[1]
Zhao, B.; Wang, J.; Wu, F.X. Computational methods to predict protein functions from protein-protein interaction networks. Curr. Protein Pept. Sci., 2017, 18(11), 1120-1131.
[2]
Jensen, L.J.; Gupta, R.; Staerfeldt, H.H.; Brunak, S. Prediction of human protein function according to gene ontology categories. Bioinformatics, 2003, 19(5), 635-642.
[3]
Huang, G.; Chu, C.; Huang, T.; Kong, X.; Zhang, Y.; Zhang, N.; Cai, Y.D. Exploring mouse protein function via multiple approaches. PLoS One, 2016, 11(11)e0166580
[4]
Karimpour-Fard, A.; Leach, S.M.; Hunter, L.E.; Gill, R.T. The topology of the bacterial co-conserved protein network and its implications for predicting protein function. BMC Genomics, 2008, 9, 313.
[5]
Karimpour-Fard, A.; Detweiler, C.S.; Erickson, K.D.; Hunter, L.; Gill, R.T. Cross-species cluster co-conservation: a new method for generating protein interaction networks. Genome Biol., 2007, 8(9), R185.
[6]
Bork, P.; Jensen, L.J.; von Mering, C.; Ramani, A.K.; Lee, I.; Marcotte, E.M. Protein interaction networks from yeast to human. Curr. Opin. Struct. Biol., 2004, 14(3), 292-299.
[7]
Shoemaker, B.A.; Panchenko, A.R. Deciphering protein-protein interactions. Part I. Experimental techniques and databases. PLoS Comput. Biol., 2007, 3(3)e42
[8]
De Bodt, S.; Proost, S.; Vandepoele, K.; Rouze, P.; Van de Peer, Y. Predicting protein-protein interactions in Arabidopsis thaliana through integration of orthology, gene ontology and co-expression. BMC Genomics, 2009, 10, 288.
[9]
Mirabello, C.; Wallner, B. InterPred: a pipeline to identify and model protein-protein interactions. Proteins, 2017, 85(6), 1159-1170.
[10]
Sun, J.; Xu, J.; Liu, Z.; Liu, Q.; Zhao, A.; Shi, T.; Li, Y. Refined phylogenetic profiles method for predicting protein-protein interactions. Bioinformatics, 2005, 21(16), 3409-3415.
[11]
Craig, R.A.; Liao, L. Phylogenetic tree information aids supervised learning for predicting protein-protein interaction based on distance matrices. BMC Bioinformatics, 2007, 8, 6.
[12]
Dimitrakopoulos, C.; Theofilatos, K.; Pegkas, A.; Likothanassis, S.; Mavroudi, S. Predicting overlapping protein complexes from weighted protein interaction graphs by gradually expanding dense neighborhoods. Artif. Intell. Med., 2016, 71, 62-69.
[13]
Nguyen, C.; Mannino, M.; Gardiner, K.; Cios, K.J. ClusFCM: an algorithm for predicting protein functions using homologies and protein interactions. J. Bioinform. Comput. Biol., 2008, 6(1), 203-222.
[14]
Huang, Q.; You, Z.; Zhang, X.; Zhou, Y. Prediction of protein-protein interactions with clustered amino acids and weighted sparse representation. Int. J. Mol. Sci., 2015, 16(5), 10855-10869.
[15]
Frasca, M.; Cesa-Bianchi, N. Multitask protein function prediction through task dissimilarity. IEEE/ACM Trans; Comput. Biol. Bioinform, 2017, p. 1.
[16]
Ur Rehman, H.; Azam, N.; Yao, J.; Benso, A. A three-way approach for protein function classification. PLoS One, 2017, 12(2)e0171702
[17]
Jiang, B.; Kloster, K.; Gleich, D.F.; Gribskov, M. AptRank: an adaptive PageRank model for protein function prediction on bi-relational graphs. Bioinformatics, 2017, 33(12), 1829-1836.
[18]
Xu, Y.; Min, H.; Wu, Q.; Song, H.; Ye, B. Multi-instance metric transfer learning for genome-wide protein function prediction. Sci. Rep., 2017, 7, 41831.
[19]
Rentzsch, R.; Orengo, C.A. Protein function prediction using domain families. BMC Bioinform., 2013, 14(Suppl 3), S5.
[20]
Wong, A.; Shatkay, H. Protein function prediction using text-based features extracted from the biomedical literature: the CAFA challenge. BMC Bioinform., 2013, 14(Suppl. 3), S14.
[21]
Zhu, W.; Hou, J.; Chen, Y.P. Semantic and layered protein function prediction from PPI networks. J. Theor. Biol., 2010, 267(2), 129-136.
[22]
Sun, T.; Zhou, B.; Lai, L.; Pei, J. Sequence-based prediction of protein protein interaction using a deep-learning algorithm. BMC Bioinform., 2017, 18(1), 277.
[23]
Jaeger, D.; Barth, J.; Niehues, A.; Fufezan, C. pyGCluster, a novel hierarchical clustering approach. Bioinformatics, 2014, 30(6), 896-898.
[24]
Tasdemir, K.; Milenov, P.; Tapsall, B. Topology-based hierarchical clustering of self-organizing maps. IEEE Trans. Neural Netw., 2011, 22(3), 474-485.
[25]
Wei, D.; Jiang, Q.; Wei, Y.; Wang, S. A novel hierarchical clustering algorithm for gene sequences. BMC Bioinformatics, 2012, 13, 174.
[26]
Langfelder, P.; Horvath, S. Fast R functions for robust correlations and hierarchical clustering. J. Stat. Softw., 2012, 46(pii: i11), i11.
[27]
Timmerman, M.E.; Ceulemans, E.; De Roover, K.; Van Leeuwen, K. Subspace K-means clustering. Behav. Res. Methods, 2013, 45(4), 1011-1023.
[28]
Yu, S.; Tranchevent, L.C.; Liu, X.; Glanzel, W.; Suykens, J.A.; De Moor, B.; Moreau, Y. Optimized data fusion for kernel k-means clustering. IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34(5), 1031-1039.
[29]
Steinley, D. K-means clustering: a half-century synthesis. Br. J. Math. Stat. Psychol., 2006, 59(Pt 1), 1-34.
[30]
Wilkin, G.A.; Huang, X. A practical comparison of two K-Means clustering algorithms. BMC Bioinformatics, 2008, 9(Suppl. 6), S19.
[31]
Sarkar, M.; Leong, T.Y. Fuzzy K-means clustering with missing values. Proc. AMIA Symp., 2001, •••, 588-592.
[32]
Steinley, D. Stability analysis in K-means clustering. Br. J. Math. Stat. Psychol., 2008, 61(Pt 2), 255-273.
[33]
Dudik, J.M.; Kurosu, A.; Coyle, J.L.; Sejdic, E. A comparative analysis of DBSCAN, K-means, and quadratic variation algorithms for automatic identification of swallows from swallowing accelerometry signals. Comput. Biol. Med., 2015, 59, 10-18.
[34]
Chen, Y.; Reilly, K.D.; Sprague, A.P.; Guan, Z. SEQOPTICS: a protein sequence clustering system. BMC Bioinformatics, 2006, 7(Suppl. 4), S10.
[35]
Guo, J.; Tian, D.; McKinney, B.A.; Hartman, J.L. Recursive expectation-maximization clustering: a method for identifying buffering mechanisms composed of phenomic modules. Chaos, 2010, 20(2)026103
[36]
Van Mechelen, I.; Bock, H.H.; De Boeck, P. Two-mode clustering methods: a structured overview. Stat. Methods Med. Res., 2004, 13(5), 363-394.
[37]
Hartuv, E.; Shamir, R. A clustering algorithm based on graph connectivity. Inf. Process. Lett., 2000, 76(4-6), 175-181.
[38]
Huang, G.; Yan, F.; Tan, D. A review of computational methods for predicting drug targets. Curr. Protein Pept. Sci., 2018, 19(6), 562-572.
[39]
Du, P.; Wang, L. Predicting human protein subcellular locations by the ensemble of multiple predictors via protein-protein interaction network with edge clustering coefficients. PLoS One, 2014, 9(1)e86879
[40]
Gonzalez, A.J.; Liao, L.; Wu, C.H. Predicting ligand binding residues and functional sites using multipositional correlations with graph theoretic clustering and kernel CCA. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2012, 9(4), 992-1001.
[41]
Leung, H.C.; Siu, M.H.; Yiu, S.M.; Chin, F.Y.; Sung, K.W. Clustering-based approach for predicting motif pairs from protein interaction data. J. Bioinform. Comput. Biol., 2009, 7(4), 701-716.
[42]
Enright, A.J.; Van Dongen, S.; Ouzounis, C.A. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res., 2002, 30(7), 1575-1584.
[43]
Wang, T.N.; Li, T.J.; Shao, G.F.; Wu, S.X. An improved K-means clustering method for cDNA microarray image segmentation. Genet. Mol. Res., 2015, 14(3), 7771-7781.
[44]
Sarkar, A.; Maulik, U. Gene microarray data analysis using parallel point-symmetry-based clustering. Int. J. Data Min. Bioinform., 2015, 11(3), 277-300.
[45]
Lu, J.; Chen, L.; Yin, J.; Huang, T.; Bi, Y.; Kong, X.; Zheng, M.; Cai, Y.D. Identification of new candidate drugs for lung cancer using chemical-chemical interactions, chemical-protein interactions and a K-means clustering algorithm. J. Biomol. Struct. Dyn., 2016, 34(4), 906-917.
[46]
Greve, B.; Pigeot, I.; Huybrechts, I.; Pala, V.; Bornhorst, C. A comparison of heuristic and model-based clustering methods for dietary pattern analysis. Public Health Nutr., 2016, 19(2), 255-264.
[47]
Banjari, I.; Kenjeric, D.; Solic, K.; Mandic, M.L. Cluster analysis as a prediction tool for pregnancy outcomes. Coll. Antropol., 2015, 39(1), 247-252.
[48]
Hu, G.M.; Mai, T.L.; Chen, C.M. Clustering and visualizing similarity networks of membrane proteins. Proteins, 2015, 83(8), 1450-1461.
[49]
Hu, J.; Zhang, X.; Liu, X.; Tang, J. Prediction of hot regions in protein-protein interaction by combining density-based incremental clustering with feature-based classification. Comput. Biol. Med., 2015, 61, 127-137.
[50]
Theofilatos, K.; Pavlopoulou, N.; Papasavvas, C.; Likothanassis, S.; Dimitrakopoulos, C.; Georgopoulos, E.; Moschopoulos, C.; Mavroudi, S. Predicting protein complexes from weighted protein-protein interaction graphs with a novel unsupervised methodology: evolutionary enhanced Markov clustering. Artif. Intell. Med., 2015, 63(3), 181-189.
[51]
Tang, X.; Wang, J.; Zhong, J.; Pan, Y. Predicting essential proteins based on weighted degree centrality. IEEE/ACM Trans. Comput. Biol. Bioinform., 2014, 11(2), 407-418.
[52]
Alvarez, M.A.; Yan, C. A new protein graph model for function prediction. Comput. Biol. Chem., 2012, 37, 6-10.
[53]
Saini, A.; Hou, J. Progressive clustering based method for protein function prediction. Bull. Math. Biol., 2013, 75(2), 331-350.
[54]
Chua, H.N.; Sung, W.K.; Wong, L. Exploiting indirect neighbours and topological weight to predict protein function from proteinprotein interactions. Bioinformatics, 2006, 22(13), 1623-1630.
[55]
Trivodaliev, K.; Bogojeska, A.; Kocarev, L. Exploring function prediction in protein interaction networks via clustering methods. PLoS One, 2014, 9(6)e99755
[56]
Ansari, E.S.; Eslahchi, C.; Pezeshk, H.; Sadeghi, M. ProDomAs, protein domain assignment algorithm using center-based clustering and independent dominating set. Proteins, 2014, 82(9), 1937-1946.
[57]
Tang, X.; Feng, Q.; Wang, J.; He, Y.; Pan, Y. Clustering based on multiple biological information: approach for predicting protein complexes. IET Syst. Biol., 2013, 7(5), 223-230.
[58]
Wu, M.; Xie, Z.; Li, X.; Kwoh, C.K.; Zheng, J. Identifying protein complexes from heterogeneous biological data. Proteins, 2013, 81(11), 2023-2033.
[59]
King, A.D.; Przulj, N.; Jurisica, I. Protein complex prediction via cost-based clustering. Bioinformatics, 2004, 20(17), 3013-3020.
[60]
Ramadan, E.; Naef, A.; Ahmed, M. Protein complexes predictions within protein interaction networks using genetic algorithms. BMC Bioinformatics, 2016, 17(Suppl. 7), 269.
[61]
Madani, S.; Faez, K.; Aminghafari, M. Identifying similar functional modules by a new hybrid spectral clustering method. IET Syst. Biol., 2012, 6(5), 175-186.
[62]
Wang, J.; Li, M.; Chen, J.; Pan, Y. A fast hierarchical clustering algorithm for functional modules discovery in protein interaction networks. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2011, 8(3), 607-620.
[63]
Monji, H.; Koizumi, S.; Ozaki, T.; Ohkawa, T. Interaction site prediction by structural similarity to neighboring clusters in protein-protein interaction networks. BMC Bioinformatics, 2011, 12(Suppl. 1), S39.
[64]
Chen, P.Y.; Deane, C.M.; Reinert, G. Predicting and validating protein interactions using network structure. PLOS Comput. Biol., 2008, 4(7)e1000118
[65]
Zhang, X.; Xu, J.; Xiao, W.X. A new method for the discovery of essential proteins. PLoS One, 2013, 8(3)e58763
[66]
Iqbal, M.J.; Faye, I.; Samir, B.B.; Said, A.M. Efficient feature selection and classification of protein sequence data in bioinformatics. ScientificWorldJournal, 2014, 2014173869
[67]
Mai, T.L.; Hu, G.M.; Chen, C.M. Visualizing and clustering protein similarity networks: sequences, structures, and functions. J. Proteome Res., 2016, 15(7), 2123-2131.
[68]
Han, L.; Cui, J.; Lin, H.; Ji, Z.; Cao, Z.; Li, Y.; Chen, Y. Recent progresses in the application of machine learning approach for predicting protein functional class independent of sequence similarity. Proteomics, 2006, 6(14), 4023-4037.
[69]
Mamitsuka, H. Essential latent knowledge for protein-protein interactions: analysis by an unsupervised learning approach. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2005, 2(2), 119-130.
[70]
Brun, C.; Chevenet, F.; Martin, D.; Wojcik, J.; Guenoche, A.; Jacq, B. Functional classification of proteins for the prediction of cellular function from a protein-protein interaction network. Genome Biol., 2003, 5(1), R6.
[71]
Samanta, M.P.; Liang, S. Predicting protein functions from redundancies in large-scale protein interaction networks. Proc. Natl. Acad. Sci. USA, 2003, 100(22), 12579-12583.
[72]
LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature, 2015, 521(7553), 436-444.
[73]
Hazlett, H.C.; Gu, H.; Munsell, B.C.; Kim, S.H.; Styner, M.; Wolff, J.J.; Elison, J.T.; Swanson, M.R.; Zhu, H.; Botteron, K.N.; Collins, D.L.; Constantino, J.N.; Dager, S.R.; Estes, A.M.; Evans, A.C.; Fonov, V.S.; Gerig, G.; Kostopoulos, P.; McKinstry, R.C.; Pandey, J.; Paterson, S.; Pruett, J.R.; Schultz, R.T.; Shaw, D.W.; Zwaigenbaum, L.; Piven, J. Early brain development in infants at high risk for autism spectrum disorder. Nature, 2017, 542(7641), 348-351.
[74]
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.; Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg, S.; Hassabis, D. Human-level control through deep reinforcement learning. Nature, 2015, 518(7540), 529-533.