Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

星形细胞α7烟碱受体激活通过PI3K/Akt信号通路上调内源性αb-晶体蛋白抑制淀粉样蛋白β聚集

卷 16, 期 1, 2019

页: [39 - 48] 页: 10

弟呕挨: 10.2174/1567205015666181022093359

价格: $65

摘要

背景: β-淀粉样蛋白(Aβ)聚集在阿茨海默症(AD)发病机制中起着重要作用,星形胶质细胞能显著抑制Aβ聚集。在AD脑中检测到的星形细胞α7神经烟碱乙酰胆碱受体(nAChR)上调与Aβ沉积密切相关。然而,星形细胞α7 nAChRs与Aβ聚集之间的关系尚不明确。 方法: 用尼古丁或磷脂酰肌醇3-激酶(PI3K)-蛋白激酶B(AKT)抑制剂联合治疗后,测定星形细胞溶解液和培养基中的aβ低聚物水平。采用Western blotting法测定了不同时间尼古丁或α7 nAChR拮抗剂联合作用以及与PI3K或丝裂原活化蛋白激酶激酶1/2(MEK1/2)抑制剂共孵育的星形胶质细胞中αb-晶体蛋白(cryab)的水平。 结果: 本研究中,初级星形胶质细胞中的尼古丁预处理显著抑制aβ聚集并上调内源性星形胶质细胞Cryab,而选择性α7-nachr拮抗剂预处理可逆转尼古丁介导的神经保护作用。此外,PI3K抑制剂LY294002抑制了这种对Aβ聚集的神经保护作用。尼古丁预处理显著增加星形胶质细胞中PI3K效应物磷酸化Akt的水平。 结论: α7 nAChR激活和PI3K/Akt信号转导通过调节内源性星形细胞Cryab促进烟碱介导的抗aβ聚集的神经保护。

关键词: 阿茨海默症,β-淀粉样蛋白聚集,α7神经烟碱乙酰胆碱受体,PI3K/Akt信号通路,αB晶体蛋白,痴呆

[1]
Braak H, Braak E. Diagnostic criteria for neuropathologic assessment of Alzheimer’s disease. Neurobiol Aging 18(4)(Suppl.): S85-8. (1997).
[2]
Robinson S, Bishop G. The search for an amyloid solution Science 298(5595): 962-64 (2002)author reply 962-4.
[3]
Cole T, Burkhardt D, Ghosh P, Ryan M, Taylor T. Effects of spinal fusion on the proteoglycans of the canine intervertebral disc. J Orthop Res 3(3): 277-91. (1985).
[4]
Ariga T, McDonald M, Yu R. Role of ganglioside metabolism in the pathogenesis of Alzheimer’s disease-a review. J Lipid Res 49(6): 1157-75. (2008).
[5]
Hardy J, Higgins G. Alzheimer’s disease: the amyloid cascade hypothesis. Science 256(5054): 184-5. (1992).
[6]
Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300(5618): 486-9. (2003).
[7]
Yamin G, Ono K, Inayathullah M, Teplow DB. Amyloid beta-protein assembly as a therapeutic target of Alzheimer’s disease. Curr Pharm Des 14(30): 3231-46. (2008).
[8]
Sidoryk-Wegrzynowicz M, Wegrzynowicz M, Lee E, Bowman AB, Aschner M. Role of astrocytes in brain function and disease. Toxicol Pathol 39(1): 115-23. (2011).
[9]
Nielsen H, Veerhuis R, Holmqvist B, Janciauskiene S. Binding and uptake of A beta1-42 by primary human astrocytes in vitro. Glia 57(9): 978-88. (2009).
[10]
Pihlaja R, Koistinaho J, Malm T, Sikkilä H, Vainio S, Koistinaho M. Transplanted astrocytes internalize deposited beta-amyloid peptides in a transgenic mouse model of Alzheimer’s disease. Glia 56(2): 154-63. (2008).
[11]
Parri H, Hernandez C, Dineley K. Research update: Alpha7 nicotinic acetylcholine receptor mechanisms in Alzheimer’s disease. Biochem Pharmacol 82(8): 931-42. (2011).
[12]
Yu W, Guan ZZ, Bogdanovic N, Nordberg A. High selective expression of alpha7 nicotinic receptors on astrocytes in the brains of patients with sporadic Alzheimer’s disease and patients carrying Swedish APP 670/671 mutation: a possible association with neuritic plaques. Exp Neurol 192(1): 215-25. (2005).
[13]
Yu W, Mechawar N, Krantic S, Chabot J-G, Quirion R. Upregulation of astrocytic α7 nicotinic receptors in Alzheimer’s disease brain- possible relevant to amyloid pathology. Mol Neurodegen 7(S1): 1-2. (2012).
[14]
Bhat R, Steinman L. Innate and adaptive autoimmunity directed to the central nervous system. Neuron 64(1): 123-32. (2009).
[15]
Ousman S, Tomooka BH, van Noort JM, Wawrousek EF, O’Connor KC, Hafler DA, et al. Protective and therapeutic role for alphaB-crystallin in autoimmune demyelination. Nature 448(7152): 474-9. (2007).
[16]
Shammas S, Waudby AC, Wang S, Buell AK, Knowles TPJ, Ecroyd H, et al. Binding of the molecular chaperone αB-crystallin to Aβ amyloid fibrils inhibits fibril elongation. Biophys J 101(7): 1681-9. (2011).
[17]
Wilhelmus M, Boelens WC, Otte-Höller I, Kamps B, de Waal RM, Verbeek MM, et al. Small heat shock proteins inhibit amyloid-beta protein aggregation and cerebrovascular amyloid-beta protein toxicity. Brain Res 1089(1): 67-78. (2006).
[18]
Raman B, Ban T, Sakai M, Pasta SY, Ramakrishna T, Naiki H, et al. AlphaB-crystallin, a small heat-shock protein, prevents the amyloid fibril growth of an amyloid beta-peptide and beta2-microglobulin. Biochem J 392(Pt 3): 573-81. (2005).
[19]
McCarthy K, de Vellis J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85(3): 890-902. (1980).
[20]
Klein W. Abeta toxicity in Alzheimer’s disease: globular oligomers (ADDLs) as new vaccine and drug targets. Neurochem Int 41(5): 345-52. (2002).
[21]
Rönicke R, Mikhaylova M, Rönicke S, Meinhardt J, Schröder UH, Fändrich M, et al. Early neuronal dysfunction by amyloid β oligomers depends on activation of NR2B-containing NMDA receptors. Neurobiol Aging 32(12): 2219-28. (2011).
[22]
Kihara T, Shimohama S, Urushitani M, Sawada H, Kimura J, Kume T, et al. Stimulation of alpha4beta2 nicotinic acetylcholine receptors inhibits beta-amyloid toxicity. Brain Res 792(2): 331-4. (1998).
[23]
Steiner R, Heath C, Picciotto M. Nicotine-induced phosphorylation of ERK in mouse primary cortical neurons: evidence for involvement of glutamatergic signaling and CaMKII. J Neurochem 103(2): 666-78. (2007).
[24]
Reix S, Mechawar N, Susin SA, Quirion R, Krantic S. Expression of cortical and hippocampal apoptosis-inducing factor (AIF) in aging and Alzheimer’s disease. Neurobiol Aging 28(3): 351-6. (2007).
[25]
Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, et al. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274(5284): 99-102. (1996).
[26]
Hellström-Lindahl E, Court J, Keverne J, Svedberg M, Lee M, Marutle A, et al. Nicotine reduces A beta in the brain and cerebral vessels of APPsw mice. Eur J Neurosci 19(10): 2703-10. (2004).
[27]
Yu W, Mechawar N, Krantic S, Quirion R. α7 Nicotinic receptor activation reduces β-amyloid-induced apoptosis by inhibiting caspase-independent death through phosphatidylinositol 3-kinase signaling. J Neurochem 119(4): 848-58. (2011).
[28]
Wang D, Meng Q, Leech CA, Yepuri N, Zhang L, Holz GG, et al. α7 Nicotinic acetylcholine receptor regulates the function and viability of L cells. Endocrinology 159(9): 3132-42. (2018).
[29]
Wan C, Wu M, Zhang S, Chen Y, Lu C. α7nAChR-mediated recruitment of PP1γ promotes TRAF6/NF-κB cascade to facilitate the progression of Hepatocellular Carcinoma. Mol Carcinog 57(11): 1626-39. (2018).
[30]
Chen T, Wang Y, Zhang T, Zhang B, Chen L, Zhao L, et al. Simvastatin enhances activity and trafficking of α7 nicotinic acetylcholine receptor in hippocampal neurons through pkc and camkii signaling pathways. Front Pharmacol 9: 362. (2018).
[31]
Vivekanandarajah A, Chan YL, Chen H, Machaalani R. Prenatal cigarette smoke exposure effects on apoptotic and nicotinic acetylcholine receptor expression in the infant mouse brainstem. Neurotoxicology 53-63. (2016).
[32]
Lopes F, Graepel R, Reyes JL, Wang A, Petri B, McDougall JJ, et al. Involvement of mast cells in α7 nicotinic receptor agonist exacerbation of freund’s complete adjuvant-induced monoarthritis in mice. Null 68(2): 542-52. (2016).
[33]
Di Cesare Mannelli L, Tenci B, Zanardelli M, Failli P, Ghelardini C. α7 Nicotinic receptor promotes the neuroprotective functions of astrocytes against oxaliplatin neurotoxicity. Neural Plast 2015: 396908. (2015).
[34]
Liu Q, Xie X, Emadi S, Sierks MR, Wu J. A novel nicotinic mechanism underlies β-amyloid-induced neurotoxicity. Neuropharmacology 97: 457-63. (2015).
[35]
Gendron R, Plamondon P, Grenier D. Binding of pro-matrix metalloproteinase 9 by Fusobacterium nucleatum subsp. nucleatum as a mechanism to promote the invasion of a reconstituted basement membrane. Infect Immun 72(10): 6160-53. (2004).
[36]
Dziewczapolski G, Glogowski CM, Masliah E, Heinemann SF. Deletion of the alpha 7 nicotinic acetylcholine receptor gene improves cognitive deficits and synaptic pathology in a mouse model of Alzheimer’s disease. J Neurosci 29(27): 8805-15. (2009).
[37]
Zeng H, Zhang Y, Peng L, Shao H, Menon NK, Yang J, et al. Nicotine and amyloid formation. Biol Psychiatry 49(3): 248-57. (2001).
[38]
Safronova V, Vulfius CA, Shelukhina IV, Mal’tseva VN, Berezhnov AV, Fedotova EI, et al. Nicotinic receptor involvement in regulation of functions of mouse neutrophils from inflammatory site. Immunobiology 221(7): 761-72. (2016).
[39]
Hu J, Zhu C, Liu Y, Wang F, Huang Z, Fan W, et al. Dynamic alterations of gene expression of nicotinic acetylcholine receptor α7, α4 and β2 subunits in an acute MPTP-lesioned mouse model. Neurosci Lett 494(3): 232-6. (2011).
[40]
Akaike A, Takada-Takatori Y, Kume T, Izumi Y. Mechanisms of neuroprotective effects of nicotine and acetylcholinesterase inhibitors: role of alpha4 and alpha7 receptors in neuroprotection. J Mol Neurosci 40(1-2): 211-6. (2010).
[41]
Kihara T, Shimohama S, Sawada H, Honda K, Nakamizo T, Shibasaki H, et al. α7 Nicotinic receptor transduces signals to phosphatidylinositol 3-kinase to block a β-amyloid-induced neurotoxicity. J Biol Chem 276(17): 13541-6. (2001).
[42]
Qi Y, Dou DQ, Jiang H, Zhang BB, Qin WY, Kang K, et al. Arctigenin attenuates learning and memory deficits through pi3k/akt/gsk-3β pathway reducing tau hyperphosphorylation in Aβ- induced AD mice. Planta Medica 83(01/02): 51-56 (2017).
[43]
Bitner RS, Bunnelle WH, Decker MW, Drescher KU, Kohlhaas KL, Markosyan S, et al. In vivo pharmacological characterization of a novel selective alpha7 neuronal nicotinic acetylcholine receptor agonist ABT-107: preclinical considerations in Alzheimer’s disease. J Pharmacol Exp Ther 334(3): 875. (2010).

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy