[1]
Mukherjee, B. Nanosize drug delivery system. Curr. Pharm. Biotechnol., 2013, 14(15), 1221.
[2]
Parveen, S.; Misra, R.; Sahoo, S.K. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine, 2012, 8(2), 147-166.
[3]
Boulaiz, H.; Alvarez, P.J.; Ramirez, A.; Marchal, J.A.; Prados, J.; Rodriguez-Serrano, F.; Peran, M.; Melguizo, C.; Aranega, A. Nanomedicine: Application areas and development prospects. Int. J. Mol. Sci., 2011, 12(5), 3303-3321.
[4]
Zhang, L.; Gu, F.; Chan, J.; Wang, A.; Langer, R.; Farokhzad, O. Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharmacol. Ther., 2008, 83(5), 761-769.
[5]
Oliveira, I.M.; Gonçalves, C.; Reis, R.L.; Oliveira, J.M. Engineering nanoparticles for targeting rheumatoid arthritis: Past, present, and future trends. Nano Res., 2018, 11(9), 4489-4506.
[6]
Prasad, L.K.; O’Mary, H.; Cui, Z. Nanomedicine delivers promising treatments for rheumatoid arthritis. Nanomedicine (Lond.), 2015, 10(13), 2063-2074.
[7]
Duncan, R.; Gaspar, R. Nanomedicine(s) under the microscope. Mol. Pharm., 2011, 8(6), 2101-2141.
[8]
Riehemann, K.; Schneider, S.W.; Luger, T.A.; Godin, B.; Ferrari, M.; Fuchs, H. Nanomedicine-challenge and perspectives. Angew. Chem. Int. Ed. Engl., 2009, 48(5), 872-897.
[9]
Shiekh, F.A. Personalized nanomedicine: Future medicine for cancer treatment. Int. J. Nanomedicine, 2013, 8, 201-202.
[10]
Tosi, G.; Ruozi, B.; Belletti, D. Nanomedicine: The future for advancing medicine and neuroscience. Nanomedicine (Lond.), 2012, 7(8), 1113-1116.
[11]
Surendiran, A.; Sandhiya, S.; Pradhan, S.C.; Adithan, C. Novel applications of nanotechnology in medicine. Indian J. Med. Res., 2009, 130(6), 689-701.
[12]
Malam, Y.; Loizidou, M.; Seifalian, A.M. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci., 2009, 30(11), 592-599.
[13]
Dhar, S.; Kolishetti, N.; Lippard, S.J.; Farokhzad, O.C. Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo. Proc. Natl. Acad. Sci. USA, 2011, 108(5), 1850-1855.
[14]
Liu, L.; Sun, L.; Wu, Q.; Guo, W.; Li, L.; Chen, Y.; Li, Y.; Gong, C.; Qian, Z.; Wei, Y. Curcumin loaded polymeric micelles inhibit breast tumor growth and spontaneous pulmonary metastasis. Int. J. Pharm., 2013, 443(1-2), 175-182.
[15]
Yu, M.; Jie, X.; Xu, L.; Chen, C.; Shen, W.; Cao, Y.; Lian, G.; Qi, R. Recent advances in dendrimer research for cardiovascular diseases. Biomacromolecules, 2015, 16(9), 2588-2598.
[16]
Wu, L.P.; Ficker, M.; Christensen, J.B.; Trohopoulos, P.N.; Moghimi, S.M. Dendrimers in medicine: Therapeutic concepts and pharmaceutical challenges. Bioconjug. Chem., 2015, 26(7), 1198-1211.
[17]
Mody, V.V.; Siwale, R.; Singh, A.; Mody, H.R. Introduction to metallic nanoparticles. J. Pharm. Bioallied Sci., 2010, 2(4), 282-289.
[18]
Edmundson, M.C.; Capeness, M.; Horsfall, L. Exploring the potential of metallic nanoparticles within synthetic biology. N. Biotechnol., 2014, 31(6), 572-578.
[19]
McBain, S.C.; Yiu, H.H.; Dobson, J. Magnetic nanoparticles for gene and drug delivery. Int. J. Nanomedicine, 2008, 3(2), 169-180.
[20]
Ali, A.; Zafar, H.; Zia, M.; Ul Haq, I.; Phull, A.R.; Ali, J.S.; Hussain, A. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl., 2016, 9, 49-67.
[21]
Din, F.U.; Aman, W.; Ullah, I.; Qureshi, O.S.; Mustapha, O.; Shafique, S.; Zeb, A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomedicine, 2017, 12, 7291-7309.
[22]
He, L.; Gu, J.; Lim, L.Y.; Yuan, Z-X.; Mo, J. Nanomedicine-mediated therapies to target breast cancer stem cells. Front. Pharmacol., 2016, 7, 313.
[23]
Torchilin, V.P. Micellar nanocarriers: Pharmaceutical perspectives. Pharm. Res., 2007, 24(1), 1-16.
[24]
Jeong, K.; Kang, C.S.; Kim, Y.; Lee, Y.D.; Kwon, I.C.; Kim, S. Development of highly efficient nanocarrier-mediated delivery approaches for cancer therapy. Cancer Lett., 2016, 374(1), 31-43.
[25]
Rastogi, V.; Yadav, P.; Bhattacharya, S.S.; Mishra, A.K.; Verma, N.; Verma, A.; Pandit, J.K. Carbon nanotubes: An emerging drug carrier for targeting cancer cells. J. Drug Deliv., 2014, 2014670815
[26]
Chow, E.K.; Ho, D. Cancer nanomedicine: From drug delivery to imaging. Sci. Transl. Med., 2013, 5(216)216rv4
[27]
Ferrari, M. Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer, 2005, 5(3), 161.
[28]
Cheng, L.; Wang, C.; Feng, L.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev., 2014, 114(21), 10869-10939.
[29]
Hubbell, J.A.; Chilkoti, A. Nanomaterials for drug delivery. Science, 2012, 337(6092), 303-305.
[30]
Li, Y.; Huang, Y.; Wang, Z.; Carniato, F.; Xie, Y.; Patterson, J.P.; Thompson, M.P.; Andolina, C.M.; Ditri, T.B.; Millstone, J.E. Polycatechol nanoparticle MRI contrast agents. Small, 2016, 12(5), 668-677.
[31]
Jain, S.; Hirst, D.; O’sullivan, J. Gold nanoparticles as novel agents for cancer therapy. Br. J. Radiol., 2012, 85(1010), 101-113.
[32]
Gharat, S.A.; Momin, M.; Bhavsar, C. Oral squamous cell carcinoma: Current treatment strategies and nanotechnology-based approaches for prevention and therapy. Crit. Rev. Ther. Drug Carrier Syst., 2016, 33(4), 363-400.
[33]
Afifi, M.M.; El Sheikh, S.M.; Abdelsalam, M.M.; Ramadan, H.; Omar, T.A.; El Tantawi, M.; Abdel-Razek, K.M.; Mohamed, M. Therapeutic efficacy of plasmonic photothermal nanoparticles in hamster buccal pouch carcinoma. Oral Surg. Oral Med. Oral Pathol. Oral Radiol., 2013, 115(6), 743-751.
[34]
Hirsch, L.R.; Gobin, A.M.; Lowery, A.R.; Tam, F.; Drezek, R.A.; Halas, N.J.; West, J.L. Metal nanoshells. Ann. Biomed. Eng., 2006, 34(1), 15-22.
[35]
Wu, Y-N.; Chen, D-H.; Shi, X-Y.; Lian, C-C.; Wang, T-Y.; Yeh, C-S.; Ratinac, K.R.; Thordarson, P.; Braet, F.; Shieh, D-B. Cancer-cell-specific cytotoxicity of non-oxidized iron elements in iron core-gold shell NPs. Nanomedicine, 2011, 7(4), 420-427.
[36]
Wu, Y-N.; Yang, L-X.; Shi, X-Y.; Li, I-C.; Biazik, J.M.; Ratinac, K.R.; Chen, D-H.; Thordarson, P.; Shieh, D-B.; Braet, F. The selective growth inhibition of oral cancer by iron core-gold shell nanoparticles through mitochondria-mediated autophagy. Biomaterials, 2011, 32(20), 4565-4573.
[37]
Melancon, M.P.; Lu, W.; Zhong, M.; Zhou, M.; Liang, G.; Elliott, A.M.; Hazle, J.D.; Myers, J.N.; Li, C.; Stafford, R.J. Targeted multifunctional gold-based nanoshells for magnetic resonance-guided laser ablation of head and neck cancer. Biomaterials, 2011, 32(30), 7600-7608.
[38]
Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl. Med., 2016, 1(1), 10-29.
[39]
Arany, S.; Benoit, D.S.; Dewhurst, S.; Ovitt, C.E. Nanoparticle-mediated gene silencing confers radioprotection to salivary glands in vivo. Mol. Ther., 2013, 21(6), 1182-1194.
[40]
Caponigro, F.; Cornelia, P.; Budillon, A.; Bryce, J.; Avallone, A.; De Rosa, V.; Ionna, F.; Cornelia, G. Phase I study of Caelyx (doxorubicin HCL, pegylated liposomal) in recurrent or metastatic head and neck cancer. Ann. Oncol., 2000, 11(3), 339-342.
[41]
Samad, A.; Sultana, Y.; Aqil, M. Liposomal drug delivery systems: An update review. Curr. Drug Deliv., 2007, 4(4), 297-305.
[42]
Lin, L.T.; Chang, C.Y.; Chang, C.H.; Wang, H.E.; Chiou, S.H.; Liu, R.S.; Lee, T.W.; Lee, Y.J. Involvement of let-7 microRNA for the therapeutic effects of Rhenium-188-embedded liposomal nanoparticles on orthotopic human head and neck cancer model. Oncotarget, 2016, 7(40), 65782-65796.
[43]
Heiser, C.; Hofauer, B.; Scherer, E.; Schukraft, J.; Knopf, A. Liposomal treatment of xerostomia, odor, and taste abnormalities in patients with head and neck cancer. Head Neck, 2016, 38(Suppl. 1), E1232-E1237.
[44]
Strieth, S.; Dunau, C.; Michaelis, U.; Jager, L.; Gellrich, D.; Wollenberg, B.; Dellian, M. Phase I/II clinical study on safety and antivascular effects of paclitaxel encapsulated in cationic liposomes for targeted therapy in advanced head and neck cancer. Head Neck, 2014, 36(7), 976-984.
[45]
Mohan, A.; Narayanan, S.; Balasubramanian, G.; Sethuraman, S.; Krishnan, U.M. Dual drug loaded nanoliposomal chemotherapy: A promising strategy for treatment of head and neck squamous cell carcinoma. Eur. J. Pharm. Biopharm., 2016, 99, 73-83.
[46]
Wang, X.; Shi, L.; Tu, Q.; Wang, H.; Zhang, H.; Wang, P.; Zhang, L.; Huang, Z.; Zhao, F.; Luan, H. Treating cutaneous squamous cell carcinoma using 5-aminolevulinic acid polylactic-co-glycolic acid nanoparticle-mediated photodynamic therapy in a mouse model. Int. J. Nanomedicine, 2015, 10, 347.
[47]
Damiani, V.; Falvo, E.; Fracasso, G.; Federici, L.; Pitea, M.; De Laurenzi, V.; Sala, G.; Ceci, P. Therapeutic efficacy of the novel stimuli-sensitive nano-ferritins containing doxorubicin in a head and neck cancer model. Int. J. Mol. Sci., 2017, 18(7), 1555.
[48]
Basak, S.K.; Zinabadi, A.; Wu, A.W.; Venkatesan, N.; Duarte, V.M.; Kang, J.J.; Dalgard, C.L.; Srivastava, M.; Sarkar, F.H.; Wang, M.B. Liposome encapsulated Curcumin-difluorinated (CDF) inhibits the growth of cisplatin resistant head and neck cancer stem cells. Oncotarget, 2015, 6(21), 18504.
[49]
Chang, P-Y.; Peng, S-F.; Lee, C-Y.; Lu, C-C.; Tsai, S-C.; Shieh, T-M.; Wu, T-S.; Tu, M-G.; Chen, M.Y.; Yang, J-S. Curcumin-loaded nanoparticles induce apoptotic cell death through regulation of the function of MDR1 and reactive oxygen species in cisplatin-resistant CAR human oral cancer cells. Int. J. Oncol., 2013, 43(4), 1141-1150.
[50]
Nejad, S.M.; Takahashi, H.; Hosseini, H.; Watanabe, A.; Endo, H.; Narihira, K.; Kikuta, T.; Tachibana, K. Acute effects of sono-activated photocatalytic titanium dioxide nanoparticles on oral squamous cell carcinoma. Ultrason. Sonochem., 2016, 32, 95-101.
[51]
Xie, M.; Zhang, H.; Xu, Y.; Liu, T.; Chen, S.; Wang, J.; Zhang, T. Expression of folate receptors in nasopharyngeal and laryngeal carcinoma and folate receptor-mediated endocytosis by molecular targeted nanomedicine. Int. J. Nanomedicine, 2013, 8, 2443.
[52]
Wang, D.; Fei, B.; Halig, L.V.; Qin, X.; Hu, Z.; Xu, H.; Wang, Y.A.; Chen, Z.; Kim, S.; Shin, D.M. Targeted iron-oxide nanoparticle for photodynamic therapy and imaging of head and neck cancer. ACS Nano, 2014, 8(7), 6620-6632.
[53]
Zhao, Q.; Wang, L.; Cheng, R.; Mao, L.; Arnold, R.D.; Howerth, E.W.; Chen, Z.G.; Platt, S. Magnetic nanoparticle-based hyperthermia for head & neck cancer in mouse models. Theranostics, 2012, 2, 113-121.
[54]
Moosavi Nejad, S.; Takahashi, H.; Hosseini, H.; Watanabe, A.; Endo, H.; Narihira, K.; Kikuta, T.; Tachibana, K. Acute effects of sono-activated photocatalytic titanium dioxide nanoparticles on oral squamous cell carcinoma. Ultrason. Sonochem., 2016, 32, 95-101.
[55]
Bhirde, A.A.; Patel, V.; Gavard, J.; Zhang, G.; Sousa, A.A.; Masedunskas, A.; Leapman, R.D.; Weigert, R.; Gutkind, J.S.; Rusling, J.F. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano, 2009, 3(2), 307-316.
[56]
Hackenberg, S.; Scherzed, A.; Harnisch, W.; Froelich, K.; Ginzkey, C.; Koehler, C.; Hagen, R.; Kleinsasser, N. Antitumor activity of photo-stimulated zinc oxide nanoparticles combined with paclitaxel or cisplatin in HNSCC cell lines. J. Photochem. Photobiol. B, 2012, 114, 87-93.
[57]
Zhao, H.; Feng, H.; Liu, D.; Liu, J.; Ji, N.; Chen, F.; Luo, X.; Zhou, Y.; Dan, H.; Zeng, X. Self-assembling monomeric nucleoside molecular nanoparticles loaded with 5-FU enhancing therapeutic efficacy against oral cancer. ACS Nano, 2015, 9(10), 9638-9651.
[58]
Wang, Z.Q.; Liu, K.; Huo, Z.J.; Li, X.C.; Wang, M.; Liu, P.; Pang, B.; Wang, S.J. A cell-targeted chemotherapeutic nanomedicine strategy for oral squamous cell carcinoma therapy. J. Nanobiotechnology, 2015, 13, 63.
[59]
Harrington, K.J.; Lewanski, C.; Northcote, A.D.; Whittaker, J.; Peters, A.M.; Vile, R.G.; Stewart, J.S. Phase II study of pegylated liposomal doxorubicin (Caelyx) as induction chemotherapy for patients with squamous cell cancer of the head and neck. Eur. J. Cancer, 2001, 37(16), 2015-2022.
[60]
Faivre, S.; Alsabe, H.; Djafari, L.; Janot, F.; Julieron, M.; Domenge, C.; Djazouli, K.; Armand, J.P.; Luboinski, B.; Raymond, E. Locoregional effects of pegylated liposomal doxorubicin (Caelyx) in irradiated area: A phase I-II study in patients with recurrent squamous cell carcinoma of the head and neck. Eur. J. Cancer, 2004, 40(10), 1517-1521.
[61]
Reddy, K.S. Global burden of disease study 2015 provides GPS for global health 2030. Lancet, 2016, 388(10053), 1448-1449.
[62]
Ferlay, J.; Héry, C.; Autier, P.; Sankaranarayanan, R. Global Burden of Breast Cancer.In:Breast Cancer Epidemiology; Christopher, Li, Ed.; Springer: New York, NY, 2010, pp. 1-19.
[63]
Pindiprolu, S.K.S.; Krishnamurthy, P.T.; Chintamaneni, P.K.; Karri, V.V.S.R. Nanocarrier based approaches for targeting breast cancer stem cells. Artif. Cells Nanomed. Biotechnol., 2018, 46(5), 885-898.
[64]
Network, C.G.A. Comprehensive molecular portraits of human breast tumours. Nature, 2012, 490(7418), 61.
[65]
Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Comparisons between different polychemotherapy regimens for early breast cancer: Meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet, 2012, 379(9814), 432-444.
[66]
Sotiriou, C.; Pusztai, L. Gene-expression signatures in breast cancer. N. Engl. J. Med., 2009, 360(8), 790-800.
[67]
Brinton, L.A.; Sherman, M.E.; Carreon, J.D.; Anderson, W.F. Recent trends in breast cancer among younger women in the United States. J. Natl. Cancer Inst., 2008, 100(22), 1643-1648.
[68]
Tanaka, T.; Decuzzi, P.; Cristofanilli, M.; Sakamoto, J.H.; Tasciotti, E.; Robertson, F.M.; Ferrari, M. Nanotechnology for breast cancer therapy. Biomed. Microdevices, 2009, 11(1), 49-63.
[69]
Aapro, M.S. Adjuvant therapy of primary breast cancer: A review of key findings from the 7th international conference, St. Gallen, February 2001. Oncologist, 2001, 6(4), 376-385.
[70]
Yarden, Y.; Sliwkowski, M.X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol., 2001, 2(2), 127-137.
[71]
Carty, N.; Foggitt, A.; Hamilton, C.; Royle, G.; Taylor, I. Patterns of clinical metastasis in breast cancer: An analysis of 100 patients. Eur. J. Surg. Oncol., 1995, 21(6), 607-608.
[72]
Grobmyer, S.R.; Zhou, G.; Gutwein, L.G.; Iwakuma, N.; Sharma, P.; Hochwald, S.N. Nanoparticle delivery for metastatic breast cancer. Nanomedicine, 2012, 8, S21-S30.
[73]
Sharma, A.; Jain, N.; Sareen, R. Nanocarriers for diagnosis and targeting of breast cancer. BioMed Res. Int., 2013, 2013960821
[74]
Sinha, R.; Kim, G.J.; Nie, S.; Shin, D.M. Nanotechnology in cancer therapeutics: Bioconjugated nanoparticles for drug delivery. Mol. Cancer Ther., 2006, 5(8), 1909-1917.
[75]
Singh, S.K.; Singh, S.; Lillard Jr, J.W.; Singh, R. Drug delivery approaches for breast cancer. Int. J. Nanomedicine, 2017, 12, 6205.
[76]
Zhang, L.; Gu, F.; Chan, J.; Wang, A.; Langer, R.; Farokhzad, O. Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharmacol. Ther., 2008, 83(5), 761-769.
[77]
Zhang, Y.; Huang, Y.; Li, S. Polymeric micelles: Nanocarriers for cancer-targeted drug delivery. AAPS PharmSciTech, 2014, 15(4), 862-871.
[78]
Kalepu, S.; Nekkanti, V. Insoluble drug delivery strategies: Review of recent advances and business prospects. Acta Pharm. Sin. B, 2015, 5(5), 442-453.
[79]
Kang, D.I.; Kang, H-K.; Gwak, H-S.; Han, H-K.; Lim, S-J. Liposome composition is important for retention of liposomal rhodamine in P-glycoprotein-overexpressing cancer cells. Drug Deliv., 2009, 16(5), 261-267.
[80]
Dhankhar, R.; Vyas, S.P.; Jain, A.K.; Arora, S.; Rath, G.; Goyal, A.K. Advances in novel drug delivery strategies for breast cancer therapy. Artif. Cells Blood Substit. Immobil. Biotechnol., 2010, 38(5), 230-249.
[81]
Shahin, M.; Soudy, R.; Aliabadi, H.M.; Kneteman, N.; Kaur, K.; Lavasanifar, A. Engineered breast tumor targeting peptide ligand modified liposomal doxorubicin and the effect of peptide density on anticancer activity. Biomaterials, 2013, 34(16), 4089-4097.
[82]
Wong, M-Y.; Chiu, G.N. Simultaneous liposomal delivery of quercetin and vincristine for enhanced estrogen-receptor-negative breast cancer treatment. Anticancer Drugs, 2010, 21(4), 401-410.
[83]
Urbinati, G.; Marsaud, V.; Plassat, V.; Fattal, E.; Lesieur, S.; Renoir, J-M. Liposomes loaded with histone deacetylase inhibitors for breast cancer therapy. Int. J. Pharm., 2010, 397(1-2), 184-193.
[84]
Pillai, G.; Ceballos-Coronel, M.L. Science and technology of the emerging nanomedicines in cancer therapy: A primer for physicians and pharmacists. SAGE Open Med., 2013, 12050312113513759
[85]
Gabizon, A.A. Pegylated liposomal doxorubicin: Metamorphosis of an old drug into a new form of chemotherapy. Cancer Invest., 2001, 19(4), 424-436.
[86]
Park, J.W. Liposome-based drug delivery in breast cancer treatment. Breast Cancer Res., 2002, 4(3), 95.
[87]
Jurj, A.; Braicu, C.; Pop, L-A.; Tomuleasa, C.; Gherman, C.D.; Berindan-Neagoe, I. The new era of nanotechnology, an alternative to change cancer treatment. Drug Des. Devel. Ther., 2017, 11, 2871.
[88]
Anand, S.; Majeti, B.K.; Acevedo, L.M.; Murphy, E.A.; Mukthavaram, R.; Scheppke, L.; Huang, M.; Shields, D.J.; Lindquist, J.N.; Lapinski, P.E. MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nat. Med., 2010, 16(8), 909.
[89]
Lee, J.H.; Nan, A. Combination drug delivery approaches in metastatic breast cancer. J. Drug Deliv., 2012, 2012915375
[90]
Shen, S.; Du, X-J.; Liu, J.; Sun, R.; Zhu, Y-H.; Wang, J. Delivery of bortezomib with nanoparticles for basal-like triple-negative breast cancer therapy. J. Control. Release, 2015, 208, 14-24.
[91]
Li, S-Y.; Sun, R.; Wang, H-X.; Shen, S.; Liu, Y.; Du, X-J.; Zhu, Y-H.; Jun, W. Combination therapy with epigenetic-targeted and chemotherapeutic drugs delivered by nanoparticles to enhance the chemotherapy response and overcome resistance by breast cancer stem cells. J. Control. Release, 2015, 205, 7-14.
[92]
Swaminathan, S.K.; Roger, E.; Toti, U.; Niu, L.; Ohlfest, J.R.; Panyam, J. CD133-targeted paclitaxel delivery inhibits local tumor recurrence in a mouse model of breast cancer. J. Control. Release, 2013, 171(3), 280-287.
[93]
Sun, R.; Shen, S.; Zhang, Y-J.; Xu, C-F.; Cao, Z-T.; Wen, L-P.; Wang, J. Nanoparticle-facilitated autophagy inhibition promotes the efficacy of chemotherapeutics against breast cancer stem cells. Biomaterials, 2016, 103, 44-55.
[94]
Devulapally, R.; Sekar, N.M.; Sekar, T.V.; Foygel, K.; Massoud, T.F.; Willmann Jr, K.; Paulmurugan, R. Polymer nanoparticles mediated codelivery of antimiR-10b and antimiR-21 for achieving triple negative breast cancer therapy. ACS Nano, 2015, 9(3), 2290-2302.
[95]
Wolinsky, J.B.; Grinstaff, M.W. Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv. Drug Deliv. Rev., 2008, 60(9), 1037-1055.
[96]
Fuchs, S.; Kapp, T.; Otto, H.; Schöneberg, T.; Franke, P.; Gust, R.; Schlüter, A.D. A surface‐modified dendrimer set for potential application as drug delivery vehicles: synthesis, in vitro toxicity, and intracellular localization. Chem. Eur. J., 2004, 10(5), 1167-1192.
[97]
Wang, P.; Zhao, X-H.; Wang, Z-Y.; Meng, M.; Li, X.; Ning, Q. Generation 4 polyamidoamine dendrimers is a novel candidate of nano-carrier for gene delivery agents in breast cancer treatment. Cancer Lett., 2010, 298(1), 34-49.
[98]
Lu, H-L.; Syu, W-J.; Nishiyama, N.; Kataoka, K.; Lai, P-S. Dendrimer phthalocyanine-encapsulated polymeric micelle-mediated photochemical internalization extends the efficacy of photodynamic therapy and overcomes drug-resistance in vivo. J. Control. Release, 2011, 155(3), 458-464.
[99]
Gupta, U.; Dwivedi, S.K.D.; Bid, H.K.; Konwar, R.; Jain, N. Ligand anchored dendrimers based nanoconstructs for effective targeting to cancer cells. . Int. J. Pharm., 2010, 393(1-2), 186-197.
[100]
Li, J-L.; Wang, L.; Liu, X-Y.; Zhang, Z-P.; Guo, H-C.; Liu, W-M.; Tang, S-H. In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles. Cancer Lett., 2009, 274(2), 319-326.
[101]
Balakrishnan, S.; Bhat, F.; Raja Singh, P.; Mukherjee, S.; Elumalai, P.; Das, S.; Patra, C.; Arunakaran, J. Gold nanoparticle-conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR‐2‐mediated pathway in breast cancer. Cell Prolif., 2016, 49(6), 678-697.
[102]
Aires, A.; Ocampo, S.M.; Simões, B.M.; Rodríguez, M.J.; Cadenas, J.F.; Couleaud, P.; Spence, K.; Latorre, A.; Miranda, R.; Somoza, Á. Multifunctionalized iron oxide nanoparticles for selective drug delivery to CD44-positive cancer cells. Nanotechnology, 2016, 27(6)065103
[103]
Ahmed, M.; Douek, M. The role of magnetic nanoparticles in the localization and treatment of breast cancer. BioMed Res. Int., 2013, 2013281230
[104]
Thorek, D.L.; Chen, A.K.; Czupryna, J.; Tsourkas, A. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann. Biomed. Eng., 2006, 34(1), 23-38.
[105]
Jayakumar, R.; Prabaharan, M.; Nair, S.; Tamura, H. Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol. Adv., 2010, 28(1), 142-150.
[106]
Marty, M.; Cognetti, F.; Maraninchi, D.; Snyder, R.; Mauriac, L.; Tubiana-Hulin, M.; Chan, S.; Grimes, D.; Antón, A.; Lluch, A. Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment: The M77001 study group. J. Clin. Oncol., 2005, 23(19), 4265-4274.
[107]
Sahoo, N.G.; Bao, H.; Pan, Y.; Pal, M.; Kakran, M.; Cheng, H.K.F.; Li, L.; Tan, L.P. Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: A comparative study. Chem. Commun., 2011, 47(18), 5235-5237.
[108]
Liu, Z.; Chen, K.; Davis, C.; Sherlock, S.; Cao, Q.; Chen, X.; Dai, H. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res., 2008, 68(16), 6652-6660.
[109]
Chen, H.; Ma, X.; Li, Z.; Shi, Q.; Zheng, W.; Liu, Y.; Wang, P. Functionalization of single-walled carbon nanotubes enables efficient intracellular delivery of siRNA targeting MDM2 to inhibit breast cancer cells growth. Biomed. Pharmacother., 2012, 66(5), 334-338.
[110]
Eghtedari, M.; Liopo, A.V.; Copland, J.A.; Oraevsky, A.A.; Motamedi, M. Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells. Nano Lett., 2008, 9(1), 287-291.
[111]
Meng, H.; Liong, M.; Xia, T.; Li, Z.; Ji, Z.; Zink, J.I.; Nel, A.E. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano, 2010, 4(8), 4539-4550.
[112]
Zhang, Y.; Zhang, H.; Wang, X.; Wang, J.; Zhang, X.; Zhang, Q. The eradication of breast cancer and cancer stem cells using octreotide modified paclitaxel active targeting micelles and salinomycin passive targeting micelles. Biomaterials, 2012, 33(2), 679-691.
[113]
Zhang, Y.; Huang, Y.; Li, S. Polymeric micelles: Nanocarriers for cancer-targeted drug delivery. AAPS PharmSciTech, 2014, 15(4), 862-871.
[114]
Rapoport, N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog. Polym. Sci., 2007, 32(8-9), 962-990.
[115]
Cho, K.; Wang, X.; Nie, S.; Shin, D.M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res., 2008, 14(5), 1310-1316.
[116]
M.A., Sadat S.; Saeidnia, S.; J Nazarali, A.; Haddadi, A. Nano-pharmaceutical formulations for targeted drug delivery against HER2 in breast cancer. Curr. Cancer Drug Targets, 2015, 15(1), 71-86.
[117]
Lee, K.S.; Chung, H.C. Im, S.A.; Park, Y.H.; Kim, C.S.; Kim, S.-B.; Rha, S.Y.; Lee, M.Y.; Ro, J. Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res. Treat., 2008, 108(2), 241-250.
[118]
Glasgow, M.D.; Chougule, M.B. Recent developments in active tumor targeted multifunctional nanoparticles for combination chemotherapy in cancer treatment and imaging. J. Biomed. Nanotechnol., 2015, 11(11), 1859-1898.
[119]
Mitragotri, S.; Yoo, J-W. Designing micro-and nano-particles for treating rheumatoid arthritis. Arch. Pharm. Res., 2011, 34(11), 1887-1897.
[120]
Schurgers, E.; Billiau, A.; Matthys, P. Collagen-induced arthritis as an animal model for rheumatoid arthritis: focus on interferon-γ. J. Interferon Cytokine Res., 2011, 31(12), 917-926.
[121]
Dolati, S.; Sadreddini, S.; Rostamzadeh, D.; Ahmadi, M.; Jadidi-Niaragh, F.; Yousefi, M. Utilization of nanoparticle technology in rheumatoid arthritis treatment. Biomed. Pharmacother., 2016, 80, 30-41.
[122]
Barnes, T.; Moots, R. Targeting nanomedicines in the treatment of rheumatoid arthritis: Focus on certolizumab pegol. Int. J. Nanomedicine, 2007, 2(1), 3.
[123]
Howard, K.A.; Paludan, S.R.; Behlke, M.A.; Besenbacher, F.; Deleuran, B.; Kjems, J. Chitosan/siRNA nanoparticle-mediated TNF-α knockdown in peritoneal macrophages for anti-inflammatory treatment in a murine arthritis model. Mol. Ther., 2009, 17(1), 162-168.
[124]
McInnes, I.B.; Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol., 2007, 7(6), 429.
[125]
Marrelli, A.; Cipriani, P.; Liakouli, V.; Carubbi, F.; Perricone, C.; Perricone, R.; Giacomelli, R. Angiogenesis in rheumatoid arthritis: A disease specific process or a common response to chronic inflammation? Autoimmun. Rev., 2011, 10(10), 595-598.
[126]
Pham, C.T. Nanotherapeutic approaches for the treatment of rheumatoid arthritis. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2011, 3(6), 607-619.
[127]
Oda, K.; Minata, M. Drug free remission after steroid-dependent disappearance of lymphoproliferative disorder in rheumatoid arthritis patient treated with TNF-alpha blockade: case study. Springerplus, 2015, 4(1), 41.
[128]
Stoll, J.G.; Yasothan, U. Rheumatoid arthritis market. Nat. Rev. Drug Discov., 2009, 8(9), 693-694.
[129]
Koenders, M.I.; Van Den Berg, W.B. Novel therapeutic targets in rheumatoid arthritis. Trends Pharmacol. Sci., 2015, 36(4), 189-195.
[130]
Rubinstein, I.; Weinberg, G.L. Nanomedicines for chronic non-infectious arthritis: The clinician’s perspective. Nanomedicine, 2012, 8, S77-S82.
[131]
Mudshinge, S.R.; Deore, A.B.; Patil, S.; Bhalgat, C.M. Nanoparticles: Emerging carriers for drug delivery. Saudi Pharm. J., 2011, 19(3), 129-141.
[132]
Foong, W.; Green, K. Association of liposome‐entrapped [3H] methotrexate with thioglycollate‐elicited macrophages in vitro. J. Pharm. Pharmacol., 1988, 40(3), 171-175.
[133]
Love, W.; Amos, N.; Kellaway, I.; Williams, B. Specific accumulation of technetium-99m radiolabelled, negative liposomes in the inflamed paws of rats with adjuvant induced arthritis: Effect of liposome size. Ann. Rheum. Dis., 1989, 48(2), 143.
[134]
Srinath, P.; Chary, M.; Vyas, S.; Diwan, P. Long-circulating liposomes of indomethacin in arthritic rats-a biodisposition study. Pharm. Acta Helv., 2000, 74(4), 399-404.
[135]
Trif, M.; Guillen, C.; Vaughan, D.M.; Telfer, J.M.; Brewer, J.M.; Roseanu, A.; Brock, J.H. Liposomes as possible carriers for lactoferrin in the local treatment of inflammatory diseases. Exp. Biol. Med., 2001, 226(6), 559-564.
[136]
Kapoor, B.; Singh, S.K.; Gulati, M.; Gupta, R.; Vaidya, Y. Application of liposomes in treatment of rheumatoid arthritis: Quo vadis. ScientificWorldJournal, 2014, 2014978351
[137]
Tarner, I.H.; Müller-Ladner, U. Drug delivery systems for the treatment of rheumatoid arthritis. Expert Opin. Drug Deliv., 2008, 5(9), 1027-1037.
[138]
Van Den Hoven, J.M.; Van Tomme, S.R.; Metselaar, J.M.; Nuijen, B.; Beijnen, J.H.; Storm, G. Liposomal drug formulations in the treatment of rheumatoid arthritis. Mol. Pharm., 2011, 8(4), 1002-1015.
[139]
C̆eponis, A.; Waris, E.; Mönkkönen, J.; Laasonen, L.; Hyttinen, M.; Solovieva, S.A.; Hanemaaijer, R.; Bitsch, A.; Konttinen, Y.T. Effects of low‐dose, noncytotoxic, intraarticular liposomal clodronate on development of erosions and proteoglycan loss in established antigen‐induced arthritis in rabbits. Arthritis Rheum., 2001, 44(8), 1908-1916.
[140]
Metselaar, J.M.; Wauben, M.H.; Wagenaar‐Hilbers, J.P.; Boerman, O.C.; Storm, G. Complete remission of experimental arthritis by joint targeting of glucocorticoids with long‐circulating liposomes. Arthritis Rheum., 2003, 48(7), 2059-2066.
[141]
Metselaar, J.; Van Den Berg, W.; Holthuysen, A.; Wauben, M.; Storm, G.; Van Lent, P. Liposomal targeting of glucocorticoids to synovial lining cells strongly increases therapeutic benefit in collagen type II arthritis. Ann. Rheum. Dis., 2004, 63(4), 348-353.
[142]
Rauchhaus, U.; Kinne, R.; Pohlers, D.; Wiegand, S.; Wölfert, A.; Gajda, M.; Bräuer, R.; Panzner, S. Targeted delivery of liposomal dexamethasone phosphate to the spleen provides a persistent therapeutic effect in rat antigen-induced arthritis. Ann. Rheum. Dis., 2009, 68(12), 1933-1934.
[143]
Khoury, M.; Louis‐Plence, P.; Escriou, V.; Noel, D.; Largeau, C.; Cantos, C.; Scherman, D.; Jorgensen, C.; Apparailly, F. Efficient new cationic liposome formulation for systemic delivery of small interfering RNA silencing tumor necrosis factor α in experimental arthritis. Arthritis Rheum., 2006, 54(6), 1867-1877.
[144]
Fiehn, C.; Muller-Ladner, U.; Gay, S.; Krienke, S.; Freudenberg-Konrad, S.; Funk, J.; Ho, A.; Sinn, H.; Wunder, A. Albumin-coupled methotrexate (MTX-HSA) is a new anti-arthritic drug which acts synergistically to MTX. Rheumatology, 2004, 43(9), 1097-1105.
[145]
Kim, W.U.; Lee, W.K.; Ryoo, J.W.; Kim, S.H.; Kim, J.; Youn, J.; Min, S.Y.; Bae, E.Y.; Hwang, S.Y.; Park, S.H. Suppression of collagen‐induced arthritis by single administration of poly (lactic‐co‐glycolic acid) nanoparticles entrapping type II collagen: a novel treatment strategy for induction of oral tolerance. Arthritis Rheum., 2002, 46(4), 1109-1120.
[146]
Albuquerque, J.; Moura, C.C.; Sarmento, B.; Reis, S. Solid lipid nanoparticles: A potential multifunctional approach towards rheumatoid arthritis theranostics. Molecules, 2015, 20(6), 11103-11118.
[147]
Mansouri, S.; Cuie, Y.; Winnik, F.; Shi, Q.; Lavigne, P.; Benderdour, M.; Beaumont, E.; Fernandes, J.C. Characterization of folate-chitosan-DNA nanoparticles for gene therapy. Biomaterials, 2006, 27(9), 2060-2065.
[148]
Patel, J.; Jigar, B.; Shah, H.; Patel, D. Novel drug delivery technologies for the treatment of rheumatoid arthritis. Internet J. Med. Tech, 2008, 5(1), 1-11.
[149]
Liu, M.; Dong, J.; Yang, Y.; Yang, X.; Xu, H. Anti-inflammatory effects of triptolide loaded poly (D, L-lactic acid) nanoparticles on adjuvant-induced arthritis in rats. J. Ethnopharmacol., 2005, 97(2), 219-225.
[150]
Chandrasekar, D.; Sistla, R.; Ahmad, F.J.; Khar, R.K.; Diwan, P.V. Folate coupled poly (ethyleneglycol) conjugates of anionic poly (amidoamine) dendrimer for inflammatory tissue specific drug delivery. J. Biomed. Mater. Res. A, 2007, 82(1), 92-103.
[151]
Thomas, T.P.; Goonewardena, S.N.; Majoros, I.J.; Kotlyar, A.; Cao, Z.; Leroueil, P.R.; Baker Jr, J.R. Folate‐targeted nanoparticles show efficacy in the treatment of inflammatory arthritis. Arthritis Rheum., 2011, 63(9), 2671-2680.
[152]
Hayder, M.; Poupot, M.; Baron, M.; Nigon, D.; Turrin, C.-O.; Caminade, A.-M.; Majoral, J.-P.; Eisenberg, R. A.; Fournié, J.-J.; Cantagrel, A. A phosphorus-based dendrimer targets inflammation and osteoclastogenesis in experimental arthritis. Sci. Transl. Med., 2011, 3(81), 81ra35-81ra35.
[153]
Bosch, X. Dendrimers to treat rheumatoid arthritis. ACS Nano, 2011, 5(9), 6779-6785.
[154]
Tsai, C.Y.; Shiau, A.L.; Chen, S.Y.; Chen, Y.H.; Cheng, P.C.; Chang, M.Y.; Chen, D.H.; Chou, C.H.; Wang, C.R.; Wu, C.L. Amelioration of collagen‐induced arthritis in rats by nanogold. Arthritis Rheum., 2007, 56(2), 544-554.
[155]
Huang, Y-J.; Shiau, A-L.; Chen, S-Y.; Chen, Y-L.; Wang, C-R.; Tsai, C-Y.; Chang, M-Y.; Li, Y-T.; Leu, C-H.; Wu, C-L. Multivalent structure of galectin-1-nanogold complex serves as potential therapeutics for rheumatoid arthritis by enhancing receptor clustering. Eur. Cell. Mater., 2012, 23, 170-181.
[156]
Lee, S-M.; Kim, H.J.; Ha, Y-J.; Park, Y.N.; Lee, S-K.; Park, Y-B.; Yoo, K-H. Targeted chemo-photothermal treatments of rheumatoid arthritis using gold half-shell multifunctional nanoparticles. ACS Nano, 2012, 7(1), 50-57.
[157]
Lee, H.; Lee, M-Y.; Bhang, S.H.; Kim, B-S.; Kim, Y.S.; Ju, J.H.; Kim, K.S.; Hahn, S.K. Hyaluronate–gold nanoparticle/tocilizumab complex for the treatment of rheumatoid arthritis. ACS Nano, 2014, 8(5), 4790-4798.
[158]
Schulze, K.; Koch, A.; Schöpf, B.; Petri, A.; Steitz, B.; Chastellain, M.; Hofmann, M.; Hofmann, H.; von Rechenberg, B. Intraarticular application of superparamagnetic nanoparticles and their uptake by synovial membrane-an experimental study in sheep. J. Magn. Magn. Mater., 2005, 293(1), 419-432.
[159]
Markides, H.; Kehoe, O.; Morris, R.H.; El Haj, A.J. Whole body tracking of superparamagnetic iron oxide nanoparticle-labelled cells-a rheumatoid arthritis mouse model. Stem Cell Res. Ther., 2013, 4(5), 126.
[160]
Prasad, S.R.; Elango, K.; Damayanthi, D.; Saranya, J. Formulation and evaluation of azathioprine loaded silver nanopartilces for the treatment of rheumatoid arthritis. Asian J. Biomed. Pharm. Sci., 2013, 3(23), 1-5.
[161]
Ye, J.; Wang, Q.; Zhou, X.; Zhang, N. Injectable actarit-loaded solid lipid nanoparticles as passive targeting therapeutic agents for rheumatoid arthritis. Int. J. Pharm., 2008, 352(1-2), 273-279.
[162]
Xue, M.; Jiang, Z-z.; Wu, T.; Li, J.; Zhang, L.; Zhao, Y.; Li, X-j.; Zhang, L-Y.; Yang, S-y. Anti-inflammatory effects and hepatotoxicity of Tripterygium-loaded solid lipid nanoparticles on adjuvant-induced arthritis in rats. Phytomedicine, 2012, 19(11), 998-1006.
[163]
Nagai, N.; Ito, Y. Effect of solid nanoparticle of indomethacin on therapy for rheumatoid arthritis in adjuvant-induced arthritis rat. Biol. Pharm. Bull., 2014, 37(7), 1109-1118.
[164]
Koo, O.M.Y.; Rubinstein, I.; Önyüksel, H. Actively targeted low-dose camptothecin as a safe, long-acting, disease-modifying nanomedicine for rheumatoid arthritis. Pharm. Res., 2011, 28(4), 776-787.