Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Synthesis and Biological Potentials of Quinoline Analogues: A Review of Literature

Author(s): Leena Kumari, Salahuddin*, Avijit Mazumder, Daman Pandey, Mohammad Shahar Yar*, Rajnish Kumar, Rupa Mazumder, Mohammad Sarafroz, Mohamed Jawed Ahsan, Vivek Kumar and Sushma Gupta

Volume 16, Issue 7, 2019

Page: [653 - 688] Pages: 36

DOI: 10.2174/1570193X16666190213105146

Price: $65

Abstract

Heterocyclic compounds are well known for their different biological activity. The heterocyclic analogs are the building blocks for synthesis of the pharmaceutical active compounds in the organic chemistry. These derivatives show various type of biological activity like anticancer, antiinflammatory, anti-microbial, anti-convulsant, anti-malarial, anti-hypertensive, etc. From the last decade research showed that the quinoline analogs plays a vital role in the development of newer medicinal active compounds for treating various type of disease. Quinoline reported for their antiviral, anticancer, anti-microbial and anti-inflammatory activity. This review will summarize the various synthetic approaches for synthesis of quinoline derivatives and to check their biological activity. Derivatives of quinoline moiety plays very important role in the development of various types of newer drugs and it can be used as lead compounds for future investigation in the field of drug discovery process.

Keywords: Quinoline, quinoline derivatives, synthetic schemes, Conard-Limpach synthesis, Doebner reaction, Doebner-Miller Reaction Gould-Jacobs reaction, Skraup synthesis.

Graphical Abstract

[1]
Jain, S.; Chandra, V.; Jain, P.K.; Pathak, K.; Pathak, D.; Vaidya, A. Comprehensive review on current developments of quinoline-based anticancer agents. Arab. J. Chem., 2016.
[http://dx.doi.org/10.1016/j. arabjc.2016.10.009]
[2]
Marella, A.; Tanwar, O.P.; Saha, R.; Ali, M.R.; Srivastava, S.; Akhter, M.; Shaquiquzzaman, M.; Alam, M.M. Quinoline: A versatile heterocyclic. J. Saudi Chem., 2013, 21(1), 1-2.
[3]
Salahuddin, M.A.; Yar, M.S.; Sarafroz, M. Synthesis and anticonvulsant activity of a combined pharmacophore of 2-oxo-1, 2-dihydroquinoline containing 1, 3, 4-oxadiazole derivatives. Indian J. Heterocyclic. Chem., 2017, 27(1), 33-41.
[4]
Salahuddin, M.A.; Shaharyar, M. Synthesis, antibacterial and anticancer evaluation of 5-substituted (1, 3, 4-oxadiazol-2-yl) quinoline. Med. Chem. Res., 2015, 24(6), 2514-2528.
[5]
Kouznetsov, V.V.; Méndez, L.Y.; Gómez, C.M. Recent progress in the synthesis of quinolines. Curr. Org. Chem., 2005, 9(2), 141-161.
[6]
Kumar, S.; Bawa, S.; Drabu, S.; Kumar, R.; Gupta, H. Biological activities of pyrazoline derivatives. A recent development. Recent Pat Anti-infect. Drug Discov., 2009, 4(3), 154-163.
[7]
Madrid, P.B.; Sherrill, J.; Liou, A.P.; Weisman, J.L.; DeRisi, J.L.; Guy, R.K. Synthesis of ring-substituted 4-aminoquinolines and evaluation of their antimalarial activities. Bioorg. Med. Chem., 2005, 15(4), 1015-1018.
[8]
Kourounakis, A.P.; Galanakis, D.; Tsiakitzis, K.; Rekka, E.A.; Kourounakis, P.N. Synthesis and pharmacological evaluation of novel derivatives of anti‐inflammatory drugs with increased antioxidant and anti‐inflammatory activities. Drug Develop. Res., 1999, 47(1), 9-16.
[9]
Wheate, N.J.; Cullinane, C.; Webster, L.K. Synthesis, cytotoxicity, cell uptake and DNA interstrand cross‐linking of 4, 4′‐dipyrazolylmethane‐linked multinuclear platinum anti‐cancer complexes. Anti-cancer Drug Design., 2001, 16(2), 91-98.
[10]
Eswaran, S.; Adhikari, A.V.; Shetty, N.S. Synthesis and antimicrobial activities of novel quinoline derivatives carrying 1, 2, 4-triazole moiety. Eur. J. Chem., 2009, 44(11), 4637-4647.
[11]
Mandewale, M.C.; Thorat, B.R.; Yamgar, R.S. Synthesis and anti-mycobacterium study of some fluorine containing Schiff bases of quinoline and their metal complexes. Der. Pharm Chem., 2015, 7(5), 207-215.
[12]
Strekowski, L.; Mokrosz, J.L.; Honkan, V.A.; Czarny, A.; Cegla, M.T.; Wydra, R.L.; Patterson, S.E.; Schinazi, R.F. Synthesis and quantitative structure-activity relationship analysis of 2-(aryl or heteroaryl) quinolin-4-amines, a new class of anti-HIV-1 agents. Med. J. Chem., 1991, 34(5), 1739-1746.
[13]
Skraup, Z.H. Eine synthese des chinolins. Monatsh. Chem. Verw. Teile Anderer Wiss., 1880, 1(1), 316-318.
[14]
Doebner, O.; Miller, W. Ueber eine dem chinolin homologe base. Ber. Dtsch. Chem. Gesellschaft., 1881, 14(2), 2812-2817.
[15]
Friedlander, P. Synthesis of quinoline. Beruf, 1882, 15, 2572.
[16]
Gould, R.G.; Jacobs, W.A. The synthesis of certain substituted quinolines and 5, 6-benzoquinolines. J. Am. Chem. Soc., 1939, 61(10), 2890-2895.
[17]
Zhang, Y.; Wang, M.; Li, P.; Wang, L. Iron-promoted tandem reaction of anilines with styrene oxides via C-C cleavage for the synthesis of quinolines. Org. Lett., 2012, 14(9), 2206-2209.
[18]
Yan, R.; Liu, X.; Pan, C.; Zhou, X.; Li, X.; Kang, X.; Huang, G. Aerobic synthesis of substituted quinoline from aldehyde and aniline: Copper-catalyzed intermolecular C-H active and C-C formative cyclization. Org. Lett., 2013, 15(18), 4876-4879.
[19]
Gao, Q.; Liu, S.; Wu, X.; Wu, A. Povarov-type reaction using methyl as new input: Direct synthesis of substituted quinolines by i2-mediated formal [3+2+1] cycloaddition. Org. Lett., 2014, 16(17), 4582-4585.
[20]
Iosub, A.V.; Stahl, S.S. Catalytic aerobic dehydrogenation of nitrogen heterocycles using heterogeneous cobalt oxide supported on nitrogen-doped carbon. Org. Lett., 2015, 17(18), 4404-4407.
[21]
Li, J.; Zhang, J.; Yang, H.; Jiang, G. Assembly of diversely substituted quinolines via aerobic oxidative aromatization from simple alcohols and anilines. J. Org. Chem., 2017, 82(6), 3284-3290.
[22]
Jadhav, S.D.; Singh, A. Oxidative annulations involving dmso and formamide: K2S2O8 mediated syntheses of quinolines and pyrimidines. Org. Lett., 2017, 9(20), 5673-5676.
[23]
Camplo, M.; Charvet-Faury, A.S.; Borel, C.; Turin, F.; Hantz, O.; Trabaud, C.; Niddam, V.; Mourier, N.; Graciet, J.C.; Chermann, J.C.; Kraus, J.L. Synthesis and antiviral activity of N-4′-dihydropyridinyl and dihydroquinolinylcarbonyl-2-hydroxymethyl-5-[cytosin-1′-yl]-1, 3-oxathiolane derivatives against human immunodeficiency virus and duck hepatitis B virus. Eur. J. Chem., 1996, 31(7-8), 539-546.
[24]
Fakhfakh, M.A.; Fournet, A.; Prina, E.; Mouscadet, J.F.; Franck, X.; Hocquemiller, R.; Figadère, B. Synthesis and biological evaluation of substituted quinolines: Potential treatment of protozoal and retroviral co-infections. Bioorg. Med. Chem., 2003, 11(23), 5013-5023.
[25]
Briguglio, I.; Loddo, R.; Laurini, E.; Fermeglia, M.; Piras, S.; Corona, P.; Giunchedi, P.; Gavini, E.; Sanna, G.; Giliberti, G.; Ibba, C. Synthesis, cytotoxicity and antiviral evaluation of new series of imidazo [4, 5-g] quinoline and pyrido [2, 3-g] quinoxalinone derivatives. Eur. J. Chem., 2015, 105, 63-79.
[26]
Loddo, R.; Briguglio, I.; Corona, P.; Piras, S.; Loriga, M.; Paglietti, G.; Carta, A.; Sanna, G.; Giliberti, G.; Ibba, C.; Farci, P. Synthesis and antiviral activity of new phenylimidazopyridines and N-benzylidenequinolinamines derived by molecular simplification of phenylimidazo [4, 5-g] quinolines. Eur. J. Chem., 2014, 84, 8-16.
[27]
Carta, A.; Loriga, M.; Paglietti, G.; Ferrone, M.; Fermeglia, M.; Pricl, S.; Sanna, T.; Ibba, C. La, Colla, P.; Loddo, R. Design, synthesis, and preliminary in vitro and in silico antiviral activity of [4, 7] phenantrolines and 1-oxo-1, 4-dihydro-[4, 7] phenantrolines against single-stranded positive-sense RNA genome viruses. Bioorg. Med. Chem., 2007, 15(5), 1914-1927.
[28]
Chen, S.; Chen, R.; He, M.; Pang, R.; Tan, Z.; Yang, M. Design, synthesis, and biological evaluation of novel quinoline derivatives as HIV-1 Tat-TAR interaction inhibitors. Bioorg. Med. Chem., 2009, 17(5), 1948-1956.
[29]
Cheng, P.; Zhang, Q.; Ma, Y.B.; Jiang, Z.Y.; Zhang, X.M.; Zhang, F.X.; Chen, J.J. Synthesis and in vitro anti-hepatitis B virus activities of 4-aryl-6-chloro-quinolin-2-one and 5-aryl-7-chloro-1, 4-benzodiazepine derivatives. Bioorg. Med. Chem., 2008, 18(13), 3787-3789.
[30]
Santos, F.D.; Abreu, P.; Castro, H.C.; Paixão, I.C.; Cirne-Santos, C.C.; Giongo, V.; Barbosa, J.E.; Simonetti, B.R.; Garrido, V.; Bou-Habib, D.C.; Silva, D.D. Synthesis, antiviral activity and molecular modeling of oxoquinoline derivatives. Bioorg. Med. Chem., 2009, 17(15), 5476-5481.
[31]
Moret, V.; Dereudre-Bosquet, N.; Clayette, P.; Laras, Y.; Pietrancosta, N.; Rolland, A.; Weck, C.; Marc, S.; Kraus, J.L. Synthesis and anti-HIV properties of new hydroxyquinoline-polyamine conjugates on cells infected by HIV-1 LAV and HIV-1 BaL viral strains. Bioorg. Med. Chem., 2006, 16(23), 5988-5992.
[32]
Freitas, L.B.; Borgati, T.F.; De Freitas, R.P.; Ruiz, A.L.; Marchetti, G.M.; De Carvalho, J.E.; Da Cunha, E.F.; Ramalho, T.C.; Alves, R.B. Synthesis and antiproliferative activity of 8-hydroxyquinoline derivatives containing a 1,2,3-triazole moiety. Eur. J. Chem., 2014, 84, 595-604.
[33]
Pirol, Ş.C.; Çalışkan, B.; Durmaz, İ.; Atalay, R.; Banoglu, E. Synthesis and preliminary mechanistic evaluation of 5-(p-tolyl)-1-(quinolin-2-yl) pyrazole-3-carboxylic acid amides with potent antiproliferative activity on human cancer cell lines. Eur. J. Chem., 2014, 87, 140-149.
[34]
Chen, M.; Chen, H.; Ma, J.; Liu, X.; Zhang, S. Synthesis and anticancer activity of novel quinoline-docetaxel analogues. Bioorg. Med. Chem., 2014, 24(13), 2867-2870.
[35]
El-Gamal, M.I.; Khan, M.A.; Abdel-Maksoud, M.S.; El-Din, M.M.; Oh, C.H. A new series of diarylamides possessing quinoline nucleus: Synthesis, in vitro anticancer activities, and kinase inhibitory effect. Eur. J. Chem., 2014, 87, 484-492.
[36]
Kayarmar, R.; Nagaraja, G.K.; Naik, P.; Manjunatha, H.; Revanasiddappa, B.C.; Arulmoli, T. Synthesis and characterization of novel imidazoquinoline based 2-azetidinones as potent antimicrobial and anticancer agents. J. Saudi Chem., 2017, 21(1), S434-S444.
[37]
Kumar, K.; Schniper, S.; González-Sarrías, A.; Holder, A.A.; Sanders, N.; Sullivan, D.; Jarrett, W.L.; Davis, K.; Bai, F.; Seeram, N.P.; Kumar, V. Highly potent anti-proliferative effects of a gallium (III) complex with 7-chloroquinoline thiosemicarbazone as a ligand: Synthesis, cytotoxic and antimalarial evaluation. Eur. J. Chem., 2014, 86, 81-86.
[38]
Sangani, C.B.; Makawana, J.A.; Zhang, X.; Teraiya, S.B.; Lin, L.; Zhu, H.L. Design, synthesis and molecular modeling of pyrazole-quinoline-pyridine hybrids as a new class of antimicrobial and anticancer agents. Eur. J. Chem., 2014, 76, 549-557.
[39]
Singh, K.; Verma, V.; Yadav, K.; Sreekanth, V.; Kumar, D.; Bajaj, A.; Kumar, V. Design, regioselective synthesis and cytotoxic evaluation of 2-aminoimidazole-quinoline hybrids against cancer and primary endothelial cells. Eur. J. Chem., 2014, 87, 150-158.
[40]
Tseng, C.H.; Lin, C.K.; Chen, Y.L.; Hsu, C.Y.; Wu, H.N.; Tseng, C.K.; Lee, J.C. Synthesis, antiproliferative and anti-dengue virus evaluations of 2-aroyl-3-arylquinoline derivatives. Eur. J. Chem., 2014, 79, 66-76.
[41]
Vyas, V.K.; Variya, B.; Ghate, M.D. Design, synthesis and pharmacological evaluation of novel substituted quinoline-2-carboxamide derivatives as human dihydroorotate dehydrogenase (hDHODH) inhibitors and anticancer agents. Eur. J. Chem., 2014, 82, 385-393.
[42]
Alqasoumi, S.I.; Al-Taweel, A.M.; Alafeefy, A.M.; Hamed, M.M.; Noaman, E.; Ghorab, M.M. Synthesis and biological evaluation of 2-amino-7, 7-dimethyl 4-substituted-5-oxo-1-(3, 4, 5-trimethoxy)-1, 4, 5, 6, 7, 8-hexahydro-quinoline-3-carbonitrile derivatives as potential cytotoxic agents. Bioorg. Med. Chem., 2009, 19(24), 6939-6942.
[43]
Beauchard, A.; Jaunet, A.; Murillo, L.; Baldeyrou, B.; Lansiaux, A.; Chérouvrier, J.R.; Domon, L.; Picot, L.; Bailly, C.; Besson, T.; Thiéry, V. Synthesis and antitumoral activity of novel thiazolo-benzotriazole, thiazoloindolo [3, 2-c] quinoline and quinolino-quinoline derivatives. Eur. J. Chem., 2009, 44(10), 3858-3865.
[44]
Chang, Y.H.; Hsu, M.H.; Wang, S.H.; Huang, L.J.; Qian, K.; Morris-Natschke, S.L.; Hamel, E.; Kuo, S.C.; Lee, K.H. Design and synthesis of 2-(3-benzo [b] thienyl)-6, 7-methylenedioxy-quinolin-4-one analogues as potent antitumor agents that inhibit tubulin assembly. Med. J. Chem, 2009, 52(15), 4883-4891.
[45]
Abonia, R.; Insuasty, D.; Castillo, J.; Insuasty, B.; Quiroga, J.; Nogueras, M.; Cobo, J. Synthesis of novel quinoline-2-one based chalcones of potential anti-tumor activity. Eur. J. Chem., 2012, 57, 29-40.
[46]
Alegaon, S.G.; Parchure, P.; Araujo, L.D.; Salve, P.S.; Alagawadi, K.R.; Jalalpure, S.S.; Kumbar, V.M. Quinoline-azetidinone hybrids: Synthesis and in vitro antiproliferation activity against Hep G2 and Hep 3B human cell lines. Bioorg. Med. Chem., 2017, 27(7), 1566-1571.
[47]
Al-Said, M.S.; Ghorab, M.M.; Al-qasoumi, S.I.; El-Hossary, E.M.; Noaman, E. Synthesis and in vitro anticancer screening of some novel 4-[2-amino-3-cyano-4-substituted-5, 6, 7, 8-tetrahydro-quin-olin-1-(4H)-yl] benzenesulfonamides. Eur. J. Chem., 2010, 45(7), 3011-3018.
[48]
Al-Trawneh, S.A.; Zahra, J.A.; Kamal, M.R.; El-Abadelah, M.M.; Zani, F.; Incerti, M.; Cavazzoni, A.; Alfieri, R.R.; Petronini, P.G.; Vicini, P. Synthesis and biological evaluation of tetracyclic fluoroquinolones as antibacterial and anticancer agents. Bioorg. Med. Chem., 2010, 18(16), 5873-5884.
[49]
Bondock, S.; Gieman, H.; El-Shafei, A. Selective synthesis, structural studies and antitumor evaluation of some novel unsymmetrical 1-hetaryl-4-(2-chloroquinolin-3-yl) azines. J. Saudi Chem., 2016, 20(6), 695-702.
[50]
Chen, Y.L.; Hung, H.M.; Lu, C.M.; Li, K.C.; Tzeng, C.C. Synthesis and anticancer evaluation of certain indolo [2, 3-b] quinoline derivatives. Bioorg. Med. Chem., 2004, 12(24), 6539-6546.
[51]
El-Damasy, A.K.; Seo, S.H.; Cho, N.C.; Kang, S.B.; Pae, A.N.; Kim, K.S.; Keum, G. Design, synthesis, in vitro antiproliferative activity and kinase profile of new picolinamide based 2-amido and ureido quinoline derivatives. Eur. J. Chem., 2015, 101, 754-768.
[52]
Kakadiya, R.; Dong, H.; Kumar, A.; Narsinh, D.; Zhang, X.; Chou, T.C.; Lee, T.C.; Shah, A.; Su, T.L. Potent DNA-directed alkylating agents: Synthesis and biological activity of phenyl N-mustard-quinoline conjugates having a urea or hydrazinecarboxamide linker. Bioorg. Med. Chem., 2010, 18(6), 2285-2299.
[53]
Koh, E.J.; El-Gamal, M.I.; Oh, C.H.; Lee, S.H.; Sim, T.; Kim, G.; Choi, H.S.; Hong, J.H.; Lee, S.G.; Yoo, K.H. New diarylamides and diarylureas possessing 8-amino (acetamido) quinoline scaffold: synthesis, antiproliferative activities against melanoma cell lines, kinase inhibition, and in silico studies. Eur. J. Chem., 2013, 70, 10-21.
[54]
Lee, E.; Han, S.; Jin, G.H.; Lee, H.J.; Kim, W.Y.; Ryu, J.H.; Jeon, R. Synthesis and anticancer activity of aminodihydroquinoline analogs: Identification of novel proapoptotic agents. Bioorg. Med. Chem., 2013, 23(13), 3976-3978.
[55]
Lu, C.M.; Chen, Y.L.; Chen, H.L.; Chen, C.A.; Lu, P.J.; Yang, C.N.; Tzeng, C.C. Synthesis and antiproliferative evaluation of certain indolo [3, 2-c] quinoline derivatives. Bioorg. Med. Chem., 2010, 18(5), 1948-1957.
[56]
Malayeri, S.O.; Abnous, K.; Arab, A.; Akaberi, M.; Mehri, S.; Zarghi, A.; Ghodsi, R. Design, synthesis and biological evaluation of 7-(aryl)-2, 3-dihydro-[1, 4] dioxino [2, 3-g] quinoline derivatives as potential Hsp90 inhibitors and anticancer agents. Bioorg. Med. Chem., 2017, 25(3), 1294-1302.
[57]
Shi, A.; Nguyen, T.A.; Battina, S.K.; Rana, S.; Takemoto, D.J.; Chiang, P.K.; Hua, D.H. Synthesis and anti-breast cancer activities of substituted quinolines. Bioorg. Med. Chem., 2008, 18(11), 3364-3368.
[58]
Srivastava, V.; Lee, H. Synthesis and bio-evaluation of novel quinolino-stilbene derivatives as potential anticancer agents. Bioorg. Med. Chem., 2015, 23(24), 7629-7640.
[59]
Sun, J.; Zhu, H.; Yang, Z.M.; Zhu, H.L. Synthesis, molecular modeling and biological evaluation of 2-aminomethyl-5-(quinolin-2-yl)-1, 3, 4-oxadiazole-2 (3H)-thione quinolone derivatives as novel anticancer agent. Eur. J. Chem., 2013, 60, 23-28.
[60]
Chandrika, P.M.; Yakaiah, T.; Narsaiah, B.; Sridhar, V.; Venugopal, G.; Rao, J.V.; Kumar, K.P.; Murthy, U.S.; Rao, A. Synthesis leading to novel 2, 4, 6-trisubstituted quinazoline derivatives, their antibacterial and cytotoxic activity against THP-1, HL-60 and A375 cell lines. Indian J. Chem., 2009, 48B, 840-847.
[61]
Tseng, C.H.; Chen, Y.L.; Lu, P.J.; Yang, C.N.; Tzeng, C.C. Synthesis and antiproliferative evaluation of certain indeno [1, 2-c] quinoline derivatives. Bioorg. Med. Chem., 2008, 16(6), 3153-3162.
[62]
Tseng, C.H.; Chen, Y.L.; Chung, K.Y.; Cheng, C.M.; Wang, C.H.; Tzeng, C.C. Synthesis and antiproliferative evaluation of 6-arylindeno [1, 2-c] quinoline derivatives. Bioorg. Med. Chem., 2009, 17(21), 7465-7476.
[63]
Tseng, C.H.; Chen, Y.L.; Yang, C.L.; Cheng, C.M.; Han, C.H.; Tzeng, C.C. Synthesis of 6-substituted 9-methoxy-11H-indeno [1, 2-c] quinoline-11-one derivatives as potential anticancer agents. Bioorg. Med. Chem., 2012, 20(14), 4397-4404.
[64]
Vazquez, M.T.; Romero, M.; Pujol, M.D. Synthesis of novel 2, 3-dihydro-1, 4-dioxino [2, 3-g] quinoline derivatives as potential antitumor agents. Bioorg. Med. Chem., 2004, 12(5), 949-956.
[65]
Zhu, X.F.; Zhang, J.; Sun, S.; Guo, Y.C.; Cao, S.X.; Zhao, Y.F. Synthesis and structure-activity relationships study of α-aminophosphonate derivatives containing a quinoline moiety. Chin. Chem. Lett., 2017.
[66]
Sun, N.; Du, R.L.; Zheng, Y.Y.; Huang, B.H.; Guo, Q.; Zhang, R.F.; Wong, K.Y.; Lu, Y.J. Antibacterial activity of N-methylbenzofuro [3, 2-b] quinoline and N-methylbenzoindolo [3, 2-b]-quinoline derivatives and study of their mode of action. Eur. J. Chem., 2017, 135, 1-1.
[67]
Asghari, S.; Ramezani, S.; Mohseni, M. Synthesis and antibacterial activity of ethyl 2-amino-6-methyl-5-oxo-4-aryl-5, 6-dihydro-4H-pyrano [3, 2-c] quinoline-3-carboxylate. Chin. Chem. Lett., 2014, 25(3), 431-434.
[68]
Dolan, N.; Gavin, D.P.; Eshwika, A.; Kavanagh, K.; McGinley, J.; Stephens, J.C. Synthesis, antibacterial and anti-MRSA activity, in vivo toxicity and a structure-activity relationship study of a quinoline thiourea. Bioorg. Med. Chem., 2016, 26(2), 630-635.
[69]
Eswaran, S.; Adhikari, A.V.; Kumar, R.A. New 1, 3-oxazolo [4, 5-c] quinoline derivatives: Synthesis and evaluation of antibacterial and antituberculosis properties. Eur. J. Chem., 2010, 45(3), 957-966.
[70]
Hazra, A.; Mondal, S.; Maity, A.; Naskar, S.; Saha, P.; Paira, R.; Sahu, K.B.; Paira, P.; Ghosh, S.; Sinha, C.; Samanta, A. Amberlite-IRA-402 (OH) ion exchange resin mediated synthesis of indolizines, pyrrolo [1, 2-a] quinolines and isoquinolines: Antibacterial and antifungal evaluation of the products. Eur. J. Chem., 2011, 46(6), 2132-2140.
[71]
Naik, H.R.; Naik, H.S.; Naik, T.R.; Naika, H.R.; Gouthamchandra, K.; Mahmood, R.; Ahamed, B.K. Synthesis of novel benzo [h] quinolines: wound healing, antibacterial, DNA binding and in vitro antioxidant activity. Eur. J. Chem., 2009, 44(3), 981-989.
[72]
Sharma, P.C.; Jain, A.; Yar, M.S.; Pahwa, R.; Singh, J.; Chanalia, P. Novel fluoroquinolone derivatives bearing N-thiomide linkage with 6-substituted-2-aminobenzothiazoles: synthesis and antibac-terial evaluation. Arab. J. Chem., 2017, 10, 568-575.
[73]
Sharma, P.C.; Jain, A.; Yar, M.S.; Pahwa, R.; Singh, J.; Goel, S. Synthesis and antibacterial evaluation of novel analogs of fluoroquinolones annulated with 6-substituted-2-aminobenzo-thiazoles. Arab. J. Chem., 2015, 8(5), 671-677.
[74]
Sun, X.Y.; Wu, R.; Wen, X.; Guo, L.; Zhou, C.P.; Li, J.; Quan, Z.S.; Bao, J. Synthesis and evaluation of antibacterial activity of 7-alkyloxy-4, 5-dihydro-imidazo [1, 2-a] quinoline derivatives. Eur. J. Chem., 2013, 60, 451-455.
[75]
Tabatabaeian, K.; Shojaei, A.F.; Shirini, F.; Hejazi, S.Z.; Rassa, M. A green multicomponent synthesis of bioactive pyrimido [4, 5-b] quinoline derivatives as antibacterial agents in water catalyzed by RuCl3xH2O. Chin. Chem. Lett., 2014, 25(2), 308-312.
[76]
Behbehani, H.; Ibrahim, H.M.; Makhseed, S.; Elnagdi, M.H.; Mahmoud, H. Aminothiophenes as building blocks in heterocyclic synthesis: Synthesis and antimicrobial evaluation of a new class of pyrido [1, 2-a] thieno [3, 2-e] pyrimidine, quinoline and pyridin-2-one derivatives. Eur. J. Chem., 2012, 52, 51-65.
[77]
Bhat, A.R.; Azam, A.; Choi, I.; Athar, F. 3-(1, 3, 4-Thiadiazole-2-yl) quinoline derivatives: synthesis, characterization and anti-microbial activity. Eur. J. Chem., 2011, 46(7), 3158-3166.
[78]
El-Behery, M.; El-Twigry, H. Synthesis, magnetic, spectral, and antimicrobial studies of Cu (II), Ni (II) Co (II), Fe (III), and UO2 (II) complexes of a new Schiff base hydrazone derived from 7-chloro-4-hydrazinoquinoline. Spectrochim Acta Part A. Mol. Biomol. Spectrosc., 2007, 66(1), 28-36.
[79]
El‐Sayed, O.A.; Aboul‐Enein, H.Y. Synthesis and antimicrobial activity of novel pyrazolo [3, 4‐b] quinoline derivatives. Archiv. der Pharmazie., 2001, 334(4), 117-120.
[80]
Sureshkumar, K.; Maheshwaran, V.; Rao, T.D.; Khamrang, T.; Ponnuswamy, M.N.; Saraboji, K.; Saravanan, D. Synthesis, characterization, crystal structure, in vitro anti-inflammatory and molecular docking studies of 5-mercapto-1-substituted tetrazole incorporated quinoline derivative. J. Mol. Stru., 2017, 1146, 314-323.
[81]
Abadi, A.H.; Hegazy, G.H.; El-Zaher, A.A. Synthesis of novel 4-substituted-7-trifluoromethylquinoline derivatives with nitric oxide releasing properties and their evaluation as analgesic and anti-inflammatory agents. Bioorg. Med. Chem., 2005, 13(20), 5759-5765.
[82]
Abdelrahman, M.H.; Youssif, B.G.; Abdelazeem, A.H.; Ibrahim, H.M.; Abd El Ghany, A.M.; Treamblu, L.; Bukhari, S.N. Synthesis, biological evaluation, docking study and ulcerogenicity profiling of some novel quinoline-2-carboxamides as dual COXs/LOX inhibitors endowed with anti-inflammatory activity. Eur. J. Chem., 2017, 127, 972-985.
[83]
Chen, Y.L.; Chen, I.L.; Lu, C.M.; Tzeng, C.C.; Tsao, L.T.; Wang, J.P. Synthesis and anti-inflammatory evaluation of 9-phenoxya-cridine and 4-phenoxyfuro [2, 3-b] quinoline derivatives. Part 2. Bioorg. Med. Chem., 2003, 11(18), 3921-3927.
[84]
Chen, Y.L.; Chen, I.L.; Lu, C.M.; Tzeng, C.C.; Tsao, L.T.; Wang, J.P. Synthesis and anti-inflammatory evaluation of 4-anilinofuro [2, 3-b] quinoline and 4-phenoxyfuro [2, 3-b] quinoline derivatives. Part 3. Bioorg. Med. Chem., 2004, 12(2), 387-392.
[85]
Chen, Y.L.; Zhao, Y.L.; Lu, C.M.; Tzeng, C.C.; Wang, J.P. Synthesis, cytotoxicity, and anti-inflammatory evaluation of 2-(furan-2-yl)-4-(phenoxy) quinoline derivatives. Part 4. Bioorg. Med. Chem., 2006, 14(13), 4373-4378.
[86]
Chia, E.W.; Pearce, A.N.; Berridge, M.V.; Larsen, L.; Perry, N.B.; Sansom, C.E.; Godfrey, C.A.; Hanton, L.R.; Lu, G.L.; Walton, M.; Denny, W.A. Synthesis and anti-inflammatory structure-activity relationships of thiazine-quinoline-quinones: Inhibitors of the neutrophil respiratory burst in a model of acute gouty arthritis. Bioorg. Med. Chem., 2008, 16(21), 9432-9442.
[87]
El-Gazzar, A.R.; El-Enany, M.M.; Mahmoud, M.N. Synthesis, analgesic, anti-inflammatory, and antimicrobial activity of some novel pyrimido [4, 5-b] quinolin-4-ones. Bioorg. Med. Chem., 2008, 16(6), 3261-3273.
[88]
Durrani, N.; Leslie, T.; Rahim, S.; Graham, K.; Ahmad, F.; Rowland, M. Efficacy of combination therapy with artesunate plus amodiaquine compared to monotherapy with chloroquine, amodiaquine or sulfadoxine-pyrimethamine for treatment of uncomplicated Plasmodium falciparum in Afghanistan. Trop. Med. Int. Health, 2005, 10(6), 521-529.
[89]
Price, R.N.; Uhlemann, A.C.; Brockman, A.; McGready, R.; Ashley, E.; Phaipun, L.; Patel, R.; Laing, K.; Looareesuwan, S.; White, N.J.; Nosten, F. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. The Lancet, 2004, 364(9432), 438-447.
[90]
Neftel, K.A.; Woodtly, W.; Schmid, M.; Frick, P.G.; Fehr, J. Amodiaquine induced agranulocytosis and liver damage. Br. Med. J. (Clin. Res. Ed.), 1986, 292(6522), 721-723.
[91]
Dern, R.J.; Beutler, E.; Alving, A.S. The hemolytic effect of primaquine, II. The natural course of the hemolytic anemia and the mechanism of its self-limited character. J. Lab. Clin. Med., 1954, 44(2), 171-176.
[92]
Beloqui, A. Solinís, M.Á.; Gascón, A.R.; del Pozo-Rodríguez, A.; des Rieux, A.; Préat, V. Mechanism of transport of saquinavir-loaded nanostructured lipid carriers across the intestinal barrier. J. Control. Release, 2013, 166(2), 115-123.
[93]
Blondeau, J.M. Fluoroquinolones: Mechanism of action, classification, and development of resistance. Surv. Ophthalmol., 2004, 49(2), 73-78.
[94]
Denis, A.; Moreau, N.J. Mechanisms of quinolone resistance in clinical isolates: Accumulation of sparfloxacin and of fluoroquinolones of various hydrophobicity, and analysis of membrane composition. J. Antimicrob. Chemother., 1993, 32(3), 379-392.
[95]
Kwatra, D.; Vadlapatla, R.K.; Vadlapudi, A.D.; Pal, D.; Mitra, A.K. Interaction of gatifloxacin with efflux transporters: A possible mechanism for drug resistance. Int. J. Pharm., 2010, 395(1), 114-121.
[96]
Bareggi, S.R.; Cornelli, U. Clioquinol: Review of its mechanisms of action and clinical uses in neurodegenerative disorders. CNS Neurosci. Ther., 2012, 18(1), 41-46.
[97]
Pica-Mattoccia, L.; Carlini, D.; Guidi, A.; Cimica, V.; Vigorosi, F.; Cioli, D. The schistosome enzyme that activates oxamniquine has the characteristics of a sulfotransferase. Mem. Inst. Oswaldo Cruz, 2006, 101, 307-312.
[98]
Arita, K.; Utsumi, T.; Kato, A.; Kanno, T.; Kobuchi, H.; Inoue, B.; Akiyama, J.; Utsumi, K. Mechanism of dibucaine-induced apoptosis in promyelocytic leukemia cells (HL-60). Biochem. Pharmacol., 2000, 60(7), 905-915.
[99]
Anderson, R.; Theron, A.J.; Gravett, C.M.; Steel, H.C.; Tintinger, G.R.; Feldman, C. Montelukast inhibits neutrophil pro‐inflammatory activity by a cyclic AMP‐dependent mechanism. Br. J. Clin. Pharmacol., 2009, 156(1), 105-115.
[100]
Hsiang, Y.H.; Lihou, M.G.; Liu, L.F. Arrest of replication forks by drug-stabilized topoisomerase I-DNA cleavable complexes as a mechanism of cell killing by camptothecin. Clin. Cancer Res., 1989, 49(18), 5077-5082.
[101]
Xu, Y.; Villalona-Calero, M.A. Irinotecan: Mechanisms of tumor resistance and novel strategies for modulating its activity. . Ann. Oncol., 2002, 13(12), 1841-1851.
[102]
Palchaudhuri, R.; Hergenrother, P.J. DNA as a target for anticancer compounds: Methods to determine the mode of binding and the mechanism of action. Curr. Opin. Biotechnol., 2007, 18(6), 497-503.
[103]
Potkin, S.G.; Saha, A.R.; Kujawa, M.J.; Carson, W.H.; Ali, M.; Stock, E.; Stringfellow, J.; Ingenito, G.; Marder, S.R. Aripiprazole, an antipsychotic with a novel mechanism of action, and risperidone vs. placebo in patients with schizophrenia and schizoaffective disorder. Arch. Gen. Psychiat, 2003, 60(7), 681-690.
[104]
Stahl, S.M. Mechanism of action of brexpiprazole: Comparison with aripiprazole. CNS Spectrums., 2016, 21(1), 1-6.
[105]
Takayanagi, I.; Koike, K. A possible mechanism of action of a beta-adrenergic partial agonist (carteolol) in guinea pig taenia caecum. J. Pharmacobiodyn., 1983, 6(1), 56-59.
[106]
Serra, V.; Markman, B.; Scaltriti, M.; Eichhorn, P.J.; Valero, V.; Guzman, M.; Botero, M.L.; Llonch, E.; Atzori, F. Di, Cosimo, S.; Maira, M. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Clin. Cancer Res., 2008, 68(19), 8022-8030.
[107]
Kiyuna, T.; Murakami, T.; Tome, Y.; Kawaguchi, K.; Igarashi, K.; Zhang, Y.; Zhao, M.; Li, Y.; Bouvet, M.; Kanaya, F.; Singh, A. High efficacy of tumor-targeting Salmonella typhimurium A1-R on a doxorubicin-and dactolisib-resistant follicular dendritic-cell sarcoma in a patient-derived orthotopic xenograft PDOX nude mouse model. Oncotarget, 2016, 7(22), 33046.
[108]
Maher, T.M.; Bareille, P.; Costa, M.J.; Fahy, W.A.; Harrison, S.A.; Holman, B.F.; Lukey, P.; Man, Y.; Saunders, P.; Simpson, J.K.; Toshner, R.A. Randomised, placebo-controlled, double-blind, repeat dose escalation study with omipalisib (GSK2126458) in patients with Idiopathic Pulmonary Fibrosis (IPF). Am. J. Respir. Crit. Care Med., 2017, 195, A7010.
[109]
Lurje, G.; Lenz, H.J. EGFR signaling and drug discovery. Oncology, 2009, 77(6), 400-410.
[110]
Wong, K.K.; Fracasso, P.M.; Bukowski, R.M.; Lynch, T.J.; Munster, P.N.; Shapiro, G.I.; Jänne, P.A.; Eder, J.P.; Naughton, M.J.; Ellis, M.J.; Jones, S.F. A phase I study with neratinib (HKI-272), an irreversible pan ErbB receptor tyrosine kinase inhibitor, in patients with solid tumors. Clin. Cancer Res., 2009, 15(7), 2552-2558.
[111]
Nosov, D.A.; Esteves, B.; Lipatov, O.N.; Lyulko, A.A.; Anischenko, A.A.; Chacko, R.T.; Doval, D.C.; Strahs, A.; Slichenmyer, W.J.; Bhargava, P. Antitumor activity and safety of tivozanib (AV-951) in a phase II randomized discontinuation trial in patients with renal cell carcinoma. J. Clin. Oncol., 2012, 30(14), 1678-1685.
[112]
Desai, N.C.; Pandit, U.P.; Dodiya, A. Thiazolidinedione compounds: A patent review (2010-present). Expert Opin. Ther. Pat., 2015, 25(4), 479-488.
[113]
Wang, K.F.; Yang, H.; Jiang, W.Q.; Li, S.; Cai, Y.C. Puquitinib mesylate (XC-302) induces autophagy via inhibiting the PI3K/AKT/mTOR signaling pathway in nasopharyngeal cancer cells. Int. J. Mol. Med., 2015, 36(6), 1556-1562.
[114]
Goldberg, F.W.; Daunt, P.; Pearson, S.E.; Greenwood, R.; Grist, M.; Debreczeni, J.É. Identification and optimisation of a series of N-(4-anilino-2-pyridyl) acetamide activin receptor-like kinase 1 (ALK1) inhibitors. MedChemComm, 2016, 7(6), 1204-1208.
[115]
Sinclair, A.; Metz, D.; Cushing, T.; Liu, L.; Brake, R.; Starnes, C.; Means, G.; Henne, K.; Archibeque, I.; Mattson, B.; Drew, A. Phosphatidylinositol-3 kinase delta (PI3Kδ) inhibitor AMG 319 is a potent, selective and orally bioavailable small molecule inhibitor that suppresses PI3K-mediated signaling and viability in neoplastic B-cells. Blood, 2011, 118, 4964.
[116]
Zou, H.Y.; Li, Q.; Lee, J.H.; Arango, M.E.; Burgess, K.; Qiu, M.; Engstrom, L.D.; Yamazaki, S.; Parker, M.; Timofeevski, S.; Cui, J.J. Sensitivity of selected human tumor models to PF-04217903, a novel selective c-Met kinase inhibitor. Mol. Cancer Ther., 2012, 11(4), 1036-1047.
[117]
Chon, H.J.; Bae, K.J.; Lee, Y.; Kim, J. The casein kinase 2 inhibitor, CX-4945, as an anti-cancer drug in treatment of human hematological malignancies. Front. Pharmacol., 2015, 6, 70.
[118]
Shah, M.A.; Wainberg, Z.A.; Catenacci, D.V.; Hochster, H.S.; Ford, J.; Kunz, P.; Lee, F.C.; Kallender, H.; Cecchi, F.; Rabe, D.C.; Keer, H. Phase II study evaluating 2 dosing schedules of oral foretinib (GSK1363089), cMET/VEGFR2 inhibitor, in patients with metastatic gastric cancer. PLoS One, 2013, 8(3)e54014

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy