Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Review on the Role of the Metal Catalysts in the Synthesis of Pharmacologically Important Quinoline Substrate

Author(s): Akhil Mahajan and Tejpal Singh Chundawat*

Volume 16, Issue 7, 2019

Page: [631 - 652] Pages: 22

DOI: 10.2174/1570193X15666181001142122

Price: $65

Abstract

Quinoline stands out amongst the most essential N-based heterocyclic biologically active compounds. Friedlieb Ferdinand Runge was first to isolate quinoline from coal tar in 1834. Chemical component, quinine found in the bark of cinchona tree was used for treatment of malaria in the year of 1820. Quinoline derivatives have been found to exhibit different therapeutic activities such as antimalarial, antibacterial, antifungal, antiplatelet, anticancer, antitubercular, etc. There are a couple of promising compounds with the Quinoline skeleton like Pamaquine, Chloroquine, Tafenoquine, Bulaquine, Quinine and Mefloquine which show Antimalarial activity. All the methodologies in last decade had been covered to provide a comprehensive review on the development of Quinoline analogs using metal catalyst. Since quinoline and its auxiliaries have extensive pharmacological activities and are moreover utilized as ligands in various metal complexes, various procedures have been now and again reported for their synthesis. We have tried here undertaking to collect a huge part of the procedure that has been represented in the written work by use of metal driving force. This review will be especially profitable to the examiner in quick exploring and developing another ecopleasing, capable and judicious protocol.

Keywords: Metal catalysts, bioactive compounds, quinoline, cinchona tree, coupling reactions, antimalarial activity.

Graphical Abstract

[1]
Runge, F.F. Ueber einige produkte der steinkohlendestillation. Ann. Phy. Chem., 1834, 31, 65-78.
[2]
Kouznetsov, V.V.; Menndez, L.Y.; Gomez, C.M. Recent progress in the synthesis of quinolones. Curr. Org. Chem., 2005, 9, 141-161.
[3]
Cunico, W.; Cechinel, C.A.; Bonacorso, H.G.; Martins, M.A.; Zanatta, N.; De Souza, M.V.; Freitas, I.O.; Soares, R.P.; Krettli, A.U. Antimalarial activity of 4-(5-trifluoromethyl-1H-pyrazol-1-yl)-chloroquine analogues. Bioorg. Med. Chem. Lett., 2006, 16(3), 649-653.
[4]
Divo, A.; Sartorelli, A.C.; Patton, C.L.; Bia, F.J. Activity of fluoroquinolone antibiotics against Plasmodium falciparum in vitro. Antimicrob. Agents Chemother., 1998, 32, 1182-1186.
[5]
Gorlitzer, K.; Gabriel, B.; Jomaa, H.; Wiesner, J. Thieno[3, 2-c]chinolin-4-yl-amine-Synthese und Prüfung auf Wirksamkeit gegen. Malaria Pharm., 2006, 61, 278-284.
[6]
Khanfaruk, M.O.; Levi, S.M.; Takwani, L.B.; Wilson, H.N. Synthesis of isoquinuclidine analogs of chloroquine: Antimalarial and antileishmanial activity. Bioorg. Med. Chem., 2007, 15(11), 3919-3925.
[7]
Kayirere, M.; Mahmoud, A.; Chevalier, J.; Soyfer, J.; Cremieux, A.; Barbe, J. Synthesis and antibacterial activity of new 4-alkoxy, 4-aminoalkyl and 4-alkylthioquinoline derivatives. Eur. J. Med. Chem., 1998, 33(1), 55-63.
[8]
Kidwai, M.; Bhushan, K.; Sapra, P.; Saxena, R.; Gupta, R. Alumina - supported synthesis of antibacterial quinolines using microwaves. Bioorg. Med. Chem., 2000, 8(1), 69-72.
[9]
Ryu, C.K.; Sun, Y.J.; Shim, J.Y.; You, H.J.; Choi, K.U.; Lee, H. Synthesis and antifungal activity of 6, 7-bis-[S-(aryl)thio]-5, 8-quinolinediones. Arch. Pharm. Res., 2002, 25(6), 795-800.
[10]
Musiol, R.; Jamilek, J.; Buchta, V.; Silva, L.; Niedbala, H.; Podeszwa, B.; Palka, A.; Maniecka, K.M.; Oleksyn, B.; Polanski, J. Antifungal properties of new series of quinoline derivatives. Bioorg. Med. Chem., 2006, 14(10), 3592-3598.
[11]
Desai, U.; Mitragotri, S.; Thopate, T.; Pore, D.; Wadgaonkarb, P. A highly efficient synthesis of trisubstituted quinolines using sodium hydrogensulfate on silica gel as a reusable catalyst. Arkivoc, 2006, 15, 198-204.
[12]
Elderfield, R.C.; Le Von, E.F. Synthesis of potential anticancer agents.III. nitrogen mustards derived from 8- aminoquinolines. J. Org. Chem., 1960, 25(9), 1576-1583.
[13]
Denny, W.A.; Wilson, W.R.; Ware, D.C.; Atwell, G.J.; Milbank, J.B.; Stevenson, R.J Anticancer 2, 3-dihydro-1H-pyrrolo[3, 2- f]quinoline complexes of cobalt and chromium. U.S. Patent 7064117B2.
[14]
Ebenso, E.E.; Kabanda, M.M.; Arslan, T.; Saracoglu, M.; Kandemirli, F.; Murulana, L.C.; Singh, A.K.; Shukla, S.K.; Hammouti, B.; Khaled, K. Quantum chemical investigations on quinoline derivatives as effective corrosion inhibitors for mild steel in acidic medium. Int. J. Electrochem. Sci., 2012, 7(6), 5643-5676.
[15]
Vu, A.T.; Cohn, S.T.; Manas, E.S.; Harris, H.A.; Mewshaw, R.E. Synthesis and structure activity relationship of a series of 2-phenylquinoline derivatives. Bioorg. Med. Chem. Lett., 2005, 15(20), 4520-4525.
[16]
Gogoi, S.; Shekarrao, K.; Duarah, A.; Bora, T.C.; Boruah, R.C. A microwave promoted solvent free approach to steroidal quinolines and their in vitro evaluation for antimicrobial activities. Steriods, 2012, 77(13), 1438-1445.
[17]
Ranu, B.C. Indium metal and its halides in organic synthesis: Microreview. Eur. J. Org. Chem., 2000, 2000(13), 2347-2356.
[18]
Prajapati, S.M.; Patel, K.D.; Vekariya, R.H.; Panchal, S.N.; Patel, H.D. Recent advances in the synthesis of quinolines: A review. RSC Adv, 2014, 4(47), 24463-24467.
[19]
Amii, H. KishiKawa, Y.; Uneyama, K. Rh(I)-catalyzed coupling cyclization of N-aryl trifluoroacetimidoyl chlorides with alkynes: One-pot synthesis of fluorinated quinolones. Org. Lett., 2001, 3(8), 1109-1112.
[20]
McNaughton, B.R.; Miller, B.L. A mild and efficient one-step synthesis of quinolones. Org. Lett., 2003, 5(23), 4257-4259.
[21]
Motokura, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Multifunctional catalysis of a ruthenium-grafted hydrotalcite: One pot synthesis of quinolines from 2-aminobenzyl alcohol and various carbonyl compounds via aerobic oxidation and aldol reaction. Tetrahedron Lett., 2004, 45(31), 6029-6032.
[22]
Zolfigol, M.A.; Salehi, P.; Ghaderi, A.; Shiri, M.; Tanbakouchian, Z. An eco-friendly procedure for the synthesis of polysubstitutedquinolines under aqueous media. J. Mol. Catal., 2006, 259(1-2), 253-258.
[23]
Korivi, R.P.; Cheng, C.H. Nickel-catalyzed cyclization of 2-Iodoanilines with aroylalkynes: An efficient route for quinoline derivatives. J. Org. Chem., 2006, 71(18), 7079-7082.
[24]
Chaudhuri, M.K.; Hussain, S. An efficient synthesis of quinolines under solvent-free conditions. J. Chem. Sci., 2006, 118(2), 199-202.
[25]
Sakai, N.; Annaka, K.; Konakahara, T. Direct synthesis of polysubstituted quinoline derivatives by InBr3-promoted dimerization of 2-ethynylaniline derivatives. J. Org. Chem., 2006, 71(9), 3653-3655.
[26]
Abbiati, G.; Arcadi, A.; Marinelli, F.; Rossi, E.; Verdecchia, M. Rh-catalyzed sequential hydroarylation/hydrovinylationhetero-cyclization of β-(2-aminophenyl)-α, β-ynones with organoboron derivatives: Ane approach to functionalized quinolones. Synlett, 2006, 19, 3218-3224.
[27]
Gabriele, B.; Mancuso, R.; Salerno, G.; Ruffolo, G.; Plastina, P. Novel and convenient synthesis of substituted quinolines by copper- or palladium-catalyzed cyclodehydration of 1-(2-aminoaryl)-2-yn-1-ols. J. Org. Chem., 2007, 72(18), 6873-6877.
[28]
Li, A.H.; Ahmed, E.; Chen, X.; Cox, M.; Crew, A.P.; Dong, H.Q.; Jin, M.; Ma, L.; Panicker, B.; Siu, K.W.; Steinig, A.G.; Stolz, K.M.; Tavares, P.A.R.; Volk, B.; Weng, Q.; Werner, D.; Mulvihill, M.J. A highly effective one-pot synthesis of quinolines from O-nitroarylcarbaldehydes. Org. Biomol. Chem., 2007, 5(1), 61-64.
[29]
Cho, C.S.; Ren, W.X. A recyclable palladium-catalyzed modified friedlander quinoline synthesis. J. Organomet. Chem., 2007, 692(19), 4182-4186.
[30]
Arcadi, A.; Marinelli, F.; Aschi, M.; Verdecchia, M. Pd- catalyzed regioselective hydroarylation of α-(2-aminophenyl)-α, β-ynones with organoboron derivatives as a tool for the synthesis of quinolines: Experimental evidence and quantum-chemical calculations. Tetrahedron, 2008, 64, 5354-5361.
[31]
Huang, H.; Jiang, H.; Chen, K.; Liu, H. A simple and convenient copper-catalyzed tandem synthesis of quinoline-2-carboxylates at room temperature. J. Org. Chem., 2009, 74(15), 5476-5480.
[32]
Naik, H.R.P.; Naik, H.S.B.; Ravikumar Naik, T.R.; Aravinda, T.; Lamani, D.S. TiO2 nanopowder catalyzed microwave -induced one pot synthesis of novel quinoline /Benzo[h]quinoline3-carbonitrile under solvent free condition. Phosphorus Sulfur Silicon Relat. Elem., 2009, 184(10), 2109-2114.
[33]
Kulkarni, A.; Torok, B. Microwave-assisted multicomponent domino cyclization-aromatization: An efficient approach for the synthesis of substituted quinolones. Green Chem., 2010, 12(5), 875-878.
[34]
Tanaka, T.; Okunaga, K.; Hayashi, M. Dehydrogenation of 1, 2, 3, 4-tetrahydroquinoline and its related compounds: Comparison of Pd/C-ethylene system and activated carbon-O2 system. Tetrahedron Lett., 2010, 51, 4633-4635.
[35]
Stone, M.T. An improved Larock synthesis of quinolines via a Heck reaction of 2-Bromoanilines and allylic alcohols. Org. Lett., 2011, 13(9), 2326-2329.
[36]
Wang, Z.; Li, S.; Yu, B.; Wu, H.; Wang, Y.; Sun, X. FeCl3·6H2O catalyzed intramolecular allylic amination: Synthesis of substituted dihydroquinolines and quinolones. J. Org. Chem., 2012, 77(19), 8615-8620.
[37]
Yao, C.; Qin, B.; Zhang, H.; Lu, J.; Wang, D.; Tu, S. One-pot solvent-free synthesis of quinolines by C-H activation/C-C bond formation catalyzed by recyclable iron(III) triflate. RSC Adv, 2012, 2(9), 3759-3764.
[38]
Anvar, S.; Baltork, I.M.; Tangestaninejad, S.; Moghadam, M.; Mirkhani, V.; Khosropour, A.R.; Kia, R. Efficient and environmentally-benign three-component synthesis of quinolines and bis-quinolines catalyzed by recyclable potassium dodecatungstocobaltate trihydrate under microwave irradiation. RSC Adv, 2012, 2(23), 8713-8720.
[39]
Kong, L.; Zhou, Y. Huang, He; Yang, Y.; Liu, Y.; Li, Y. Copper-catalyzed synthesis of substituted quinolines via C-N coupling/condensation from ortho-acylanilines and alkenyl iodides. J. Org. Chem., 2015, 80(2), 1275-1278.
[40]
Yadav, D.K.T.; Bhanage, B.M. Rhodium-catalyzed synthesis of quinolines and imines under mild condition. RSC Adv, 2015, 5(64), 51570-51575.
[41]
Teimouri, A.; Chermahini, A.N. A mild and highly efficient Friedlander synthesis of quinolines in the presence of heterogeneous solid acid nano-catalyst. Arabian. J. Chem., 2016, 9(1), S433-S439.
[42]
Arcadi, A.; Chiarini, M.; Gieseppe, S.D.; Marinelli, F. A new green approach to the friedlהnder synthesis of quinolones. Synlett, 2003, 2, 203-207.
[43]
Xu, J.; Sun, J.; Zhao, J.; Huang, B.; Li, X.; Sun, Y. Palladium-catalyzed synthesis of quinolines from allyl alcohols and anilines. RSC Adv, 2017, 7(58), 36242-36245.
[44]
Kaewmee, B.; Rukachaisirikul, V. Kaeobamrung. Synthesis of quinolines via copper-catalyzed domino reactions of enaminones. J. Org. Biomol. Chem., 2017, 15, 7387-7395.
[45]
Xu, X.; Yang, Y.; Zhang, X.; Yi, W. Direct synthesis of quinolines via Co(III)-catalyzed and DMSO Involved C-H activation/cyclization of anilines with alkynes. Org. Lett., 2018, 20(3), 566-569.
[46]
Das, S.; Maiti, D.; Sarkar, S.D. Synthesis of polysubstituted quinolines from α-2-aminoaryl alcohols via nickel-catalyzed dehydrogenative coupling. J. Org. Chem., 2018, 83, 2309-2316.
[47]
Jiang, K.M.; Kang, J.A.; Jin, Y.; Lin, J. Synthesis of substituted 4-hydroxalkyl-quinoline derivatives by a three-component reaction using CuCl/AuCl as sequential catalysts. Org. Chem. Front., 2018, 5, 434-441.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy