beta- and gamma-secretase gene and protein expression in cultured human neuronal and glial cells. Neurodegener Dis 7(6): 349-64. (2010)
[http://dx.doi.org/10.1159/000282279] [PMID: 20523023]
[133]
Shen B, Wang Y, Xiang W, Du Y, Guo S, Lin C. Estrogen induced the expression of ADAM9 through estrogen receptor α but not estrogen receptor β in cultured human neuronal cells. Gene 576(2): 823-7. (2016)
[http://dx.doi.org/10.1016/j.gene.2015.11.014] [PMID: 26592768]
[134]
Merlo S, Sortino MA. Estrogen activates matrix metalloproteinases-2 and -9 to increase beta amyloid degradation. Mol Cell Neurosci 49(4): 423-9. (2012)
[http://dx.doi.org/10.1016/j.mcn.2012.02.005] [PMID: 22402435]
[135]
Vegeto E, Belcredito S, Ghisletti S, Meda C, Etteri S, Maggi A. The endogenous estrogen status regulates microglia reactivity in animal models of neuroinflammation. Endocrinology 147(5): 2263. (2006)
[http://dx.doi.org/10.1210/en.2005-1330] [PMID: 16469811]
[136]
Acaz-Fonseca E, Sanchez-Gonzalez R, Azcoitia I, Arevalo MA, Garcia-Segura LM. Role of astrocytes in the neuroprotective actions of 17beta-estradiol and selective estrogen receptor modulators. Mol Cell Endocrinol 389(1-2): 48-57. (2014)
[http://dx.doi.org/10.1016/j.mce.2014.01.009] [PMID: 24444786]
[137]
Villa A, Vegeto E, Poletti A, Maggi A. Estrogens, neuroinflammation, and neurodegeneration. Endocr Rev 37(4): 372-402. (2016)
[http://dx.doi.org/10.1210/er.2016-1007] [PMID: 27196727]
[138]
Sortino MA, Chisari M, Merlo S, Vancheri C, Caruso M, Nicoletti F, et al. Glia mediates the neuroprotective action of estradiol on beta-amyloid-induced neuronal death. Endocrinology 145(11): 5080-6. (2004)
[http://dx.doi.org/10.1210/en.2004-0973] [PMID: 15308615]
[139]
Carbonaro V, Caraci F, Giuffrida ML, Merlo S, Canonico PL, Drago F, et al. Enhanced expression of ERalpha in astrocytes modifies the response of cortical neurons to beta-amyloid toxicity. Neurobiol Dis 33(3): 415. (2009)
[http://dx.doi.org/10.1016/j.nbd.2008.11.017] [PMID: 19121391]
[140]
Park CE, Yun H, Lee EB, Min BI, Bae H, Choe W, et al. The antioxidant effects of genistein are associated with AMP-activated protein kinase activation and PTEN induction in prostate cancer cells. J Med Food 13(4): 815. (2010)
[http://dx.doi.org/10.1089/jmf.2009.1359] [PMID: 20673057]
[141]
Zhou X, Yuan L, Zhao X, Hou C, Ma W, Yu H, et al. Genistein antagonizes inflammatory damage induced by β-amyloid peptide in microglia through TLR4 and NF-κB. Nutrition 30(1): 90-5. (2014)
[http://dx.doi.org/10.1016/j.nut.2013.06.006] [PMID: 24290604]
[142]
Jantaratnotai N, Utaisincharoen P, Sanvarinda P, Thampithak A, Sanvarinda Y. Phytoestrogens mediated anti-inflammatory effect through suppression of IRF-1 and pSTAT1 expressions in lipopolysaccharide-activated microglia. Int Immunopharmacol 17(2): 483-8. (2013)
[http://dx.doi.org/10.1016/j.intimp.2013.07.013] [PMID: 23938252]
[143]
Park YJ, Ko JW, Jeon S, Kwon YH. Protective Effect of genistein against neuronal degeneration in APOE(-/-) mice fed a high-fat diet. Nutrients 8(11)E692 (2016)
[http://dx.doi.org/10.3390/nu8110692] [PMID: 27809235]
[144]
Panza F, Frisardi V, Solfrizzi V, Imbimbo BP, Logroscino G, Santamato A, et al. Immunotherapy for Alzheimer’s disease: from anti-β-amyloid to tau-based immunization strategies. Immunotherapy 4(2): 213-38. (2012)
[http://dx.doi.org/10.2217/imt.11.170] [PMID: 22339463]
[145]
Lemere CA, Masliah E. Can Alzheimer disease be prevented by amyloid-beta immunotherapy? Nat Rev Neurol 6(2): 108. (2010)
[http://dx.doi.org/10.1038/nrneurol.2009.219] [PMID: 20140000]
[146]
Zhang Y, Zou J, Yang J, Yao Z. 4Abeta1-15-derived monoclonal antibody reduces more abeta burdens and neuroinflammation than homologous vaccine in APP/PS1 Mice. Curr Alzheimer Res 12(4): 384-97. (2015)
[http://dx.doi.org/10.2174/1567205012666150325183708] [PMID: 25817256]
[147]
Doody RS, Thomas RG, Farlow M, Iwatsubo T, Vellas B, Joffe S, et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med 370(4): 311-21. (2014)
[http://dx.doi.org/10.1056/NEJMoa1312889] [PMID: 24450890]
[148]
Jiang P, Ling Q, Liu H, Tu W. Intracisternal administration of an interleukin-6 receptor antagonist attenuates surgery-induced cognitive impairment by inhibition of neuroinflammatory responses in aged rats. Exp Ther Med 9(3): 982-6. (2015)
[http://dx.doi.org/10.3892/etm.2014.2149] [PMID: 25667664]
[149]
Elcioglu HK, Aslan E, Ahmad S, Alan S, Salva E, Elcioglu OH, et al. Tocilizumab’s effect on cognitive deficits induced by intracerebroventricular administration of streptozotocin in Alzheimer’s model. Mol Cell Biochem 420(1-2): 21-8. (2016)
[http://dx.doi.org/10.1007/s11010-016-2762-6] [PMID: 27443846]
[150]
Zhu D, Yang N, Liu YY, Zheng J, Ji C, Zuo PP. M2 Macrophage transplantation ameliorates cognitive dysfunction in amyloid-beta-treated rats through regulation of microglial polarization. J Alzheimers Dis 52(2): 483-95. (2016)
[http://dx.doi.org/10.3233/JAD-151090] [PMID: 27003214]
[151]
Qin L, Liu Y, Cooper C, Liu B, Wilson B, Hong JS. Microglia enhance beta-amyloid peptide-induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen species. J Neurochem 83(4): 973-83. (2002)
[http://dx.doi.org/10.1046/j.1471-4159.2002.01210.x] [PMID: 12421370]
[152]
Choi SH, Aid S, Kim HW, Jackson SH, Bosetti F. Inhibition of NADPH oxidase promotes alternative and anti-inflammatory microglial activation during neuroinflammation. J Neurochem 120(2): 292-301. (2012)
[http://dx.doi.org/10.1111/j.1471-4159.2011.07572.x] [PMID: 22050439]
[153]
Park L, Zhou P, Pitstick R, Capone C, Anrather J, Norris EH, et al. Nox2-derived radicals contribute to neurovascular and behavioral dysfunction in mice overexpressing the amyloid precursor protein. Proc Natl Acad Sci USA 105(4): 1347-52. (2008)
[http://dx.doi.org/10.1073/pnas.0711568105] [PMID: 18202172]
[154]
Cui YQ, Wang Q, Zhang DM, Wang JY, Xiao B, Zheng Y, et al. Triptolide Rescues spatial memory deficits and amyloid-beta aggregation accompanied by inhibition of inflammatory responses and mapks activity in app/ps1 transgenic mice. Curr Alzheimer Res 13(3): 288-96. (2016)
[http://dx.doi.org/10.2174/156720501303160217122803] [PMID: 26906357]
[155]
Li JM, Zhang Y, Tang L, Chen YH, Gao Q, Bao MH, et al. Effects of triptolide on hippocampal microglial cells and astrocytes in the APP/PS1 double transgenic mouse model of Alzheimer’s disease. Neural Regen Res 11(9): 1492-8. (2016)
[http://dx.doi.org/10.4103/1673-5374.191224] [PMID: 27857756]
[156]
Wang S, Yang H, Yu L, Jin J, Qian L, Zhao H, et al. Oridonin attenuates Abeta1-42-induced neuroinflammation and inhibits NF-kappaB pathway. PLoS One 9(8)e104745 (2014)
[http://dx.doi.org/10.1371/journal.pone.0104745] [PMID: 25121593]
[157]
Pena-Altamira E, Petralla S, Massenzio F, Virgili M, Bolognesi ML, Monti B. Nutritional and pharmacological strategies to regulate microglial polarization in cognitive aging and Alzheimer’s disease. Front Aging Neurosci 9: 175. (2017)
[http://dx.doi.org/10.3389/fnagi.2017.00175] [PMID: 28638339]
[158]
Capiralla H, Vingtdeux V, Zhao H, Sankowski R, Al-Abed Y, Davies P, et al. Resveratrol mitigates lipopolysaccharide- and Abeta-mediated microglial inflammation by inhibiting the TLR4/NF-kappaB/STAT signaling cascade. J Neurochem 120(3): 461-72. (2012)
[http://dx.doi.org/10.1111/j.1471-4159.2011.07594.x] [PMID: 22118570]
[159]
Li F, Gong Q, Dong H, Shi J. Resveratrol, a neuroprotective supplement for Alzheimer’s disease. Curr Pharm Des 18(1): 27-33. (2012)
[http://dx.doi.org/10.2174/138161212798919075] [PMID: 22211686]
[160]
Yao Y, Li J, Niu Y, Yu JQ, Yan L, Miao ZH, et al. Resveratrol inhibits oligomeric Abeta-induced microglial activation via NADPH oxidase. Mol Med Rep 12(4): 6133-9. (2015)
[http://dx.doi.org/10.3892/mmr.2015.4199] [PMID: 26252250]
[161]
Chuang DY, Simonyi A, Cui J, Lubahn DB, Gu Z, Sun GY. Botanical polyphenols mitigate microglial activation and microglia-induced neurotoxicity: role of cytosolic phospholipase A2. Neuromolecular Med 18(3): 415-25. (2016)
[http://dx.doi.org/10.1007/s12017-016-8419-5] [PMID: 27339657]
[162]
Riviere C, Krisa S, Pechamat L, Nassra M, Delaunay JC, Marchal A, et al. Polyphenols from the stems of Morus alba and their inhibitory activity against nitric oxide production by lipopolysaccharide-activated microglia. Fitoterapia 97: 253-60. (2014)
[http://dx.doi.org/10.1016/j.fitote.2014.06.001] [PMID: 24912117]
[163]
Nam KN, Choi YS, Jung HJ, Park GH, Park JM, Moon SK, et al. Genipin inhibits the inflammatory response of rat brain microglial cells. Int Immunopharmacol 10(4): 493-9. (2010)
[http://dx.doi.org/10.1016/j.intimp.2010.01.011] [PMID: 20123040]
[164]
Seo EJ, Fischer N, Efferth T. Phytochemicals as inhibitors of NF-kappaB for treatment of Alzheimer’s disease. Pharmacol Res 129: 262-73. (2018)
[http://dx.doi.org/10.1016/j.phrs.2017.11.030] [PMID: 29179999]
[165]
Sugama S, Takenouchi T, Fujita M, Conti B, Hashimoto M. Differential microglial activation between acute stress and lipopolysaccharide treatment. J Neuroimmunol 207(1-2): 24-31. (2009)
[http://dx.doi.org/10.1016/j.jneuroim.2008.11.007] [PMID: 19111355]
[166]
Wohleb ES, Hanke ML, Corona AW, Powell ND, Stiner LM, Bailey MT, et al. Beta-Adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat. J Neurosci 31(17): 6277-88. (2011)
[http://dx.doi.org/10.1523/JNEUROSCI.0450-11.2011] [PMID: 21525267]
[167]
Lauterbach EC. Repurposing psychiatric medicines to target activated microglia in anxious mild cognitive impairment and early Parkinson’s disease. Am J Neurodegener Dis 5(1): 29-51. (2016)
[PMID: 27073741]
[168]
Ross J, Sharma S, Winston J, Nunez M, Bottini G, Franceschi M, et al. CHF5074 reduces biomarkers of neuroinflammation in patients with mild cognitive impairment: a 12-week, double-blind, placebo-controlled study. Curr Alzheimer Res 10(7): 742-53. (2013)
[http://dx.doi.org/10.2174/13892037113149990144] [PMID: 23968157]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy