Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

使用ImageSURF准确和无偏倚定量β淀粉样蛋白荧光图像

卷 16, 期 2, 2019

页: [102 - 108] 页: 7

弟呕挨: 10.2174/1567205016666181212152622

价格: $65

摘要

背景:由于弥散的沉积边界和成像变化,阿尔茨海默病特征性的淀粉样蛋白-β病理图像难以一致且准确地分割。 方法:我们评估了ImageSURF的性能,ImageSURF是我们的开源ImageJ插件,它考虑了一系列图像衍生物来训练图像分类器。我们将ImageSURF与标准图像阈值进行比较,以评估其在淀粉样蛋白病理学的荧光图像上的再现性,准确性和普遍性。 结果:ImageSURF对淀粉样蛋白-β图像的分割明显更加忠实,并且具有明显更高的普遍性,优于阈值优化。 结论:除了在捕获病理图像的人体评估方面的卓越性能之外,ImageSURF还能够以一致且无偏见的方式分割任何大小的图像集,而无需额外的盲法,并且可以回顾性地应用于现有图像。培训过程产生一个分类器文件,可以作为补充数据共享,允许完全开放的方法和数据,并实现不同研究之间更直接的比较。

关键词: 显微镜,定量,图像分割,阈值处理,机器学习,阿尔茨海默病。

Next »
[1]
Hardy J. The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal. J Neurochem 110(4): 1129-34. (2009).
[2]
Reitz C. Alzheimer’s disease and the amyloid cascade hypothesis: a critical review. Int J Alz Dis 2012: 369808 (2012).
[3]
Huang Y, Mucke L. Alzheimer mechanisms and therapeutic strategies. Cell 148(6): 1204-22. (2012).
[4]
Hall AM, Roberson ED. Mouse models of Alzheimer’s disease. Brain Res Bull 88(1): 3-12. (2012).
[5]
Roeder AHK, Cunha A, Burl MC, Meyerowitz EM. A computational image analysis glossary for biologists. Development 139: 3071-80. (2012).
[6]
Pham DL, Xu C, Prince JL. Current methods in medical image segmentation. Annu Rev Biomed Eng 2(1): 315-37. (2000).
[7]
Bolmont T, Haiss F, Eicke D, Radde R, Mathis CA, Klunk WE, et al. Dynamics of the microglial/amyloid interaction indicate a role in plaque maintenance. J Neurosci 28(16): 4283-92. (2008).
[8]
Hefendehl JK, Wegenast-Braun BM, Liebig C, Eicke D, Milford D, Calhoun ME, et al. Long-term in vivo imaging of β-amyloid plaque appearance and growth in a mouse model of cerebral β-amyloidosis. J Neurosci 31(2): 624-9. (2011).
[9]
Meyer-Luehmann M, Spires-Jones TL, Prada C, Garcia-Alloza M, de Calignon A, Rozkalne A, et al. Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer’s disease. Nature 451(7179): 720-4. (2008).
[10]
McCarter JF, Liebscher S, Bachhuber T, Abou-Ajram C, Hübener M, Hyman BT, et al. Clustering of plaques contributes to plaque growth in a mouse model of Alzheimer’s disease. Acta Neuropathol 126(2): 179-88. (2013).
[11]
Schindelin J, Rueden CT, Hiner MC, Eliceiri KW. The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev 529: 518-29. (2015).
[12]
O’Mara AR, King AE, Vickers JC, Kirkcaldie MTK. ImageSURF: An ImageJ plugin for batch pixel-based image segmentation using random forests. J Open Res Softw 5: 31. (2017).
[13]
Breiman L. Random forests. Mach Learn 45: 5-32. (2001).
[14]
Sommer C, Straehle C, Kothe U, Hamprecht FA. Ilastik: interactive learning and segmentation toolkit. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro. Salt Lake City: IEEE Press pp 230-3 (2011).
[15]
Youmans KL, Tai LM, Kanekiyo T, Stine WB, Michon S-C, Nwabuisi-Heath E, et al. Intraneuronal Aβ detection in 5xFAD mice by a new Aβ-specific antibody. Mol Neurodegener 7: 8. (2012).
[16]
Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta 405(2): 442-51. (1975).
[17]
R Core Team R: A language and environment for statistical computing https://www.R-project.org/
[18]
Di Cataldo S, Ficarra E, Macii E. Computer-aided techniques for chromogenic immunohistochemistry: status and directions. Comput Biol Med 42(10): 1012-25. (2012).
[19]
Teverovskiy M, Vengrenyuk Y, Tabesh A, Sapir M, Fogarasi S, Pang H-Y, et al. Automated localization and quantification of protein multiplexes via multispectral fluorescence imaging. In: 5th IEEE International Symposium. Biomedical Imaging From Nano to Macro. Salt Lake City: IEEE Press pp 300-303 (2008).
[20]
Jucker M. The benefits and limitations of animal models for translational research in neurodegenerative diseases. Nat Med 16(11): 1210-4. (2010).

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy