Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Vascular and Cardiac Oxidative Stress and Inflammation as Targets for Cardioprotection

Author(s): Andreas Daiber*, Sebastian Steven, Gerhild Euler and Rainer Schulz*

Volume 27, Issue 18, 2021

Published on: 25 January, 2021

Page: [2112 - 2130] Pages: 19

DOI: 10.2174/1381612827666210125155821

Price: $65

Abstract

Cardiac and vascular diseases are often associated with increased oxidative stress and inflammation, and both may contribute to the disease progression. However, successful applications of antioxidants in the clinical setting are very rare and specific anti-inflammatory therapeutics only emerged recently. Reasons for this rely on the great diversity of oxidative stress and inflammatory cells that can either act as cardioprotective or cause tissue damage in the heart. Recent large-scale clinical trials found that highly specific anti-inflammatory therapies using monoclonal antibodies against cytokines resulted in lower cardiovascular mortality in patients with pre-existing atherosclerotic disease. In addition, unspecific antiinflammatory medication and established cardiovascular drugs with pleiotropic immunomodulatory properties such as angiotensin converting enzyme (ACE) inhibitors or statins have proven beneficial cardiovascular effects. Normalization of oxidative stress seems to be a common feature of these therapies, which can be explained by a close interaction/crosstalk of the cellular redox state and inflammatory processes. In this review, we give an overview of cardiac reactive oxygen species (ROS) sources and processes of cardiac inflammation as well as the connection of ROS and inflammation in ischemic cardiomyopathy in order to shed light on possible cardioprotective interventions.

Keywords: Cardiac disease, inflammation, oxidative stress, anti-inflammatory therapy, acute myocardial infarction, cardiac remodeling, cardioprotection.

[1]
Klarin D, Zhu QM, Emdin CA, et al. CARDIoGRAMplusC4D Consortium. Genetic analysis in UK Biobank links insulin resistance and transendothelial migration pathways to coronary artery disease. Nat Genet 2017; 49(9): 1392-7.
[http://dx.doi.org/10.1038/ng.3914] [PMID: 28714974]
[2]
Howson JMM, Zhao W, Barnes DR, et al. CARDIoGRAMplusC4D; EPIC-CVD. Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms. Nat Genet 2017; 49(7): 1113-9.
[http://dx.doi.org/10.1038/ng.3874] [PMID: 28530674]
[3]
Soltész P, Kerekes G, Dér H, et al. Comparative assessment of vascular function in autoimmune rheumatic diseases: considerations of prevention and treatment. Autoimmun Rev 2011; 10(7): 416-25.
[http://dx.doi.org/10.1016/j.autrev.2011.01.004] [PMID: 21281743]
[4]
Murdaca G, Colombo BM, Cagnati P, Gulli R, Spanò F, Puppo F. Endothelial dysfunction in rheumatic autoimmune diseases. Atherosclerosis 2012; 224(2): 309-17.
[http://dx.doi.org/10.1016/j.atherosclerosis.2012.05.013] [PMID: 22673743]
[5]
Vena GA, Vestita M, Cassano N. Psoriasis and cardiovascular disease. Dermatol Ther 2010; 23(2): 144-51.
[http://dx.doi.org/10.1111/j.1529-8019.2010.01308.x] [PMID: 20415821]
[6]
Hak AE, Karlson EW, Feskanich D, Stampfer MJ, Costenbader KH. Systemic lupus erythematosus and the risk of cardiovascular disease: results from the nurses’ health study. Arthritis Rheum 2009; 61(10): 1396-402.
[http://dx.doi.org/10.1002/art.24537] [PMID: 19790130]
[7]
Mehta NN, Azfar RS, Shin DB, Neimann AL, Troxel AB, Gelfand JM. Patients with severe psoriasis are at increased risk of cardiovascular mortality: cohort study using the General Practice Research Database. Eur Heart J 2010; 31(8): 1000-6.
[http://dx.doi.org/10.1093/eurheartj/ehp567] [PMID: 20037179]
[8]
Peters MJ, Symmons DP, McCarey D, et al. EULAR evidence-based recommendations for cardiovascular risk management in patients with rheumatoid arthritis and other forms of inflammatory arthritis. Ann Rheum Dis 2010; 69(2): 325-31.
[http://dx.doi.org/10.1136/ard.2009.113696] [PMID: 19773290]
[9]
Herrera J, Ferrebuz A, MacGregor EG, Rodriguez-Iturbe B. Mycophenolate mofetil treatment improves hypertension in patients with psoriasis and rheumatoid arthritis. J Am Soc Nephrol 2006; 17(12)(Suppl. 3): S218-25.
[http://dx.doi.org/10.1681/ASN.2006080918] [PMID: 17130265]
[10]
Di Cesare A, Di Meglio P, Nestle FO. The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J Invest Dermatol 2009; 129(6): 1339-50.
[http://dx.doi.org/10.1038/jid.2009.59] [PMID: 19322214]
[11]
Leonardi C, Matheson R, Zachariae C, et al. Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. N Engl J Med 2012; 366(13): 1190-9.
[http://dx.doi.org/10.1056/NEJMoa1109997] [PMID: 22455413]
[12]
Papp KA, Leonardi C, Menter A, et al. Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis. N Engl J Med 2012; 366(13): 1181-9.
[http://dx.doi.org/10.1056/NEJMoa1109017] [PMID: 22455412]
[13]
Crispín JC, Tsokos GC. IL-17 in systemic lupus erythematosus. J Biomed Biotechnol 2010; 2010: 943254.
[http://dx.doi.org/10.1155/2010/943254] [PMID: 20379379]
[14]
Choy E. Understanding the dynamics: pathways involved in the pathogenesis of rheumatoid arthritis. Rheumatology (Oxford) 2012; 51(Suppl. 5): v3-v11.
[http://dx.doi.org/10.1093/rheumatology/kes113] [PMID: 22718924]
[15]
Pasceri V, Yeh ET. A tale of two diseases: atherosclerosis and rheumatoid arthritis. Circulation 1999; 100(21): 2124-6.
[http://dx.doi.org/10.1161/01.CIR.100.21.2124] [PMID: 10571968]
[16]
Kaptoge S, Seshasai SR, Gao P, et al. Inflammatory cytokines and risk of coronary heart disease: new prospective study and updated meta-analysis. Eur Heart J 2014; 35(9): 578-89.
[http://dx.doi.org/10.1093/eurheartj/eht367] [PMID: 24026779]
[17]
Karbach S, Wenzel P, Waisman A, Munzel T, Daiber A. eNOS uncoupling in cardiovascular diseases--the role of oxidative stress and inflammation. Curr Pharm Des 2014; 20(22): 3579-94.
[http://dx.doi.org/10.2174/13816128113196660748] [PMID: 24180381]
[18]
Ridker PM, Everett BM, Thuren T, et al. CANTOS Trial Group. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 2017; 377(12): 1119-31.
[http://dx.doi.org/10.1056/NEJMoa1707914] [PMID: 28845751]
[19]
Blankenberg S, Rupprecht HJ, Bickel C, et al. AtheroGene Investigators. Glutathione peroxidase 1 activity and cardiovascular events in patients with coronary artery disease. N Engl J Med 2003; 349(17): 1605-13.
[http://dx.doi.org/10.1056/NEJMoa030535] [PMID: 14573732]
[20]
Schöttker B, Brenner H, Jansen EH, et al. Evidence for the free radical/oxidative stress theory of ageing from the CHANCES consortium: a meta-analysis of individual participant data. BMC Med 2015; 13: 300.
[http://dx.doi.org/10.1186/s12916-015-0537-7] [PMID: 26666526]
[21]
Bredemeier M, Lopes LM, Eisenreich MA, et al. Xanthine oxidase inhibitors for prevention of cardiovascular events: a systematic review and meta-analysis of randomized controlled trials. BMC Cardiovasc Disord 2018; 18(1): 24.
[http://dx.doi.org/10.1186/s12872-018-0757-9] [PMID: 29415653]
[22]
Khaw KT, Bingham S, Welch A, et al. Relation between plasma ascorbic acid and mortality in men and women in EPIC-Norfolk prospective study: a prospective population study. European Prospective Investigation into Cancer and Nutrition. Lancet 2001; 357(9257): 657-63.
[http://dx.doi.org/10.1016/S0140-6736(00)04128-3] [PMID: 11247548]
[23]
Münzel T, Gori T, Bruno RM, Taddei S. Is oxidative stress a therapeutic target in cardiovascular disease? Eur Heart J 2010; 31(22): 2741-8.
[http://dx.doi.org/10.1093/eurheartj/ehq396] [PMID: 20974801]
[24]
Schmidt HH, Stocker R, Vollbracht C, et al. Antioxidants in translational medicine. Antioxid Redox Signal 2015; 23(14): 1130-43.
[http://dx.doi.org/10.1089/ars.2015.6393] [PMID: 26154592]
[25]
Wenzel P, Kossmann S, Münzel T, Daiber A. Redox regulation of cardiovascular inflammation - Immunomodulatory function of mitochondrial and Nox-derived reactive oxygen and nitrogen species. Free Radic Biol Med 2017; 109: 48-60.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.01.027] [PMID: 28108279]
[26]
Steven S, Frenis K, Oelze M, et al. Vascular inflammation and oxidative stress: Major triggers for cardiovascular disease. Oxid Med Cell Longev 2019; 2019: 7092151.
[http://dx.doi.org/10.1155/2019/7092151] [PMID: 31341533]
[27]
Daiber A, Steven S, Vujacic-Mirski K, et al. Regulation of vascular function and inflammation via cross talk of reactive oxygen and nitrogen species from mitochondria or nadph oxidase-implications for diabetes progression. Int J Mol Sci 2020; 21(10): 21.
[http://dx.doi.org/10.3390/ijms21103405] [PMID: 32408480]
[28]
Karbach S, Lagrange J, Wenzel P. Thromboinflammation and vascular dysfunction. Hamostaseologie 2019; 39(2): 180-7.
[http://dx.doi.org/10.1055/s-0038-1676130] [PMID: 30513535]
[29]
Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol 2013; 13(1): 34-45.
[http://dx.doi.org/10.1038/nri3345] [PMID: 23222502]
[30]
Barth E, Stämmler G, Speiser B, Schaper J. Ultrastructural quantitation of mitochondria and myofilaments in cardiac muscle from 10 different animal species including man. J Mol Cell Cardiol 1992; 24(7): 669-81.
[http://dx.doi.org/10.1016/0022-2828(92)93381-S] [PMID: 1404407]
[31]
Liu Y, Fiskum G, Schubert D. Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem 2002; 80(5): 780-7.
[http://dx.doi.org/10.1046/j.0022-3042.2002.00744.x] [PMID: 11948241]
[32]
Murphy MP. How mitochondria produce reactive oxygen species. Biochem J 2009; 417(1): 1-13.
[http://dx.doi.org/10.1042/BJ20081386] [PMID: 19061483]
[33]
Chen YR, Zweier JL. Cardiac mitochondria and reactive oxygen species generation. Circ Res 2014; 114(3): 524-37.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.300559] [PMID: 24481843]
[34]
Kaludercic N, Mialet-Perez J, Paolocci N, Parini A, Di Lisa F. Monoamine oxidases as sources of oxidants in the heart. J Mol Cell Cardiol 2014; 73: 34-42.
[http://dx.doi.org/10.1016/j.yjmcc.2013.12.032] [PMID: 24412580]
[35]
Giorgio M, Migliaccio E, Orsini F, et al. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 2005; 122(2): 221-33.
[http://dx.doi.org/10.1016/j.cell.2005.05.011] [PMID: 16051147]
[36]
Trinei m, migliaccio e, bernardi p, paolucci f, pelicci p, giorgio m. P66shc, mitochondria, and the generation of reactive oxygen species. Hydrogen peroxide and cell signaling, part c 2013; 99-110.
[37]
Boengler K, Bornbaum J, Schlüter KD, Schulz R. P66shc and its role in ischemic cardiovascular diseases. Basic Res Cardiol 2019; 114(4): 29.
[http://dx.doi.org/10.1007/s00395-019-0738-x] [PMID: 31165272]
[38]
Andreadou I, Schulz R, Papapetropoulos A, et al. The role of mitochondrial reactive oxygen species, NO and H2 S in ischaemia/reperfusion injury and cardioprotection. J Cell Mol Med 2020; 24(12): 6510-22.
[http://dx.doi.org/10.1111/jcmm.15279] [PMID: 32383522]
[39]
Schlüter KD, Kutsche HS, Hirschhäuser C, Schreckenberg R, Schulz R. Review on chamber-specific differences in right and left heart reactive oxygen species handling. Front Physiol 2018; 9: 1799.
[http://dx.doi.org/10.3389/fphys.2018.01799] [PMID: 30618811]
[40]
Matsushima S, Tsutsui H, Sadoshima J. Physiological and pathological functions of NADPH oxidases during myocardial ischemia-reperfusion. Trends Cardiovasc Med 2014; 24(5): 202-5.
[http://dx.doi.org/10.1016/j.tcm.2014.03.003] [PMID: 24880746]
[41]
Luo S, Lei H, Qin H, Xia Y. Molecular mechanisms of endothelial NO synthase uncoupling. Curr Pharm Des 2014; 20(22): 3548-53.
[http://dx.doi.org/10.2174/13816128113196660746] [PMID: 24180388]
[42]
Schulz E, Wenzel P, Münzel T, Daiber A. Mitochondrial redox signaling: Interaction of mitochondrial reactive oxygen species with other sources of oxidative stress. Antioxid Redox Signal 2014; 20(2): 308-24.
[http://dx.doi.org/10.1089/ars.2012.4609] [PMID: 22657349]
[43]
Daiber A, Oelze M, Daub S, et al. Vascular redox signaling, redox switches in endothelial nitric oxide synthase and endothelial dysfunction.Systems biology of free radicals and antioxidants. Berlin, Heidelberg: Springer-Verlag 2014; pp. 1177-211.
[http://dx.doi.org/10.1007/978-3-642-30018-9_48]
[44]
Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ. Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 2000; 192(7): 1001-14.
[http://dx.doi.org/10.1084/jem.192.7.1001] [PMID: 11015441]
[45]
Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 2014; 94(3): 909-50.
[http://dx.doi.org/10.1152/physrev.00026.2013] [PMID: 24987008]
[46]
Dikalov S. Cross talk between mitochondria and NADPH oxidases. Free Radic Biol Med 2011; 51(7): 1289-301.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.06.033] [PMID: 21777669]
[47]
Daiber A. Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species. Biochim Biophys Acta 2010; 1797(6-7): 897-906.
[http://dx.doi.org/10.1016/j.bbabio.2010.01.032] [PMID: 20122895]
[48]
Daiber A, Di Lisa F, Oelze M, et al. Crosstalk of mitochondria with NADPH oxidase via reactive oxygen and nitrogen species signalling and its role for vascular function. Br J Pharmacol 2017; 174(12): 1670-89.
[http://dx.doi.org/10.1111/bph.13403] [PMID: 26660451]
[49]
Kröller-Schön S, Steven S, Kossmann S, et al. Molecular mechanisms of the crosstalk between mitochondria and NADPH oxidase through reactive oxygen species-studies in white blood cells and in animal models. Antioxid Redox Signal 2014; 20(2): 247-66.
[http://dx.doi.org/10.1089/ars.2012.4953] [PMID: 23845067]
[50]
Murphy MP. Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. Antioxid Redox Signal 2012; 16(6): 476-95.
[http://dx.doi.org/10.1089/ars.2011.4289] [PMID: 21954972]
[51]
Forman HJ, Davies KJ, Ursini F. How do nutritional antioxidants really work: nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radic Biol Med 2014; 66: 24-35.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.05.045] [PMID: 23747930]
[52]
Dey S, Sidor A, O’Rourke B. Compartment-specific control of reactive oxygen species scavenging by antioxidant pathway enzymes. J Biol Chem 2016; 291(21): 11185-97.
[http://dx.doi.org/10.1074/jbc.M116.726968] [PMID: 27048652]
[53]
Dai DF, Chen T, Wanagat J, et al. Age-dependent cardiomyopathy in mitochondrial mutator mice is attenuated by overexpression of catalase targeted to mitochondria. Aging Cell 2010; 9(4): 536-44.
[http://dx.doi.org/10.1111/j.1474-9726.2010.00581.x] [PMID: 20456298]
[54]
Bartekova M, Barancik M, Ferenczyova K, Dhalla NS. Beneficial effects of n-acetylcysteine and n-mercaptopropionylglycine on ischemia reperfusion injury in the heart. Curr Med Chem 2018; 25(3): 355-66.
[http://dx.doi.org/10.2174/0929867324666170608111917] [PMID: 28595547]
[55]
Oudemans-van Straaten HM, Spoelstra-de Man AM, de Waard MC. Vitamin C revisited. Crit Care 2014; 18(4): 460.
[http://dx.doi.org/10.1186/s13054-014-0460-x] [PMID: 25185110]
[56]
Wallert M, Ziegler M, Wang X, et al. α-Tocopherol preserves cardiac function by reducing oxidative stress and inflammation in ischemia/reperfusion injury. Redox Biol 2019; 26: 101292.
[http://dx.doi.org/10.1016/j.redox.2019.101292] [PMID: 31419755]
[57]
Adlam VJ, Harrison JC, Porteous CM, et al. Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. FASEB J 2005; 19(9): 1088-95.
[http://dx.doi.org/10.1096/fj.05-3718com] [PMID: 15985532]
[58]
Chouchani ET, Pell VR, Gaude E, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 2014; 515(7527): 431-5.
[http://dx.doi.org/10.1038/nature13909] [PMID: 25383517]
[59]
Heger J, Hirschhäuser C, Bornbaum J. et al. Cardiomyocytes-specific deletion of monoamine oxidase B reduces irreversible myocardial ischemia/reperfusion injury. Free Radic Biol Med 2021; 165: 14-23.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.01.020] [PMID: 33476795]
[60]
Youdim MB, Edmondson D, Tipton KF. The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 2006; 7(4): 295-309.
[http://dx.doi.org/10.1038/nrn1883] [PMID: 16552415]
[61]
Boengler K, Bencsik P, Palóczi J, et al. Lack of contribution of p66shc and its mitochondrial translocation to ischemia-reperfusion injury and cardioprotection by ischemic preconditioning. Front Physiol 2017; 8: 733.
[http://dx.doi.org/10.3389/fphys.2017.00733] [PMID: 29051737]
[62]
Carpi A, Menabò R, Kaludercic N, Pelicci P, Di Lisa F, Giorgio M. The cardioprotective effects elicited by p66(Shc) ablation demonstrate the crucial role of mitochondrial ROS formation in ischemia/reperfusion injury. Biochim Biophys Acta 2009; 1787(7): 774-80.
[http://dx.doi.org/10.1016/j.bbabio.2009.04.001] [PMID: 19362067]
[63]
Baysa A, Sagave J, Carpi A, et al. The p66ShcA adaptor protein regulates healing after myocardial infarction. Basic Res Cardiol 2015; 110(2): 13.
[http://dx.doi.org/10.1007/s00395-015-0470-0] [PMID: 25680868]
[64]
Kulek AR, Anzell A, Wider JM, Sanderson TH, Przyklenk K. Mitochondrial quality control: Role in cardiac models of lethal ischemia-reperfusion injury. Cells 2020; 9(1): 9.
[http://dx.doi.org/10.3390/cells9010214] [PMID: 31952189]
[65]
Garcia-Dorado D, Ruiz-Meana M, Inserte J, Rodriguez-Sinovas A, Piper HM. Calcium-mediated cell death during myocardial reperfusion. Cardiovasc Res 2012; 94(2): 168-80.
[http://dx.doi.org/10.1093/cvr/cvs116] [PMID: 22499772]
[66]
Halestrap AP. Calcium, mitochondria and reperfusion injury: a pore way to die. Biochem Soc Trans 2006; 34(Pt 2): 232-7.
[http://dx.doi.org/10.1042/BST0340232] [PMID: 16545083]
[67]
Bernardi P, Di Lisa F. The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection. J Mol Cell Cardiol 2015; 78: 100-6.
[http://dx.doi.org/10.1016/j.yjmcc.2014.09.023] [PMID: 25268651]
[68]
Konstantinidis K, Whelan RS, Kitsis RN. Mechanisms of cell death in heart disease. Arterioscler Thromb Vasc Biol 2012; 32(7): 1552-62.
[http://dx.doi.org/10.1161/ATVBAHA.111.224915] [PMID: 22596221]
[69]
Abdallah Y, Kasseckert SA, Iraqi W, et al. Interplay between Ca2+ cycling and mitochondrial permeability transition pores promotes reperfusion-induced injury of cardiac myocytes. J Cell Mol Med 2011; 15(11): 2478-85.
[http://dx.doi.org/10.1111/j.1582-4934.2010.01249.x] [PMID: 21199327]
[70]
Alam MR, Baetz D, Ovize M. Cyclophilin D and myocardial ischemia-reperfusion injury: a fresh perspective. J Mol Cell Cardiol 2015; 78: 80-9.
[http://dx.doi.org/10.1016/j.yjmcc.2014.09.026] [PMID: 25281838]
[71]
Amanakis G, Murphy E. Cyclophilin d: An integrator of mitochondrial function. Front Physiol 2020; 11: 595.
[http://dx.doi.org/10.3389/fphys.2020.00595] [PMID: 32625108]
[72]
Klumpe I, Savvatis K, Westermann D, et al. Transgenic overexpression of adenine nucleotide translocase 1 protects ischemic hearts against oxidative stress. J Mol Med (Berl) 2016; 94(6): 645-53.
[http://dx.doi.org/10.1007/s00109-016-1413-4] [PMID: 27080394]
[73]
Hausenloy DJ, Schulz R, Girao H, et al. Mitochondrial ion channels as targets for cardioprotection. J Cell Mol Med 2020; 24(13): 7102-14.
[http://dx.doi.org/10.1111/jcmm.15341] [PMID: 32490600]
[74]
Antonucci S, Di Sante M, Sileikyte J, et al. A novel class of cardioprotective small-molecule PTP inhibitors. Pharmacol Res 2020; 151: 104548.
[http://dx.doi.org/10.1016/j.phrs.2019.104548] [PMID: 31759087]
[75]
Karwi QG, Bornbaum J, Boengler K, et al. AP39, a mitochondria-targeting hydrogen sulfide (H2 S) donor, protects against myocardial reperfusion injury independently of salvage kinase signalling. Br J Pharmacol 2017; 174(4): 287-301.
[http://dx.doi.org/10.1111/bph.13688] [PMID: 27930802]
[76]
D’Oria R, Schipani R, Leonardini A, et al. The role of oxidative stress in cardiac disease: From physiological response to injury factor. Oxid Med Cell Longev 2020; 2020: 5732956.
[PMID: 32509147]
[77]
Krijnen PA, Meischl C, Hack CE, et al. Increased Nox2 expression in human cardiomyocytes after acute myocardial infarction. J Clin Pathol 2003; 56(3): 194-9.
[http://dx.doi.org/10.1136/jcp.56.3.194] [PMID: 12610097]
[78]
Looi YH, Grieve DJ, Siva A, et al. Involvement of Nox2 NADPH oxidase in adverse cardiac remodeling after myocardial infarction. Hypertension 2008; 51(2): 319-25.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.101980] [PMID: 18180403]
[79]
Maulik SK, Kumar S. Oxidative stress and cardiac hypertrophy: a review. Toxicol Mech Methods 2012; 22(5): 359-66.
[http://dx.doi.org/10.3109/15376516.2012.666650] [PMID: 22394344]
[80]
Nakamura K, Murakami M, Miura D, et al. Beta-blockers and oxidative stress in patients with heart failure. Pharmaceuticals (Basel) 2011; 4(8): 1088-100.
[http://dx.doi.org/10.3390/ph4081088] [PMID: 26791643]
[81]
Wenzel S, Taimor G, Piper HM, Schlüter KD. Redox-sensitive intermediates mediate angiotensin II-induced p38 MAP kinase activation, AP-1 binding activity, and TGF-beta expression in adult ventricular cardiomyocytes. FASEB J 2001; 15(12): 2291-3.
[http://dx.doi.org/10.1096/fj.00-0827fje] [PMID: 11511516]
[82]
Matsushima S, Kuroda J, Ago T, et al. Broad suppression of NADPH oxidase activity exacerbates ischemia/reperfusion injury through inadvertent downregulation of hypoxia-inducible factor-1α and upregulation of peroxisome proliferator-activated receptor-α. Circ Res 2013; 112(8): 1135-49.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.300171] [PMID: 23476056]
[83]
Chen Y, Saari JT, Kang YJ. Weak antioxidant defenses make the heart a target for damage in copper-deficient rats. Free Radic Biol Med 1994; 17(6): 529-36.
[http://dx.doi.org/10.1016/0891-5849(94)90092-2] [PMID: 7867969]
[84]
McDonald MC, Zacharowski K, Bowes J, Cuzzocrea S, Thiemermann C. Tempol reduces infarct size in rodent models of regional myocardial ischemia and reperfusion. Free Radic Biol Med 1999; 27(5-6): 493-503.
[http://dx.doi.org/10.1016/S0891-5849(99)00100-8] [PMID: 10490268]
[85]
Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Ischemia/Reperfusion. Compr Physiol 2016; 7(1): 113-70.
[http://dx.doi.org/10.1002/cphy.c160006] [PMID: 28135002]
[86]
Li G, Chen Y, Saari JT, Kang YJ. Catalase-overexpressing transgenic mouse heart is resistant to ischemia-reperfusion injury. Am J Physiol 1997; 273(3 Pt 2): H1090-5.
[PMID: 9321793]
[87]
Ichikawa T, Li J, Meyer CJ, Janicki JS, Hannink M, Cui T. Dihydro-CDDO-trifluoroethyl amide (dh404), a novel Nrf2 activator, suppresses oxidative stress in cardiomyocytes. PLoS One 2009; 4(12): e8391.
[http://dx.doi.org/10.1371/journal.pone.0008391] [PMID: 20027226]
[88]
Chen Y, Gao L, Qin Q, et al. RESTORE ISR China Investigators. Comparison of 2 different drug-coated balloons in in-stent restenosis: The restore isr china randomized trial. JACC Cardiovasc Interv 2018; 11(23): 2368-77.
[http://dx.doi.org/10.1016/j.jcin.2018.09.010] [PMID: 30522665]
[89]
Climent M, Viggiani G, Chen YW, Coulis G, Castaldi A. Microrna and ros crosstalk in cardiac and pulmonary diseases. Int J Mol Sci 2020; 21(12): 21.
[http://dx.doi.org/10.3390/ijms21124370] [PMID: 32575472]
[90]
Varga ZV, Zvara A, Faragó N, et al. MicroRNAs associated with ischemia-reperfusion injury and cardioprotection by ischemic pre- and postconditioning: protectomiRs. Am J Physiol Heart Circ Physiol 2014; 307(2): H216-27.
[http://dx.doi.org/10.1152/ajpheart.00812.2013] [PMID: 24858849]
[91]
Davidson SM, Ferdinandy P, Andreadou I, et al. CARDIOPROTECTION COST Action (CA16225). Multitarget strategies to reduce myocardial ischemia/reperfusion injury: Jacc review topic of the week. J Am Coll Cardiol 2019; 73(1): 89-99.
[http://dx.doi.org/10.1016/j.jacc.2018.09.086] [PMID: 30621955]
[92]
Ottani F, Latini R, Staszewsky L, et al. CYCLE Investigators. Cyclosporine a in reperfused myocardial infarction: The multicenter, controlled, open-label cycle trial. J Am Coll Cardiol 2016; 67(4): 365-74.
[http://dx.doi.org/10.1016/j.jacc.2015.10.081] [PMID: 26821623]
[93]
Skyschally A, Schulz R, Gres P, Korth HG, Heusch G. Attenuation of ischemic preconditioning in pigs by scavenging of free oxyradicals with ascorbic acid. Am J Physiol Heart Circ Physiol 2003; 284(2): H698-703.
[http://dx.doi.org/10.1152/ajpheart.00693.2002] [PMID: 12388272]
[94]
Vanden Hoek T, Becker LB, Shao ZH, Li CQ, Schumacker PT. Preconditioning in cardiomyocytes protects by attenuating oxidant stress at reperfusion. Circ Res 2000; 86(5): 541-8.
[http://dx.doi.org/10.1161/01.RES.86.5.541] [PMID: 10720416]
[95]
Pell VR, Spiroski AM, Mulvey J, et al. Ischemic preconditioning protects against cardiac ischemia reperfusion injury without affecting succinate accumulation or oxidation. J Mol Cell Cardiol 2018; 123: 88-91.
[http://dx.doi.org/10.1016/j.yjmcc.2018.08.010] [PMID: 30118790]
[96]
Ge H, Zhao M, Lee S, Xu Z. Mitochondrial Src tyrosine kinase plays a role in the cardioprotective effect of ischemic preconditioning by modulating complex I activity and mitochondrial ROS generation. Free Radic Res 2015; 49(10): 1210-7.
[http://dx.doi.org/10.3109/10715762.2015.1050013] [PMID: 25968938]
[97]
Sun J, Nguyen T, Aponte AM, et al. Ischaemic preconditioning preferentially increases protein S-nitrosylation in subsarcolemmal mitochondria. Cardiovasc Res 2015; 106(2): 227-36.
[http://dx.doi.org/10.1093/cvr/cvv044] [PMID: 25694588]
[98]
Chouchani ET, Methner C, Nadtochiy SM, et al. Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat Med 2013; 19(6): 753-9.
[http://dx.doi.org/10.1038/nm.3212] [PMID: 23708290]
[99]
Semenza GL. Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochim Biophys Acta 2011; 1813(7): 1263-8.
[http://dx.doi.org/10.1016/j.bbamcr.2010.08.006] [PMID: 20732359]
[100]
Soetkamp D, Nguyen TT, Menazza S, et al. S-nitrosation of mitochondrial connexin 43 regulates mitochondrial function. Basic Res Cardiol 2014; 109(5): 433.
[http://dx.doi.org/10.1007/s00395-014-0433-x] [PMID: 25115184]
[101]
Heinzel FR, Luo Y, Li X, et al. Impairment of diazoxide-induced formation of reactive oxygen species and loss of cardioprotection in connexin 43 deficient mice. Circ Res 2005; 97(6): 583-6.
[http://dx.doi.org/10.1161/01.RES.0000181171.65293.65] [PMID: 16100048]
[102]
Sánchez JA, Rodríguez-Sinovas A, Barba I, et al. Activation of RISK and SAFE pathways is not involved in the effects of Cx43 deficiency on tolerance to ischemia-reperfusion injury and preconditioning protection. Basic Res Cardiol 2013; 108(3): 351.
[http://dx.doi.org/10.1007/s00395-013-0351-3] [PMID: 23595215]
[103]
Leybaert L, Lampe PD, Dhein S, et al. Connexins in cardiovascular and neurovascular health and disease: Pharmacological implications. Pharmacol Rev 2017; 69(4): 396-478.
[http://dx.doi.org/10.1124/pr.115.012062] [PMID: 28931622]
[104]
Wu L, Tan JL, Chen ZY, Huang G. Cardioprotection of post-ischemic moderate ROS against ischemia/reperfusion via STAT3-induced the inhibition of MCU opening. Basic Res Cardiol 2019; 114(5): 39.
[http://dx.doi.org/10.1007/s00395-019-0747-9] [PMID: 31463567]
[105]
Chang JC, Lien CF, Lee WS, et al. Intermittent hypoxia prevents myocardial mitochondrial ca(2+) overload and cell death during ischemia/reperfusion: The role of reactive oxygen species. Cells 2019; 8.
[106]
Antonucci S, Mulvey JF, Burger N, et al. Selective mitochondrial superoxide generation in vivo is cardioprotective through hormesis. Free Radic Biol Med 2019; 134: 678-87.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.01.034] [PMID: 30731114]
[107]
Díez-Villanueva P, Alfonso F. Heart failure in the elderly. J Geriatr Cardiol 2016; 13(2): 115-7.
[PMID: 27168735]
[108]
Lesnefsky EJ, Chen Q, Hoppel CL. Mitochondrial metabolism in aging heart. Circ Res 2016; 118(10): 1593-611.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.307505] [PMID: 27174952]
[109]
Ruiz-Meana M, Bou-Teen D, Ferdinandy P, et al. Cardiomyocyte ageing and cardioprotection: consensus document from the ESC working groups cell biology of the heart and myocardial function. Cardiovasc Res 2020; 116(11): 1835-49.
[http://dx.doi.org/10.1093/cvr/cvaa132] [PMID: 32384145]
[110]
Rivera M, Roselló-Lletí E, García de Burgos F, et al. [8-hydroxy-2′-deoxyguanosine and lipid peroxidation in patients with heart failure]. Rev Esp Cardiol 2006; 59(11): 1140-5. [8-hydroxy-2'-deoxyguanosine and lipid peroxidation in patients with heart failure].
[http://dx.doi.org/10.1157/13095783] [PMID: 17144989]
[111]
Testa G, Cacciatore F, Galizia G, et al. Charlson Comorbidity Index does not predict long-term mortality in elderly subjects with chronic heart failure. Age Ageing 2009; 38(6): 734-40.
[http://dx.doi.org/10.1093/ageing/afp165] [PMID: 19755712]
[112]
Hamilton ML, Van Remmen H, Drake JA, et al. Does oxidative damage to DNA increase with age? Proc Natl Acad Sci USA 2001; 98(18): 10469-74.
[http://dx.doi.org/10.1073/pnas.171202698] [PMID: 11517304]
[113]
Schneiders D, Heger J, Best P, Michael Piper H, Taimor G. SMAD proteins are involved in apoptosis induction in ventricular cardiomyocytes. Cardiovasc Res 2005; 67(1): 87-96.
[http://dx.doi.org/10.1016/j.cardiores.2005.02.021] [PMID: 15949472]
[114]
Dai DF, Johnson SC, Villarin JJ, et al. Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure. Circ Res 2011; 108(7): 837-46.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.232306] [PMID: 21311045]
[115]
Papaconstantinou J. The role of signaling pathways of inflammation and oxidative stress in development of senescence and aging phenotypes in cardiovascular disease. Cells 2019; 8(11): 8.
[http://dx.doi.org/10.3390/cells8111383] [PMID: 31689891]
[116]
Görlach A, Bertram K, Hudecova S, Krizanova O. Calcium and ROS: A mutual interplay. Redox Biol 2015; 6: 260-71.
[http://dx.doi.org/10.1016/j.redox.2015.08.010] [PMID: 26296072]
[117]
de Almeida AJPO, de Almeida Rezende MS, Dantas SH, et al. Unveiling the role of inflammation and oxidative stress on age-related cardiovascular diseases. Oxid Med Cell Longev 2020; 2020: 1954398.
[http://dx.doi.org/10.1155/2020/1954398] [PMID: 32454933]
[118]
Cencioni C, Spallotta F, Mai A, et al. Sirtuin function in aging heart and vessels. J Mol Cell Cardiol 2015; 83: 55-61.
[http://dx.doi.org/10.1016/j.yjmcc.2014.12.023] [PMID: 25579854]
[119]
Marín-García J, Akhmedov AT. Mitochondrial dynamics and cell death in heart failure. Heart Fail Rev 2016; 21(2): 123-36.
[http://dx.doi.org/10.1007/s10741-016-9530-2] [PMID: 26872674]
[120]
Muscari C, Caldarera CM, Guarnieri C. Age-dependent production of mitochondrial hydrogen peroxide, lipid peroxides and fluorescent pigments in the rat heart. Basic Res Cardiol 1990; 85(2): 172-8.
[http://dx.doi.org/10.1007/BF01906970] [PMID: 2350331]
[121]
Gupta SK, Foinquinos A, Thum S, et al. Preclinical development of a microrna-based therapy for elderly patients with myocardial infarction. J Am Coll Cardiol 2016; 68(14): 1557-71.
[http://dx.doi.org/10.1016/j.jacc.2016.07.739] [PMID: 27687198]
[122]
Dai DF, Chen T, Johnson SC, Szeto H, Rabinovitch PS. Cardiac aging: from molecular mechanisms to significance in human health and disease. Antioxid Redox Signal 2012; 16(12): 1492-526.
[http://dx.doi.org/10.1089/ars.2011.4179] [PMID: 22229339]
[123]
Steinhubl SR. Why have antioxidants failed in clinical trials? Am J Cardiol 2008; 101(10A): 14D-9D.
[http://dx.doi.org/10.1016/j.amjcard.2008.02.003] [PMID: 18474268]
[124]
Mehta LS, Beckie TM, DeVon HA, et al. American Heart Association Cardiovascular Disease in Women and Special Populations Committee of the Council on Clinical Cardiology, Council on Epidemiology and Prevention, Council on Cardiovascular and Stroke Nursing, and Council on Quality of Care and Outcomes Research. Acute myocardial infarction in women: A scientific statement from the american heart association. Circulation 2016; 133(9): 916-47.
[http://dx.doi.org/10.1161/CIR.0000000000000351] [PMID: 26811316]
[125]
Ruiz-Meana M, Boengler K, Garcia-Dorado D, et al. Ageing, sex, and cardioprotection. Br J Pharmacol 2019.
[PMID: 31863453]
[126]
Perrino C, Ferdinandy P, Bøtker HE, et al. Improving translational research in sex-specific effects of comorbidities and risk factors in ischemic heart disease and cardioprotection: Position paper and recommendations of the esc working group on cellular biology of the heart. Cardiovasc Res 2020; 117(2): 367-385.cvaa155.
[http://dx.doi.org/10.1093/cvr/cvaa155] [PMID: 32484892]
[127]
Oelze M, Kröller-Schön S, Steven S, et al. Glutathione peroxidase-1 deficiency potentiates dysregulatory modifications of endothelial nitric oxide synthase and vascular dysfunction in aging. Hypertension 2014; 63(2): 390-6.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.01602] [PMID: 24296279]
[128]
Mikhed Y, Daiber A, Steven S. Mitochondrial oxidative stress, mitochondrial DNA damage and their role in age-related vascular dysfunction. Int J Mol Sci 2015; 16(7): 15918-53.
[http://dx.doi.org/10.3390/ijms160715918] [PMID: 26184181]
[129]
Qiao M, Zhao Q, Lee CF, et al. Thiol oxidative stress induced by metabolic disorders amplifies macrophage chemotactic responses and accelerates atherogenesis and kidney injury in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 2009; 29(11): 1779-86.
[http://dx.doi.org/10.1161/ATVBAHA.109.191759] [PMID: 19592463]
[130]
Ullevig S, Kim HS, Asmis R. S-glutathionylation in monocyte and macrophage (dys)function. Int J Mol Sci 2013; 14(8): 15212-32.
[http://dx.doi.org/10.3390/ijms140815212] [PMID: 23887649]
[131]
Kim HS, Ullevig SL, Zamora D, Lee CF, Asmis R. Redox regulation of MAPK phosphatase 1 controls monocyte migration and macrophage recruitment. Proc Natl Acad Sci USA 2012; 109(41): E2803-12.
[http://dx.doi.org/10.1073/pnas.1212596109] [PMID: 22991462]
[132]
Kim HS, Ullevig SL, Nguyen HN, Vanegas D, Asmis R. Redox regulation of 14-3-3ζ controls monocyte migration. Arterioscler Thromb Vasc Biol 2014; 34(7): 1514-21.
[http://dx.doi.org/10.1161/ATVBAHA.114.303746] [PMID: 24812321]
[133]
Wenzel P, Rossmann H, Müller C, et al. Heme oxygenase-1 suppresses a pro-inflammatory phenotype in monocytes and determines endothelial function and arterial hypertension in mice and humans. Eur Heart J 2015; 36(48): 3437-46.
[http://dx.doi.org/10.1093/eurheartj/ehv544] [PMID: 26516175]
[134]
Kossmann S, Lagrange J, Jäckel S, et al. Platelet-localized FXI promotes a vascular coagulation-inflammatory circuit in arterial hypertension. Sci Transl Med 2017; 9(375): 9.
[http://dx.doi.org/10.1126/scitranslmed.aah4923] [PMID: 28148841]
[135]
Yang M, Cooley BC, Li W, et al. Platelet CD36 promotes thrombosis by activating redox sensor ERK5 in hyperlipidemic conditions. Blood 2017; 129(21): 2917-27.
[http://dx.doi.org/10.1182/blood-2016-11-750133] [PMID: 28336528]
[136]
Wang P, Wu Y, Li X, Ma X, Zhong L. Thioredoxin and thioredoxin reductase control tissue factor activity by thiol redox-dependent mechanism. J Biol Chem 2013; 288(5): 3346-58.
[http://dx.doi.org/10.1074/jbc.M112.418046] [PMID: 23223577]
[137]
Ebert J, Wilgenbus P, Teiber JF, et al. Paraoxonase-2 regulates coagulation activation through endothelial tissue factor. Blood 2018; 131(19): 2161-72.
[http://dx.doi.org/10.1182/blood-2017-09-807040] [PMID: 29439952]
[138]
Görlach A, Brandes RP, Bassus S, et al. Oxidative stress and expression of p22phox are involved in the up-regulation of tissue factor in vascular smooth muscle cells in response to activated platelets. FASEB J 2000; 14(11): 1518-28.
[PMID: 10928986]
[139]
Versteeg HH, Ruf W. Tissue factor coagulant function is enhanced by protein-disulfide isomerase independent of oxidoreductase activity. J Biol Chem 2007; 282(35): 25416-24.
[http://dx.doi.org/10.1074/jbc.M702410200] [PMID: 17613528]
[140]
Ahamed J, Versteeg HH, Kerver M, et al. Disulfide isomerization switches tissue factor from coagulation to cell signaling. Proc Natl Acad Sci USA 2006; 103(38): 13932-7.
[http://dx.doi.org/10.1073/pnas.0606411103] [PMID: 16959886]
[141]
Carrim N, Arthur JF, Hamilton JR, et al. Thrombin-induced reactive oxygen species generation in platelets: A novel role for protease-activated receptor 4 and GPIbα. Redox Biol 2015; 6: 640-7.
[http://dx.doi.org/10.1016/j.redox.2015.10.009] [PMID: 26569550]
[142]
Jobi K, Rauch BH, Dangwal S, et al. Redox regulation of human protease-activated receptor-2 by activated factor X. Free Radic Biol Med 2011; 51(9): 1758-64.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.08.003] [PMID: 21871560]
[143]
Daiber A, Chlopicki S. Revisiting pharmacology of oxidative stress and endothelial dysfunction in cardiovascular disease: Evidence for redox-based therapies. Free Radic Biol Med 2020; 157: 15-37.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.02.026] [PMID: 32131026]
[144]
Nazarewicz RR, Dikalov SI. Mitochondrial ROS in the prohypertensive immune response. Am J Physiol Regul Integr Comp Physiol 2013; 305(2): R98-R100.
[http://dx.doi.org/10.1152/ajpregu.00208.2013] [PMID: 23657641]
[145]
Bulua AC, Simon A, Maddipati R, et al. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J Exp Med 2011; 208(3): 519-33.
[http://dx.doi.org/10.1084/jem.20102049] [PMID: 21282379]
[146]
West AP, Brodsky IE, Rahner C, et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 2011; 472(7344): 476-80.
[http://dx.doi.org/10.1038/nature09973] [PMID: 21525932]
[147]
Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature 2011; 469(7329): 221-5.
[http://dx.doi.org/10.1038/nature09663] [PMID: 21124315]
[148]
Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 2010; 11(2): 136-40.
[http://dx.doi.org/10.1038/ni.1831] [PMID: 20023662]
[149]
Abais JM, Xia M, Zhang Y, Boini KM, Li PL. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid Redox Signal 2015; 22(13): 1111-29.
[http://dx.doi.org/10.1089/ars.2014.5994] [PMID: 25330206]
[150]
Abderrazak A, Syrovets T, Couchie D, et al. NLRP3 inflammasome: from a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases. Redox Biol 2015; 4: 296-307.
[http://dx.doi.org/10.1016/j.redox.2015.01.008] [PMID: 25625584]
[151]
Janko C, Filipović M, Munoz LE, et al. Redox modulation of HMGB1-related signaling. Antioxid Redox Signal 2014; 20(7): 1075-85.
[http://dx.doi.org/10.1089/ars.2013.5179] [PMID: 23373897]
[152]
Venereau E, Casalgrandi M, Schiraldi M, et al. Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. J Exp Med 2012; 209(9): 1519-28.
[http://dx.doi.org/10.1084/jem.20120189] [PMID: 22869893]
[153]
Mikhed Y, Görlach A, Knaus UG, Daiber A. Redox regulation of genome stability by effects on gene expression, epigenetic pathways and DNA damage/repair. Redox Biol 2015; 5: 275-89.
[http://dx.doi.org/10.1016/j.redox.2015.05.008] [PMID: 26079210]
[154]
Brüne B, Dehne N, Grossmann N, et al. Redox control of inflammation in macrophages. Antioxid Redox Signal 2013; 19(6): 595-637.
[http://dx.doi.org/10.1089/ars.2012.4785] [PMID: 23311665]
[155]
Lei Y, Wang K, Deng L, Chen Y, Nice EC, Huang C. Redox regulation of inflammation: old elements, a new story. Med Res Rev 2015; 35(2): 306-40.
[http://dx.doi.org/10.1002/med.21330] [PMID: 25171147]
[156]
van Hout GPJ, Bosch L. The inflammasomes in cardiovascular disease. Exp Suppl 2018; 108: 9-40.
[http://dx.doi.org/10.1007/978-3-319-89390-7_2] [PMID: 30536166]
[157]
Peet C, Ivetic A, Bromage DI, Shah AM. Cardiac monocytes and macrophages after myocardial infarction. Cardiovasc Res 2020; 116(6): 1101-12.
[http://dx.doi.org/10.1093/cvr/cvz336] [PMID: 31841135]
[158]
Yu Y, Tang D, Kang R. Oxidative stress-mediated HMGB1 biology. Front Physiol 2015; 6: 93.
[http://dx.doi.org/10.3389/fphys.2015.00093] [PMID: 25904867]
[159]
Sørensen MV, Pedersen S, Møgelvang R, Skov-Jensen J, Flyvbjerg A. Plasma high-mobility group box 1 levels predict mortality after ST-segment elevation myocardial infarction. JACC Cardiovasc Interv 2011; 4(3): 281-6.
[http://dx.doi.org/10.1016/j.jcin.2010.10.015] [PMID: 21435605]
[160]
Raucci A, Di Maggio S, Scavello F, D’Ambrosio A, Bianchi ME, Capogrossi MC. The Janus face of HMGB1 in heart disease: a necessary update. Cell Mol Life Sci 2019; 76(2): 211-29.
[http://dx.doi.org/10.1007/s00018-018-2930-9] [PMID: 30306212]
[161]
Gordon JW, Shaw JA, Kirshenbaum LA. Multiple facets of NF-κB in the heart: to be or not to NF-κB. Circ Res 2011; 108(9): 1122-32.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.226928] [PMID: 21527742]
[162]
Zhang C, Wang F, Zhang Y, et al. Celecoxib prevents pressure overload-induced cardiac hypertrophy and dysfunction by inhibiting inflammation, apoptosis and oxidative stress. J Cell Mol Med 2016; 20(1): 116-27.
[http://dx.doi.org/10.1111/jcmm.12709] [PMID: 26512452]
[163]
Prabhu SD, Frangogiannis NG. The biological basis for cardiac repair after myocardial infarction: From inflammation to fibrosis. Circ Res 2016; 119(1): 91-112.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.303577] [PMID: 27340270]
[164]
Biasucci LM, Pedicino D, Liuzzo G. Promises and challenges of targeting inflammation to treat cardiovascular disease: the post-CANTOS era. Eur Heart J 2020; 41(23): 2164-7.
[http://dx.doi.org/10.1093/eurheartj/ehz586] [PMID: 31504422]
[165]
Wang Y, Liu X, Shi H, et al. NLRP3 inflammasome, an immune-inflammatory target in pathogenesis and treatment of cardiovascular diseases. Clin Transl Med 2020; 10(1): 91-106.
[http://dx.doi.org/10.1002/ctm2.13] [PMID: 32508013]
[166]
Bracey NA, Gershkovich B, Chun J, et al. Mitochondrial NLRP3 protein induces reactive oxygen species to promote Smad protein signaling and fibrosis independent from the inflammasome. J Biol Chem 2014; 289(28): 19571-84.
[http://dx.doi.org/10.1074/jbc.M114.550624] [PMID: 24841199]
[167]
Beckendorf J, van den Hoogenhof MMG, Backs J. Physiological and unappreciated roles of CaMKII in the heart. Basic Res Cardiol 2018; 113(4): 29.
[http://dx.doi.org/10.1007/s00395-018-0688-8] [PMID: 29905892]
[168]
Chun N, Haddadin AS, Liu J, et al. Activation of complement factor B contributes to murine and human myocardial ischemia/reperfusion injury. PLoS One 2017; 12(6): e0179450.
[http://dx.doi.org/10.1371/journal.pone.0179450] [PMID: 28662037]
[169]
Bajpai G, Bredemeyer A, Li W, et al. Tissue resident ccr2- and ccr2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury. Circ Res 2019; 124(2): 263-78.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.314028] [PMID: 30582448]
[170]
Andreadou I, Cabrera-Fuentes HA, Devaux Y, et al. Immune cells as targets for cardioprotection: new players and novel therapeutic opportunities. Cardiovasc Res 2019; 115(7): 1117-30.
[http://dx.doi.org/10.1093/cvr/cvz050] [PMID: 30825305]
[171]
Yan X, Anzai A, Katsumata Y, et al. Temporal dynamics of cardiac immune cell accumulation following acute myocardial infarction. J Mol Cell Cardiol 2013; 62: 24-35.
[http://dx.doi.org/10.1016/j.yjmcc.2013.04.023] [PMID: 23644221]
[172]
Li W, Hsiao HM, Higashikubo R, et al. Heart-resident CCR2+ macrophages promote neutrophil extravasation through TLR9/MyD88/CXCL5 signaling. JCI Insight 2016; 1(12): 1.
[http://dx.doi.org/10.1172/jci.insight.87315] [PMID: 27536731]
[173]
Ciz M, Denev P, Kratchanova M, Vasicek O, Ambrozova G, Lojek A. Flavonoids inhibit the respiratory burst of neutrophils in mammals. Oxid Med Cell Longev 2012; 2012: 181295.
[http://dx.doi.org/10.1155/2012/181295] [PMID: 22577489]
[174]
Hayasaki T, Kaikita K, Okuma T, et al. CC chemokine receptor-2 deficiency attenuates oxidative stress and infarct size caused by myocardial ischemia-reperfusion in mice. Circ J 2006; 70(3): 342-51.
[http://dx.doi.org/10.1253/circj.70.342] [PMID: 16501303]
[175]
Frangogiannis NG, Dewald O, Xia Y, et al. Critical role of monocyte chemoattractant protein-1/CC chemokine ligand 2 in the pathogenesis of ischemic cardiomyopathy. Circulation 2007; 115(5): 584-92.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.646091] [PMID: 17283277]
[176]
Takahashi M, Nishihira J, Shimpo M, et al. Macrophage migration inhibitory factor as a redox-sensitive cytokine in cardiac myocytes. Cardiovasc Res 2001; 52(3): 438-45.
[http://dx.doi.org/10.1016/S0008-6363(01)00408-4] [PMID: 11738060]
[177]
Liehn EA, Kanzler I, Konschalla S, et al. Compartmentalized protective and detrimental effects of endogenous macrophage migration-inhibitory factor mediated by CXCR2 in a mouse model of myocardial ischemia/reperfusion. Arterioscler Thromb Vasc Biol 2013; 33(9): 2180-6.
[http://dx.doi.org/10.1161/ATVBAHA.113.301633] [PMID: 23868943]
[178]
Tilstam PV, Qi D, Leng L, Young L, Bucala R. MIF family cytokines in cardiovascular diseases and prospects for precision-based therapeutics. Expert Opin Ther Targets 2017; 21(7): 671-83.
[http://dx.doi.org/10.1080/14728222.2017.1336227] [PMID: 28562118]
[179]
Mongue-Din H, Patel AS, Looi YH, et al. Nadph oxidase-4 driven cardiac macrophage polarization protects against myocardial infarction-induced remodeling. JACC Basic Transl Sci 2017; 2(6): 688-98.
[http://dx.doi.org/10.1016/j.jacbts.2017.06.006] [PMID: 29445778]
[180]
Zhang S, Yeap XY, Grigoryeva L, et al. Cardiomyocytes induce macrophage receptor shedding to suppress phagocytosis. J Mol Cell Cardiol 2015; 87: 171-9.
[http://dx.doi.org/10.1016/j.yjmcc.2015.08.009] [PMID: 26316303]
[181]
McShane L, Tabas I, Lemke G, Kurowska-Stolarska M, Maffia P. TAM receptors in cardiovascular disease. Cardiovasc Res 2019; 115(8): 1286-95.
[http://dx.doi.org/10.1093/cvr/cvz100] [PMID: 30980657]
[182]
Zouggari Y, Ait-Oufella H, Bonnin P, et al. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat Med 2013; 19(10): 1273-80.
[http://dx.doi.org/10.1038/nm.3284] [PMID: 24037091]
[183]
García-Rivas G, Castillo EC, Gonzalez-Gil AM, et al. The role of B cells in heart failure and implications for future immunomodulatory treatment strategies. ESC Heart Fail 2020; 7(4): 1387-99.
[http://dx.doi.org/10.1002/ehf2.12744] [PMID: 32533765]
[184]
Anzai A, Anzai T, Nagai S, et al. Regulatory role of dendritic cells in postinfarction healing and left ventricular remodeling. Circulation 2012; 125(10): 1234-45.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.052126] [PMID: 22308302]
[185]
Blanton RM, Carrillo-Salinas FJ, Alcaide P. T-cell recruitment to the heart: friendly guests or unwelcome visitors? Am J Physiol Heart Circ Physiol 2019; 317(1): H124-40.
[http://dx.doi.org/10.1152/ajpheart.00028.2019] [PMID: 31074651]
[186]
Zhang S, Dehn S, DeBerge M, Rhee KJ, Hudson B, Thorp EB. Phagocyte-myocyte interactions and consequences during hypoxic wound healing. Cell Immunol 2014; 291(1-2): 65-73.
[http://dx.doi.org/10.1016/j.cellimm.2014.04.006] [PMID: 24862542]
[187]
Weirather J, Hofmann UD, Beyersdorf N, et al. Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circ Res 2014; 115(1): 55-67.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.303895] [PMID: 24786398]
[188]
Tsujita K, Kaikita K, Hayasaki T, et al. Targeted deletion of class A macrophage scavenger receptor increases the risk of cardiac rupture after experimental myocardial infarction. Circulation 2007; 115(14): 1904-11.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.671198] [PMID: 17389263]
[189]
De Angelis E, Pecoraro M, Rusciano MR, Ciccarelli M, Popolo A. Cross-talk between neurohormonal pathways and the immune system in heart failure: A review of the literature. Int J Mol Sci 2019; 20(7): 20.
[http://dx.doi.org/10.3390/ijms20071698] [PMID: 30959745]
[190]
Swirski FK, Nahrendorf M, Etzrodt M, et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 2009; 325(5940): 612-6.
[http://dx.doi.org/10.1126/science.1175202] [PMID: 19644120]
[191]
Tardif JC, Kouz S, Waters DD, et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med 2019; 381(26): 2497-505.
[http://dx.doi.org/10.1056/NEJMoa1912388] [PMID: 31733140]
[192]
de Couto G, Liu W, Tseliou E, et al. Macrophages mediate cardioprotective cellular postconditioning in acute myocardial infarction. J Clin Invest 2015; 125(8): 3147-62.
[http://dx.doi.org/10.1172/JCI81321] [PMID: 26214527]
[193]
Burchfield JS, Iwasaki M, Koyanagi M, et al. Interleukin-10 from transplanted bone marrow mononuclear cells contributes to cardiac protection after myocardial infarction. Circ Res 2008; 103(2): 203-11.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.178475] [PMID: 18566343]
[194]
Ma Y, Mouton AJ, Lindsey ML. Cardiac macrophage biology in the steady-state heart, the aging heart, and following myocardial infarction. Transl Res 2018; 191: 15-28.
[http://dx.doi.org/10.1016/j.trsl.2017.10.001] [PMID: 29106912]
[195]
Biasucci LM, La Rosa G, Pedicino D, D’Aiello A, Galli M, Liuzzo G. Where does inflammation fit? Curr Cardiol Rep 2017; 19(9): 84.
[http://dx.doi.org/10.1007/s11886-017-0896-0] [PMID: 28779286]
[196]
Ramos GC, van den Berg A, Nunes-Silva V, et al. Myocardial aging as a T-cell-mediated phenomenon. Proc Natl Acad Sci USA 2017; 114(12): E2420-9.
[http://dx.doi.org/10.1073/pnas.1621047114] [PMID: 28255084]
[197]
Kain D, Amit U, Yagil C, et al. Macrophages dictate the progression and manifestation of hypertensive heart disease. Int J Cardiol 2016; 203: 381-95.
[http://dx.doi.org/10.1016/j.ijcard.2015.10.126] [PMID: 26539962]
[198]
Ridker PM, Cannon CP, Morrow D, et al. Pravastatin or Atorvastatin Evaluation and Infection Therapy-Thrombolysis in Myocardial Infarction 22 (PROVE IT-TIMI 22) Investigators. C-reactive protein levels and outcomes after statin therapy. N Engl J Med 2005; 352(1): 20-8.
[http://dx.doi.org/10.1056/NEJMoa042378] [PMID: 15635109]
[199]
Steven S, Münzel T, Daiber A. Exploiting the pleiotropic antioxidant effects of established drugs in cardiovascular disease. Int J Mol Sci 2015; 16(8): 18185-223.
[http://dx.doi.org/10.3390/ijms160818185] [PMID: 26251902]
[200]
Daiber A, Steven S, Weber A, et al. Targeting vascular (endothelial) dysfunction. Br J Pharmacol 2016.
[PMID: 27187006]
[201]
Ridker PM, Howard CP, Walter V, et al. CANTOS Pilot Investigative Group. Effects of interleukin-1β inhibition with canakinumab on hemoglobin A1c, lipids, C-reactive protein, interleukin-6, and fibrinogen: a phase IIb randomized, placebo-controlled trial. Circulation 2012; 126(23): 2739-48.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.122556] [PMID: 23129601]
[202]
Van Tassell BW, Toldo S, Mezzaroma E, Abbate A. Targeting interleukin-1 in heart disease. Circulation 2013; 128(17): 1910-23.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.003199] [PMID: 24146121]
[203]
Ridker PM, Danielson E, Fonseca FA, et al. JUPITER Study Group. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med 2008; 359(21): 2195-207.
[http://dx.doi.org/10.1056/NEJMoa0807646] [PMID: 18997196]
[204]
Patel TN, Shishehbor MH, Bhatt DL. A review of high-dose statin therapy: targeting cholesterol and inflammation in atherosclerosis. Eur Heart J 2007; 28(6): 664-72.
[http://dx.doi.org/10.1093/eurheartj/ehl445] [PMID: 17242008]
[205]
Suzuki J, Iwai M, Mogi M, et al. Eplerenone with valsartan effectively reduces atherosclerotic lesion by attenuation of oxidative stress and inflammation. Arterioscler Thromb Vasc Biol 2006; 26(4): 917-21.
[http://dx.doi.org/10.1161/01.ATV.0000204635.75748.0f] [PMID: 16424347]
[206]
Wu L, Iwai M, Nakagami H, et al. Roles of angiotensin II type 2 receptor stimulation associated with selective angiotensin II type 1 receptor blockade with valsartan in the improvement of inflammation-induced vascular injury. Circulation 2001; 104(22): 2716-21.
[http://dx.doi.org/10.1161/hc4601.099404] [PMID: 11723025]
[207]
Soehnlein O, Schmeisser A, Cicha I, et al. ACE inhibition lowers angiotensin-II-induced monocyte adhesion to HUVEC by reduction of p65 translocation and AT 1 expression. J Vasc Res 2005; 42(5): 399-407.
[http://dx.doi.org/10.1159/000087340] [PMID: 16088213]
[208]
Caspritz G, Alpermann HG, Schleyerbach R. Influence of the new angiotensin converting enzyme inhibitor ramipril on several models of acute inflammation and the adjuvant arthritis in the rat. Arzneimittelforschung 1986; 36(11): 1605-8.
[PMID: 3028436]
[209]
Ceriello A, Assaloni R, Da Ros R, et al. Effect of atorvastatin and irbesartan, alone and in combination, on postprandial endothelial dysfunction, oxidative stress, and inflammation in type 2 diabetic patients. Circulation 2005; 111(19): 2518-24.
[http://dx.doi.org/10.1161/01.CIR.0000165070.46111.9F] [PMID: 15867169]
[210]
Eikelboom JW, Connolly SJ, Bosch J, et al. COMPASS Investigators. Rivaroxaban with or without aspirin in stable cardiovascular disease. N Engl J Med 2017; 377(14): 1319-30.
[http://dx.doi.org/10.1056/NEJMoa1709118] [PMID: 28844192]
[211]
Büller HR, Bethune C, Bhanot S, et al. FXI-ASO TKA Investigators. Factor XI antisense oligonucleotide for prevention of venous thrombosis. N Engl J Med 2015; 372(3): 232-40.
[http://dx.doi.org/10.1056/NEJMoa1405760] [PMID: 25482425]
[212]
Mackman N. New insights into the mechanisms of venous thrombosis. J Clin Invest 2012; 122(7): 2331-6.
[http://dx.doi.org/10.1172/JCI60229] [PMID: 22751108]
[213]
Esworthy RS, Aranda R, Martín MG, Doroshow JH, Binder SW, Chu FF. Mice with combined disruption of Gpx1 and Gpx2 genes have colitis. Am J Physiol Gastrointest Liver Physiol 2001; 281(3): G848-55.
[http://dx.doi.org/10.1152/ajpgi.2001.281.3.G848] [PMID: 11518697]
[214]
Lubos E, Kelly NJ, Oldebeken SR, et al. Glutathione peroxidase-1 deficiency augments proinflammatory cytokine-induced redox signaling and human endothelial cell activation. J Biol Chem 2011; 286(41): 35407-17.
[http://dx.doi.org/10.1074/jbc.M110.205708] [PMID: 21852236]
[215]
Murakami K, Murata N, Noda Y, et al. SOD1 (copper/zinc superoxide dismutase) deficiency drives amyloid β protein oligomerization and memory loss in mouse model of Alzheimer disease. J Biol Chem 2011; 286(52): 44557-68.
[http://dx.doi.org/10.1074/jbc.M111.279208] [PMID: 22072713]
[216]
Kwon MJ, Jeon YJ, Lee KY, Kim TY. Superoxide dismutase 3 controls adaptive immune responses and contributes to the inhibition of ovalbumin-induced allergic airway inflammation in mice. Antioxid Redox Signal 2012; 17(10): 1376-92.
[http://dx.doi.org/10.1089/ars.2012.4572] [PMID: 22583151]
[217]
Murdoch CE, Chaubey S, Zeng L, et al. Endothelial NADPH oxidase-2 promotes interstitial cardiac fibrosis and diastolic dysfunction through proinflammatory effects and endothelial-mesenchymal transition. J Am Coll Cardiol 2014; 63(24): 2734-41.
[http://dx.doi.org/10.1016/j.jacc.2014.02.572] [PMID: 24681145]
[218]
Jansen T, Kröller-Schön S, Schönfelder T, et al. α1AMPK deletion in myelomonocytic cells induces a pro-inflammatory phenotype and enhances angiotensin II-induced vascular dysfunction. Cardiovasc Res 2018; 114(14): 1883-93.
[http://dx.doi.org/10.1093/cvr/cvy172] [PMID: 29982418]
[219]
Kröller-Schön S, Daiber A, Steven S, et al. Crucial role for Nox2 and sleep deprivation in aircraft noise-induced vascular and cerebral oxidative stress, inflammation, and gene regulation. Eur Heart J 2018; 39(38): 3528-39.
[http://dx.doi.org/10.1093/eurheartj/ehy333] [PMID: 29905797]
[220]
Liang S, Ma HY, Zhong Z, et al. Nadph oxidase 1 in liver macrophages promotes inflammation and tumor development in mice. Gastroenterology 2018.
[PMID: 30445007]
[221]
Kröller-Schön S, Jansen T, Tran TLP, et al. Endothelial α1AMPK modulates angiotensin II-mediated vascular inflammation and dysfunction. Basic Res Cardiol 2019; 114(2): 8.
[http://dx.doi.org/10.1007/s00395-019-0717-2] [PMID: 30643968]
[222]
Kuntic M, Oelze M, Steven S, et al. Short-term e-cigarette vapour exposure causes vascular oxidative stress and dysfunction: Evidence for a close connection to brain damage and a key role of the phagocytic nadph oxidase (nox-2). Eur Heart J 2019; 1-13.
[http://dx.doi.org/10.1093/eurheartj/ehz772] [PMID: 31715629]
[223]
Daiber A, Xia N, Steven S, et al. New therapeutic implications of endothelial nitric oxide synthase (enos) function/dysfunction in cardiovascular disease. Int J Mol Sci 2019; 20(1): 20.
[http://dx.doi.org/10.3390/ijms20010187] [PMID: 30621010]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy