Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

In vitro Study on the Effect of Nanoparticles and Transfersomes as Targeted Drug Carrier for Cancer

Author(s): Karthikeyan Muthu, Blessy Vijayakumar and Thirumurugan Alagu*

Volume 9, Issue 4, 2019

Page: [512 - 518] Pages: 7

DOI: 10.2174/2210681208666180706125016

Price: $65

Abstract

Introduction: Cancer is one of the current leading cause of death all over the world. Among the various emerging technologies, nanotechnology plays a prominent role in delivering the drug to the target region.

Materials and Methods: In this study, the In vitro effect of doxorubicin adsorbed gold nanoparticles synthesized by Azadirachta Indica leaves extract as reducing agent and the doxorubicin entrapped modified liposomes called transfersomes was compared over the cervical cancer cell line (HeLa cell lines). The synthesized gold nanoparticles were characterized using a UV-visible spectrophotometer, SEM analysis.

Results: The UV-Visible spectrum showed the peak at 537nm and the incorporation of drug over the nanoparticles was conformed using FTIR and SEM analysis. The drug entrapment onto transfersomes was also characterized using FTIR and SEM analysis. When compared, the drug entrapped transfersomes shows significant effect with the lowest concentration of drug (0.25 µg/mL) than the drug adsorbed nanoparticles.

Conclusion: Hence, the transfersomes may also become the promising drug carrier in the future.

Keywords: Gold nanoparticles, green synthesis, transfersomes, doxorubicin, cervical cancer, nanotechnology.

Graphical Abstract

[1]
Logothetidis, S. Nanotechnology: Principles and applications.In: Nanostructured Materials and Their Applications; Springer: Berlin, Heidelberg, 2012, pp. 1-22.
[2]
Thomas, A.J.K.; Christof, A.H.F.; Daniel, G.; Michael, S. Nanoparticle exposure at nanotechnology workplaces: A review. Particle. Fibre Toxicol., 2011, 8(22), 1-18.
[3]
Ericka, R.L.; Ramon, I.P.; Rosa, E.N.; Ronaldo, H.U.; Judith, T.; Claudia, I.P.; Amir, M. Synthesis of silver nanoparticles using reducing agents obtained from natural sources. Nanoscale Res. Lett., 2013, 8(318), 1-9.
[4]
Charusheela, R.; Tapan, C.; Bijaya, K.S.; Ram, A.P. Synthesis of silver nanoparticles from the aqueous extract of leaves of Ocimum sanctum for enhanced antibacterial activity. J. Chem., 2013, 278925, 1-7.
[5]
Jithesh, P. Biosynthesis of silver nanoparticles using Trigonella Foenum Graecum and the determination of their antimicrobial activity. Int. J. Sci. Res., 2013, 2(5), 287-290.
[6]
Mehrdad, F.; Khalil, F. Biological and green synthesis of silver nanoparticles. J. Eng. Env. Sci., 2010, 34, 281-287.
[7]
Naheed, A.; Seema, S. Green Synthesis of silver nanoparticles using extracts of Ananascomosus. Green Sustain. Chem., 2012, 2, 141-147.
[8]
Haverkamp, R.G.; Marshall, A.T. The mechanism of metal nanoparticles formation in plants: Limits on accumulation. Springer Sci., 2008, 11(6), 1453-1463.
[9]
Ezhilarasi, A.A.; Vijaya, J.J.; Kaviyarasu, K.; Maaza, M.; Ayeshamariam, A.; Kennedy, L.J. Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: Cytotoxicity effect of nanoparticles against HT-29 cancer cells. J. Photochem. Photobiol. B Biol, 2016, 164, 352-360.
[10]
Matinise, N.; Fuku, X.G.; Kaviyarasu, K.; Mayedwa, N.; Maaza, M. ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties & mechanism of formation. Appl. Surf. Sci., 2017, 406, 339-347.
[11]
Jayaprakash, N.; Vijaya, J.J.; Kaviyarasu, K.; Kombaiah, K.; Kennedy, L.J.; Ramalingam, R.J.; Al-Lohedan, H.A. Green synthesis of Ag nanoparticles using Tamarind fruit extract for the antibacterial studies. J. Photochem. Photobiol. B Biol, 2017, 169, 178-185.
[12]
Mohd, S.A.; Jitendra, P.; Yeoung, S.Y. Biogenic synthesis of metallic nanoparticles by plant extract. ACS Sustain. Chem. Eng., 2013, 6, 591-602.
[13]
Shib, S.D.; Braja, G.B. Synthesis of gold nanoparticles using renewable Punicagranatum juice and study of its catalytic activity. Appl. Nanosci., 2014, 4, 55-59.
[14]
Xavier Bosch, F.; Michele Manos, M.; Sherman, M. Prevalence of human papillomavirus in cervical cancer: A worldwide perspective. Obstet. Gynecol. Survey., 1995, 50, 725-725.
[15]
Tarney, C.M.; Han, J. Postcoital bleeding: A review on etiology, diagnosis, and management. Obstet. Gynecol. Intl., 2014, 192087, 8.
[16]
Ganesh, G.; Abhishek, T.; Saurabh, M.; Sarada, N.C. Cytotoxic and apoptosis induction potential of Mimusopselengi L. in human cervical cancer (SiHa) cell line. J. King Saud Univ. Sci., 2014, 26, 333-337.
[17]
Liu, B.; Shu-Mei, H.; Xiao-Yong, T.; Li, H.; Chang-Zhong, L. Cervical cancer gene therapy by gene loaded PEG-PLA nanomedicine. Asian Pacific. J. Cancer Prevent., 2014, 15, 4915-4918.
[18]
Che-Ming, J.H.; Santosh, A.; Liang, F.Z. Nanoparticle-assisted combination therapies for effective cancer treatment-review. Therapeut.. Deliv., 2010, 1(2), 323-334.
[19]
Chen, J.; Gu, W.; Yang, L.; Chen, C.; Shao, R.; Xu, K.; Xu, Z.P. Nanotechnology in the management of cervical cancer. Rev. Med. Virol., 2015, 25(S1), 72-83.
[20]
Hartman, K.B.; Wilson, L.J.; Rosenblum, M.G. Detecting and treating cancer with nanotechnology. Mol. Diagn. Ther., 2008, 12(1), 1-14.
[21]
Zhang, L.; Gu, F.X.; Chan, J.M.; Wang, A.Z.; Langer, R.S.; Farokhzad, O.C. Nanoparticles in medicine: Therapeutic applications and developments, Clinical pharmacology and therapeutics. Nature, 2008, 83(5), 761-769.
[22]
Erik, C.D.; Lauren, A.A.; Megan, A.M.; Mostafa, A.S. Size matters: Gold nanoparticles in targeted cancer drug delivery. Therapeut. Deliv., 2012, 3(4), 457-478.
[23]
Faheem, S.M.; Hussaina, B. Gold Nanoparticles in cancer diagnosis and treatment: A review. Austin J. Biotechnol. Bioeng., 2014, 11(6), 1-5.
[24]
Kaviyarasu, K.; Geetha, N.; Kanimozhi, K.; Magdalane, C.M.; Sivaranjani, S.; Ayeshamariam, A.; Maaza, M. In vitro cytotoxicity effect and antibacterial performance of human lung epithelial cells A549 activity of zinc oxide doped TiO2 nanocrystals: Investigation of bio-medical application by chemical method. Mater. Sci. Eng. C, 2017, 74, 325-333.
[25]
Kaviyarasu, K.; Kanimozhi, K.; Matinise, N.; Magdalane, C.M.; Mola, G.T.; Kennedy, J.; Maaza, M. Antiproliferative effects on human lung cell lines A549 activity of cadmium selenide nanoparticles extracted from cytotoxic effects: Investigation of bio electronic application. Mater. Sci. Eng. C, 2017, 76, 1012-1025.
[26]
Shanthi, C.; Vanitha, P.K.; Ravi, P.P.; Radhika, T.; Manasa, E.; Umasankar, B. Development and validation of doxorubicin Hcl in bulk and its pharmaceutical dosage form by visible spectrophotometry. Int. J. Pharm. Sci., 2013, 3(3), 216-218.
[27]
Alle, M.; Gangapuram, B.R.; Maragoni, V.; Guttena, V.; Dudde, A.K.; Sumathi, N.; Ming-Yeh Yang, A.H.; Surya, S.S. Efficient pH dependent drug delivery to target cancer cells by gold nanoparticles capped with carboxymethyl chitosan. Intl. J. Mol. Sci., 2014, 15, 8216-8234.
[28]
Patel, R.; Singh, S.K.; Singh, S.; Sheth, N.R.; Gendle, R. Development and characterization of curcumin loaded transfersome for transdermal delivery. J. Pharmaceut. Sci. Res., 2009, 1(4), 71-80.
[29]
Kanthadevi, A.; Sateeshkumar, A.; Aarthy, M.; Ragavendra, R.; Subhashini, K. One step green synthesis of phytochemicals mediated gold nanoparticles from Aegle marmales for the prevention of urinary catheter infection. Intl. J. Pharm. Pharm. Sci., 2014, 6(1), 700-706.
[30]
Tourinho, P.S.; Van Gestel, C.A.M.; Lofts, S.; Svendsen, C.; Soares, A.M.V.M.; Loureiro, S. Metal based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environ. Toxicol. Chem., 2012, 31, 1679-1692.
[31]
Ram Prasad, S.; Elango, K.; Devi, D.; Saranya, J.S. Formulation and evaluation of azathioprine loaded silver nanopartilces for the treatment of rheumatoid arthritis. Asian J. Biomed. Pharmaceut. Sci., 2013, 3(23), 28-32.
[32]
Wang, F.; Wang, Y.C.; Dou, S.; Xiong, M.H.; Sun, T.M.; Wang, J. Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano, 2011, 5, 3679-3692.
[33]
Sheo, D.M.; Shwetha, A.; Ram, C.D.; Ghanshyam, M.; Girish, K.; Sunil, K.P. Transferosomes: A novel vesicular carrier for enhanced Transdermal delivery of stavudine: Development, characterization and performance evaluation. J. Sci. Speculat. Res., 2010, 1, 130-136.
[34]
Vijistella, B.G. Green synthesis of silver nanostructures against human cancer cell lines and certain pathogens. Int. J. Pharmaceut. Chem. Biol. Sci., 2014, 4(1), 101-111.
[35]
Nelson Samuel, J.J.; Ramesh Kumar, T.; Evangelin, D. molecular docking study, synthesisand evaluation of antitumor activity of novel pyrazole derivatives. Intl. J. Pharmaceut. Chem. Sci., 2016, 5(1), 32-40.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy