Review Article

新偏头痛发现的治疗作用

卷 26, 期 34, 2019

页: [6261 - 6281] 页: 21

弟呕挨: 10.2174/0929867325666180530114534

价格: $65

摘要

背景:偏头痛是最致残的神经系统疾病之一,并伴有较高的社会经济成本。尽管偏头痛发病机制的某些方面仍未完全了解,但主要假说暗示了三叉神经血管系统激活的作用。 Triptans被认为是当前偏头痛发作的金标准疗法。但是,它们在临床实践中的使用受到限制。预防性治疗包括预防偏头痛的非特异性方法。所有这些都支持对未来研究的需求,以开发创新的抗偏头痛药物。 目的:本研究是对有关偏头痛研究中新疗法的最新文献的综述。 方法:在PUBMED数据库中进行了系统的文献检索,以探讨直至2017年7月发表的偏头痛的治疗策略。 结果:正在进行的5-HT1F受体激动剂和谷氨酸受体拮抗剂的临床试验为急性偏头痛治疗提供了有希望的新方面。抗CGRP和CGRP受体的单克隆抗体在预防性治疗方面具有革命性意义。但是,需要进一步的长期研究以测试其耐受性。临床前研究表明,PACAP和犬尿酸相关治疗取得了积极成果。其他有希望的治疗策略(例如针对TRPV1,P物质,NOS或orexin的治疗策略)在临床试验中未显示出疗效。 结论:由于其副作用,当前的治疗方法并不适合所有偏头痛患者。特别是频繁的发作性和慢性偏头痛代表了研究人员的治疗挑战。需要临床和临床前研究来阐明偏头痛的病理生理学,以便开发新的偏头痛特异性疗法。

关键词: 降钙素基因相关肽,5-HT1F受体激动剂,谷氨酸,垂体腺苷酸环化酶激活多肽,犬尿酸,三叉神经血管系统。

[1]
Murray, C.J.; Vos, T.; Lozano, R.; Naghavi, M.; Flaxman, A.D.; Michaud, C.; Ezzati, M.; Shibuya, K.; Salomon, J.A.; Abdalla, S.; Aboyans, V.; Abraham, J.; Ackerman, I.; Aggarwal, R.; Ahn, S.Y.; Ali, M.K.; Alvarado, M.; Anderson, H.R.; Anderson, L.M.; Andrews, K.G.; Atkinson, C.; Baddour, L.M.; Bahalim, A.N.; Barker-Collo, S.; Barrero, L.H.; Bartels, D.H.; Basáñez, M.G.; Baxter, A.; Bell, M.L.; Benjamin, E.J.; Bennett, D.; Bernabé, E.; Bhalla, K.; Bhandari, B.; Bikbov, B.; Bin Abdulhak, A.; Birbeck, G.; Black, J.A.; Blencowe, H.; Blore, J.D.; Blyth, F.; Bolliger, I.; Bonaventure, A.; Boufous, S.; Bourne, R.; Boussinesq, M.; Braithwaite, T.; Brayne, C.; Bridgett, L.; Brooker, S.; Brooks, P.; Brugha, T.S.; Bryan-Hancock, C.; Bucello, C.; Buchbinder, R.; Buckle, G.; Budke, C.M.; Burch, M.; Burney, P.; Burstein, R.; Calabria, B.; Campbell, B.; Canter, C.E.; Carabin, H.; Carapetis, J.; Carmona, L.; Cella, C.; Charlson, F.; Chen, H.; Cheng, A.T.; Chou, D.; Chugh, S.S.; Coffeng, L.E.; Colan, S.D.; Colquhoun, S.; Colson, K.E.; Condon, J.; Connor, M.D.; Cooper, L.T.; Corriere, M.; Cortinovis, M.; de Vaccaro, K.C.; Couser, W.; Cowie, B.C.; Criqui, M.H.; Cross, M.; Dabhadkar, K.C.; Dahiya, M.; Dahodwala, N.; Damsere-Derry, J.; Danaei, G.; Davis, A.; De Leo, D.; Degenhardt, L.; Dellavalle, R.; Delossantos, A.; Denenberg, J.; Derrett, S.; Des Jarlais, D.C.; Dharmaratne, S.D.; Dherani, M.; Diaz-Torne, C.; Dolk, H.; Dorsey, E.R.; Driscoll, T.; Duber, H.; Ebel, B.; Edmond, K.; Elbaz, A.; Ali, S.E.; Erskine, H.; Erwin, P.J.; Espindola, P.; Ewoigbokhan, S.E.; Farzadfar, F.; Feigin, V.; Felson, D.T.; Ferrari, A.; Ferri, C.P.; Fèvre, E.M.; Finucane, M.M.; Flaxman, S.; Flood, L.; Foreman, K.; Forouzanfar, M.H.; Fowkes, F.G.; Fransen, M.; Freeman, M.K.; Gabbe, B.J.; Gabriel, S.E.; Gakidou, E.; Ganatra, H.A.; Garcia, B.; Gaspari, F.; Gillum, R.F.; Gmel, G.; Gonzalez-Medina, D.; Gosselin, R.; Grainger, R.; Grant, B.; Groeger, J.; Guillemin, F.; Gunnell, D.; Gupta, R.; Haagsma, J.; Hagan, H.; Halasa, Y.A.; Hall, W.; Haring, D.; Haro, J.M.; Harrison, J.E.; Havmoeller, R.; Hay, R.J.; Higashi, H.; Hill, C.; Hoen, B.; Hoffman, H.; Hotez, P.J.; Hoy, D.; Huang, J.J.; Ibeanusi, S.E.; Jacobsen, K.H.; James, S.L.; Jarvis, D.; Jasrasaria, R.; Jayaraman, S.; Johns, N.; Jonas, J.B.; Karthikeyan, G.; Kassebaum, N.; Kawakami, N.; Keren, A.; Khoo, J.P.; King, C.H.; Knowlton, L.M.; Kobusingye, O.; Koranteng, A.; Krishnamurthi, R.; Laden, F.; Lalloo, R.; Laslett, L.L.; Lathlean, T.; Leasher, J.L.; Lee, Y.Y.; Leigh, J.; Levinson, D.; Lim, S.S.; Limb, E.; Lin, J.K.; Lipnick, M.; Lipshultz, S.E.; Liu, W.; Loane, M.; Ohno, S.L.; Lyons, R.; Mabweijano, J.; MacIntyre, M.F.; Malekzadeh, R.; Mallinger, L.; Manivannan, S.; Marcenes, W.; March, L.; Margolis, D.J.; Marks, G.B.; Marks, R.; Matsumori, A.; Matzopoulos, R.; Mayosi, B.M.; McAnulty, J.H.; McDermott, M.M.; McGill, N.; McGrath, J.; Medina-Mora, M.E.; Meltzer, M.; Mensah, G.A.; Merriman, T.R.; Meyer, A.C.; Miglioli, V.; Miller, M.; Miller, T.R.; Mitchell, P.B.; Mock, C.; Mocumbi, A.O.; Moffitt, T.E.; Mokdad, A.A.; Monasta, L.; Montico, M.; Moradi-Lakeh, M.; Moran, A.; Morawska, L.; Mori, R.; Murdoch, M.E.; Mwaniki, M.K.; Naidoo, K.; Nair, M.N.; Naldi, L.; Narayan, K.M.; Nelson, P.K.; Nelson, R.G.; Nevitt, M.C.; Newton, C.R.; Nolte, S.; Norman, P.; Norman, R.; O’Donnell, M.; O’Hanlon, S.; Olives, C.; Omer, S.B.; Ortblad, K.; Osborne, R.; Ozgediz, D.; Page, A.; Pahari, B.; Pandian, J.D.; Rivero, A.P.; Patten, S.B.; Pearce, N.; Padilla, R.P.; Perez-Ruiz, F.; Perico, N.; Pesudovs, K.; Phillips, D.; Phillips, M.R.; Pierce, K.; Pion, S.; Polanczyk, G.V.; Polinder, S.; Pope, C.A., III; Popova, S.; Porrini, E.; Pourmalek, F.; Prince, M.; Pullan, R.L.; Ramaiah, K.D.; Ranganathan, D.; Razavi, H.; Regan, M.; Rehm, J.T.; Rein, D.B.; Remuzzi, G.; Richardson, K.; Rivara, F.P.; Roberts, T.; Robinson, C.; De Leòn, F.R.; Ronfani, L.; Room, R.; Rosenfeld, L.C.; Rushton, L.; Sacco, R.L.; Saha, S.; Sampson, U.; Sanchez-Riera, L.; Sanman, E.; Schwebel, D.C.; Scott, J.G.; Segui-Gomez, M.; Shahraz, S.; Shepard, D.S.; Shin, H.; Shivakoti, R.; Singh, D.; Singh, G.M.; Singh, J.A.; Singleton, J.; Sleet, D.A.; Sliwa, K.; Smith, E.; Smith, J.L.; Stapelberg, N.J.; Steer, A.; Steiner, T.; Stolk, W.A.; Stovner, L.J.; Sudfeld, C.; Syed, S.; Tamburlini, G.; Tavakkoli, M.; Taylor, H.R.; Taylor, J.A.; Taylor, W.J.; Thomas, B.; Thomson, W.M.; Thurston, G.D.; Tleyjeh, I.M.; Tonelli, M.; Towbin, J.A.; Truelsen, T.; Tsilimbaris, M.K.; Ubeda, C.; Undurraga, E.A.; van der Werf, M.J.; van Os, J.; Vavilala, M.S.; Venketasubramanian, N.; Wang, M.; Wang, W.; Watt, K.; Weatherall, D.J.; Weinstock, M.A.; Weintraub, R.; Weisskopf, M.G.; Weissman, M.M.; White, R.A.; Whiteford, H.; Wiebe, N.; Wiersma, S.T.; Wilkinson, J.D.; Williams, H.C.; Williams, S.R.; Witt, E.; Wolfe, F.; Woolf, A.D.; Wulf, S.; Yeh, P.H.; Zaidi, A.K.; Zheng, Z.J.; Zonies, D.; Lopez, A.D.; AlMazroa, M.A.; Memish, Z.A. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 2012, 380(9859), 2197-2223.
[http://dx.doi.org/10.1016/S0140-6736(12)61689-4] [PMID: 23245608]
[2]
Maniyar, F.H.; Sprenger, T.; Monteith, T.; Schankin, C.; Goadsby, P.J. Brain activations in the premonitory phase of nitroglycerin-triggered migraine attacks. Brain, 2014, 137(Pt 1), 232-241.
[http://dx.doi.org/10.1093/brain/awt320] [PMID: 24277718]
[3]
K.S.L. Patterns of cerebral integration indicated by the scotomas of migraine. Arch. Neurol. Psychiatry, 1941, 46, 331-339.
[http://dx.doi.org/10.1001/archneurpsyc.1941.02280200137007]
[4]
Silberstein, S.D. Considerations for management of migraine symptoms in the primary care setting. Postgrad. Med., 2016, 128(5), 523-537.
[http://dx.doi.org/10.1080/00325481.2016.1175912] [PMID: 27078039]
[5]
Viana, M.; Linde, M.; Sances, G.; Ghiotto, N.; Guaschino, E.; Allena, M.; Terrazzino, S.; Nappi, G.; Goadsby, P.J.; Tassorelli, C. Migraine aura symptoms: Duration, succession and temporal relationship to headache. Cephalalgia, 2016, 36(5), 413-421.
[http://dx.doi.org/10.1177/0333102415593089] [PMID: 26156076]
[6]
Russell, M.B.; Ducros, A. Sporadic and familial hemiplegic migraine: pathophysiological mechanisms, clinical characteristics, diagnosis, and management. Lancet Neurol., 2011, 10(5), 457-470.
[http://dx.doi.org/10.1016/S1474-4422(11)70048-5] [PMID: 21458376]
[7]
Headache Classification Committee of the International Headache, S., The International Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia, 2013, 33(9), 629-808.
[http://dx.doi.org/10.1177/0333102413485658] [PMID: 23771276]
[8]
Blau, J.N. Migraine postdromes: symptoms after attacks. Cephalalgia, 1991, 11(5), 229-231.
[http://dx.doi.org/10.1046/j.1468-2982.1991.1105229.x] [PMID: 1773437]
[9]
Giffin, N.J.; Lipton, R.B.; Silberstein, S.D.; Olesen, J.; Goadsby, P.J. The migraine postdrome: An electronic diary study. Neurology, 2016, 87(3), 309-313.
[http://dx.doi.org/10.1212/WNL.0000000000002789] [PMID: 27335112]
[10]
Edvinsson, L. Tracing neural connections to pain pathways with relevance to primary headaches. Cephalalgia, 2011, 31(6), 737-747.
[http://dx.doi.org/10.1177/0333102411398152] [PMID: 21335366]
[11]
Liu, Y.; Broman, J.; Zhang, M.; Edvinsson, L. Brainstem and thalamic projections from a craniovascular sensory nervous centre in the rostral cervical spinal dorsal horn of rats. Cephalalgia, 2009, 29(9), 935-948.
[http://dx.doi.org/10.1111/j.1468-2982.2008.01829.x] [PMID: 19250290]
[12]
Mokha, S.S.; McMillan, J.A.; Iggo, A. Pathways mediating descending control of spinal nociceptive transmission from the nuclei locus coeruleus (LC) and raphe magnus (NRM) in the cat. Exp. Brain Res., 1986, 61(3), 597-606.
[http://dx.doi.org/10.1007/BF00237586] [PMID: 3007190]
[13]
Li, Y.Q.; Takada, M.; Shinonaga, Y.; Mizuno, N. Direct projections from the midbrain periaqueductal gray and the dorsal raphe nucleus to the trigeminal sensory complex in the rat. Neuroscience, 1993, 54(2), 431-443.
[http://dx.doi.org/10.1016/0306-4522(93)90264-G] [PMID: 7687754]
[14]
Szabó, N.; Kincses, Z.T.; Párdutz, A.; Tajti, J.; Szok, D.; Tuka, B.; Király, A.; Babos, M.; Vörös, E.; Bomboi, G.; Orzi, F.; Vécsei, L. White matter microstructural alterations in migraine: a diffusion-weighted MRI study. Pain, 2012, 153(3), 651-656.
[http://dx.doi.org/10.1016/j.pain.2011.11.029] [PMID: 22244439]
[15]
Amin, F.M.; Asghar, M.S.; Hougaard, A.; Hansen, A.E.; Larsen, V.A.; de Koning, P.J.; Larsson, H.B.; Olesen, J.; Ashina, M. Magnetic resonance angiography of intracranial and extracranial arteries in patients with spontaneous migraine without aura: a cross-sectional study. Lancet Neurol., 2013, 12(5), 454-461.
[http://dx.doi.org/10.1016/S1474-4422(13)70067-X] [PMID: 23578775]
[16]
Tajti, J.; Szok, D.; Majláth, Z.; Tuka, B.; Csáti, A.; Vécsei, L. Migraine and neuropeptides. Neuropeptides, 2015, 52, 19-30.
[http://dx.doi.org/10.1016/j.npep.2015.03.006] [PMID: 26094101]
[17]
Xanthos, D.N.; Sandkühler, J. Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nat. Rev. Neurosci., 2014, 15(1), 43-53.
[http://dx.doi.org/10.1038/nrn3617] [PMID: 24281245]
[18]
Chiu, I.M.; von Hehn, C.A.; Woolf, C.J. Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology. Nat. Neurosci., 2012, 15(8), 1063-1067.
[http://dx.doi.org/10.1038/nn.3144] [PMID: 22837035]
[19]
Noseda, R.; Burstein, R. Migraine pathophysiology: anatomy of the trigeminovascular pathway and associated neurological symptoms, cortical spreading depression, sensitization, and modulation of pain. Pain, 2013, 154(Suppl. 1), S44-S53.
[http://dx.doi.org/10.1016/j.pain.2013.07.021] [PMID: 23891892]
[20]
Zhang, X.; Levy, D.; Noseda, R.; Kainz, V.; Jakubowski, M.; Burstein, R. Activation of meningeal nociceptors by cortical spreading depression: implications for migraine with aura. J. Neurosci., 2010, 30(26), 8807-8814.
[http://dx.doi.org/10.1523/JNEUROSCI.0511-10.2010] [PMID: 20592202]
[21]
Ferrari, M.D.; Goadsby, P.J.; Roon, K.I.; Lipton, R.B. Triptans (serotonin, 5-HT1B/1D agonists) in migraine: detailed results and methods of a meta-analysis of 53 trials. Cephalalgia, 2002, 22(8), 633-658.
[http://dx.doi.org/10.1046/j.1468-2982.2002.00404.x] [PMID: 12383060]
[22]
Diener, H.C. Efficacy and safety of intravenous acetylsalicylic acid lysinate compared to subcutaneous sumatriptan and parenteral placebo in the acute treatment of migraine. A double-blind, double-dummy, randomized, multicenter, parallel group study. Cephalalgia, 1999, 19(6), 581-588.
[http://dx.doi.org/10.1046/j.1468-2982.1999.019006581.x] [PMID: 10448545]
[23]
Derry, C.J.; Derry, S.; Moore, R.A. Sumatriptan (all routes of administration) for acute migraine attacks in adults - overview of Cochrane reviews. Cochrane Database Syst. Rev., 2014, (5)CD009108
[http://dx.doi.org/10.1002/14651858.CD009108.pub2] [PMID: 24865446]
[24]
Limmroth, V.; Kazarawa, Z.; Fritsche, G.; Diener, H.C. Headache after frequent use of serotonin agonists zolmitriptan and naratriptan. Lancet, 1999, 353(9150), 378.
[http://dx.doi.org/10.1016/S0140-6736(05)74950-3] [PMID: 9950449]
[25]
Tajti, J.; Majláth, Z.; Szok, D.; Csáti, A.; Vécsei, L. Drug safety in acute migraine treatment. Expert Opin. Drug Saf., 2015, 14(6), 891-909.
[http://dx.doi.org/10.1517/14740338.2015.1026325] [PMID: 25773005]
[26]
O’Quinn, S.; Davis, R.L.; Gutterman, D.L.; Pait, G.D.; Fox, A.W. Prospective large-scale study of the tolerability of subcutaneous sumatriptan injection for acute treatment of migraine. Cephalalgia, 1999, 19(4), 223-231.
[http://dx.doi.org/10.1046/j.1468-2982.1999.019004223.x] [PMID: 10376167]
[27]
Welch, K.M.; Mathew, N.T.; Stone, P.; Rosamond, W.; Saiers, J.; Gutterman, D. Tolerability of sumatriptan: clinical trials and post-marketing experience. Cephalalgia, 2000, 20(8), 687-695.
[http://dx.doi.org/10.1046/j.1468-2982.2000.00116.x] [PMID: 11167896]
[28]
Schaefer, S.M.; Gottschalk, C.H.; Jabbari, B. Treatment of chronic migraine with focus on botulinum neurotoxins. Toxins (Basel), 2015, 7(7), 2615-2628.
[http://dx.doi.org/10.3390/toxins7072615] [PMID: 26184313]
[29]
Szok, D.; Csáti, A.; Vécsei, L.; Tajti, J. Treatment of chronic migraine with Onabotulinumtoxin A: Mode of action, efficacy and safety. Toxins (Basel), 2015, 7(7), 2659-2673.
[http://dx.doi.org/10.3390/toxins7072659] [PMID: 26193319]
[30]
Tajti, J.; Szok, D.; Tuka, B.; Csáti, A.; Kuris, A.; Majláth, Z.; Lukács, M.; Vécsei, L. [Botulinum neurotoxin--a therapy in migraine Ideggyogy. Sz., 2012, 65(3-4), 77-82.
[PMID: 23136725]
[31]
Edvinsson, L.; Villalón, C.M. MaassenVanDenBrink, A. Basic mechanisms of migraine and its acute treatment. Pharmacol. Ther., 2012, 136(3), 319-333.
[http://dx.doi.org/10.1016/j.pharmthera.2012.08.011] [PMID: 22939884]
[32]
Curran, D.A.; Hinterberger, H.; Lance, J.W. Total plasma serotonin, 5-hydroxyindoleacetic acid and p-hydroxy-m-methoxymandelic acid excretion in normal and migrainous subjects. Brain, 1965, 88(5), 997-1010.
[http://dx.doi.org/10.1093/brain/88.5.997] [PMID: 5325360]
[33]
Feniuk, W.; Humphrey, P.P.; Perren, M.J. The selective carotid arterial vasoconstrictor action of GR43175 in anaesthetized dogs. Br. J. Pharmacol., 1989, 96(1), 83-90.
[http://dx.doi.org/10.1111/j.1476-5381.1989.tb11787.x] [PMID: 2538184]
[34]
Cohen, M.L.; Johnson, K.W.; Schenck, K.W.; Phebus, L.A. Migraine therapy: relationship between serotonergic contractile receptors in canine and rabbit saphenous veins to human cerebral and coronary arteries. Cephalalgia, 1997, 17(6), 631-638.
[http://dx.doi.org/10.1046/j.1468-2982.1997.1706631.x] [PMID: 9350382]
[35]
Nilsson, T.; Longmore, J.; Shaw, D.; Olesen, I.J.; Edvinsson, L. Contractile 5-HT1B receptors in human cerebral arteries: pharmacological characterization and localization with immunocytochemistry. Br. J. Pharmacol., 1999, 128(6), 1133-1140.
[http://dx.doi.org/10.1038/sj.bjp.0702773] [PMID: 10578124]
[36]
Edvinsson, L.; Uddman, E.; Wackenfors, A.; Davenport, A.; Longmore, J.; Malmsjö, M. Triptan-induced contractile (5-HT1B receptor) responses in human cerebral and coronary arteries: relationship to clinical effect. Clin. Sci. (Lond.), 2005, 109(3), 335-342.
[http://dx.doi.org/10.1042/CS20050016] [PMID: 15853772]
[37]
Williamson, D.J.; Hargreaves, R.J.; Hill, R.G.; Shepheard, S.L. Sumatriptan inhibits neurogenic vasodilation of dural blood vessels in the anaesthetized rat--intravital microscope studies. Cephalalgia, 1997, 17(4), 525-531.
[http://dx.doi.org/10.1046/j.1468-2982.1997.1704525.x] [PMID: 9209774]
[38]
Williamson, D.J.; Shepheard, S.L.; Hill, R.G.; Hargreaves, R.J. The novel anti-migraine agent rizatriptan inhibits neurogenic dural vasodilation and extravasation. Eur. J. Pharmacol., 1997, 328(1), 61-64.
[http://dx.doi.org/10.1016/S0014-2999(97)83028-2] [PMID: 9203569]
[39]
Hoskin, K.L.; Kaube, H.; Goadsby, P.J. Sumatriptan can inhibit trigeminal afferents by an exclusively neural mechanism. Brain, 1996, 119(Pt 5), 1419-1428.
[http://dx.doi.org/10.1093/brain/119.5.1419] [PMID: 8931567]
[40]
Hoyer, D.; Clarke, D.E.; Fozard, J.R.; Hartig, P.R.; Martin, G.R.; Mylecharane, E.J.; Saxena, P.R.; Humphrey, P.P. International union of pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol. Rev., 1994, 46(2), 157-203.
[PMID: 7938165]
[41]
Lee, D.K.; George, S.R.; Evans, J.F.; Lynch, K.R.; O’Dowd, B.F. Orphan G protein-coupled receptors in the CNS. Curr. Opin. Pharmacol., 2001, 1(1), 31-39.
[http://dx.doi.org/10.1016/S1471-4892(01)00003-0] [PMID: 11712532]
[42]
Waeber, C.; Moskowitz, M.A. [3H]sumatriptan labels both 5-HT1D and 5-HT1F receptor binding sites in the guinea pig brain: an autoradiographic study. Naunyn Schmiedebergs Arch. Pharmacol., 1995, 352(3), 263-275.
[http://dx.doi.org/10.1007/BF00168556] [PMID: 8584041]
[43]
Tfelt-Hansen, P.; Saxena, P.R.; Dahlöf, C.; Pascual, J.; Láinez, M.; Henry, P.; Diener, H.; Schoenen, J.; Ferrari, M.D.; Goadsby, P.J. Ergotamine in the acute treatment of migraine: a review and European consensus. Brain, 2000, 123(Pt 1), 9-18.
[http://dx.doi.org/10.1093/brain/123.1.9] [PMID: 10611116]
[44]
Hoyer, D.; Hannon, J.P.; Martin, G.R. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol. Biochem. Behav., 2002, 71(4), 533-554.
[http://dx.doi.org/10.1016/S0091-3057(01)00746-8] [PMID: 11888546]
[45]
Amrutkar, D.V.; Ploug, K.B.; Hay-Schmidt, A.; Porreca, F.; Olesen, J.; Jansen-Olesen, I. mRNA expression of 5-hydroxytryptamine 1B, 1D, and 1F receptors and their role in controlling the release of calcitonin gene-related peptide in the rat trigeminovascular system. Pain, 2012, 153(4), 830-838.
[http://dx.doi.org/10.1016/j.pain.2012.01.005] [PMID: 22305629]
[46]
Classey, J.D.; Bartsch, T.; Goadsby, P.J. Distribution of 5-HT(1B), 5-HT(1D) and 5-HT(1F) receptor expression in rat trigeminal and dorsal root ganglia neurons: relevance to the selective anti-migraine effect of triptans. Brain Res., 2010, 1361, 76-85.
[http://dx.doi.org/10.1016/j.brainres.2010.09.004] [PMID: 20833155]
[47]
Cohen, Z.; Bouchelet, I.; Olivier, A.; Villemure, J.G.; Ball, R.; Stanimirovic, D.B.; Hamel, E. Multiple microvascular and astroglial 5-hydroxytryptamine receptor subtypes in human brain: molecular and pharmacologic characterization. J. Cereb. Blood Flow Metab., 1999, 19(8), 908-917.
[http://dx.doi.org/10.1097/00004647-199908000-00010] [PMID: 10458598]
[48]
Tajti, J.; Csáti, A.; Vécsei, L. Novel strategies for the treatment of migraine attacks via the CGRP, serotonin, dopamine, PAC1, and NMDA receptors. Expert Opin. Drug Metab. Toxicol., 2014, 10(11), 1509-1520.
[http://dx.doi.org/10.1517/17425255.2014.963554] [PMID: 25253587]
[49]
Johnson, K.W.; Schaus, J.M.; Durkin, M.M.; Audia, J.E.; Kaldor, S.W.; Flaugh, M.E.; Adham, N.; Zgombick, J.M.; Cohen, M.L.; Branchek, T.A.; Phebus, L.A. 5-HT1F receptor agonists inhibit neurogenic dural inflammation in guinea pigs. Neuroreport, 1997, 8(9-10), 2237-2240.
[http://dx.doi.org/10.1097/00001756-199707070-00029] [PMID: 9243618]
[50]
Wainscott, D.B.; Krushinski, J.H., Jr; Audia, J.E.; Schaus, J.M.; Zgombick, J.M.; Lucaites, V.L.; Nelson, D.L. [3H]LY334370, a novel radioligand for the 5-HT1F receptor. I. In vitro characterization of binding properties. Naunyn Schmiedebergs Arch. Pharmacol., 2005, 371(3), 169-177.
[http://dx.doi.org/10.1007/s00210-005-1035-9] [PMID: 15900510]
[51]
Shepheard, S.; Edvinsson, L.; Cumberbatch, M.; Williamson, D.; Mason, G.; Webb, J.; Boyce, S.; Hill, R.; Hargreaves, R. Possible antimigraine mechanisms of action of the 5HT1F receptor agonist LY334370. Cephalalgia, 1999, 19(10), 851-858.
[http://dx.doi.org/10.1046/j.1468-2982.1999.1910851.x] [PMID: 10668103]
[52]
Cohen, M.L.; Schenck, K. Contractile responses to sumatriptan and ergotamine in the rabbit saphenous vein: effect of selective 5-HT(1F) receptor agonists and PGF(2alpha). Br. J. Pharmacol., 2000, 131(3), 562-568.
[http://dx.doi.org/10.1038/sj.bjp.0703587] [PMID: 11015308]
[53]
Goldstein, D.J.; Roon, K.I.; Offen, W.W.; Ramadan, N.M.; Phebus, L.A.; Johnson, K.W.; Schaus, J.M.; Ferrari, M.D. Selective seratonin 1F (5-HT(1F)) receptor agonist LY334370 for acute migraine: a randomised controlled trial. Lancet, 2001, 358(9289), 1230-1234.
[http://dx.doi.org/10.1016/S0140-6736(01)06347-4] [PMID: 11675061]
[54]
Nelson, D.L.; Phebus, L.A.; Johnson, K.W.; Wainscott, D.B.; Cohen, M.L.; Calligaro, D.O.; Xu, Y.C. Preclinical pharmacological profile of the selective 5-HT1F receptor agonist lasmiditan. Cephalalgia, 2010, 30(10), 1159-1169.
[http://dx.doi.org/10.1177/0333102410370873] [PMID: 20855361]
[55]
Capi, M.; de Andrés, F.; Lionetto, L.; Gentile, G.; Cipolla, F.; Negro, A.; Borro, M.; Martelletti, P.; Curto, M. Lasmiditan for the treatment of migraine. Expert Opin. Investig. Drugs, 2017, 26(2), 227-234.
[http://dx.doi.org/10.1080/13543784.2017.1280457] [PMID: 28076702]
[56]
Ferrari, M.D.; Färkkilä, M.; Reuter, U.; Pilgrim, A.; Davis, C.; Krauss, M.; Diener, H.C. Acute treatment of migraine with the selective 5-HT1F receptor agonist lasmiditan--a randomised proof-of-concept trial. Cephalalgia, 2010, 30(10), 1170-1178.
[http://dx.doi.org/10.1177/0333102410375512] [PMID: 20855362]
[57]
Tfelt-Hansen, P.C.; Olesen, J. The 5-HT1F receptor agonist lasmiditan as a potential treatment of migraine attacks: a review of two placebo-controlled phase II trials. J. Headache Pain, 2012, 13(4), 271-275.
[http://dx.doi.org/10.1007/s10194-012-0428-7] [PMID: 22430431]
[58]
Reuter, U.; Israel, H.; Neeb, L. The pharmacological profile and clinical prospects of the oral 5-HT1F receptor agonist lasmiditan in the acute treatment of migraine. Ther. Adv. Neurol. Disorder., 2015, 8(1), 46-54.
[http://dx.doi.org/10.1177/1756285614562419] [PMID: 25584073]
[59]
Färkkilä, M.; Diener, H.C.; Géraud, G.; Láinez, M.; Schoenen, J.; Harner, N.; Pilgrim, A.; Reuter, U. Efficacy and tolerability of lasmiditan, an oral 5-HT(1F) receptor agonist, for the acute treatment of migraine: a phase 2 randomised, placebo-controlled, parallel-group, dose-ranging study. Lancet Neurol., 2012, 11(5), 405-413.
[http://dx.doi.org/10.1016/S1474-4422(12)70047-9] [PMID: 22459549]
[60]
Bhatt, D.K.; Gupta, S.; Jansen-Olesen, I.; Andrews, J.S.; Olesen, J. NXN-188, a selective nNOS inhibitor and a 5-HT1B/1D receptor agonist, inhibits CGRP release in preclinical migraine models. Cephalalgia, 2013, 33(2), 87-100.
[http://dx.doi.org/10.1177/0333102412466967] [PMID: 23155193]
[61]
Vaughan, D.; Speed, J.; Medve, R.; Andrews, J.S. Safety and pharmacokinetics of NXN-188 after single and multiple doses in five phase I, randomized, double-blind, parallel studies in healthy adult volunteers. Clin. Ther., 2010, 32(1), 146-160.
[http://dx.doi.org/10.1016/j.clinthera.2010.01.006] [PMID: 20171420]
[62]
Hougaard, A.; Hauge, A.W.; Guo, S.; Tfelt-Hansen, P. The nitric oxide synthase inhibitor and serotonin-receptor agonist NXN-188 during the aura phase of migraine with aura: A randomized, double-blind, placebo-controlled cross-over study. Scand. J. Pain, 2013, 4(1), 48-52.
[http://dx.doi.org/10.1016/j.sjpain.2012.08.002] [PMID: 29913885]
[63]
Ferrari, A.; Spaccapelo, L.; Pinetti, D.; Tacchi, R.; Bertolini, A. Effective prophylactic treatments of migraine lower plasma glutamate levels. Cephalalgia, 2009, 29(4), 423-429.
[http://dx.doi.org/10.1111/j.1468-2982.2008.01749.x] [PMID: 19170689]
[64]
Vieira, D.S. Naffah-Mazzacoratti, Mda.G.; Zukerman, E.; Senne Soares, C.A.; Cavalheiro, E.A.; Peres, M.F. Glutamate levels in cerebrospinal fluid and triptans overuse in chronic migraine. Headache, 2007, 47(6), 842-847.
[http://dx.doi.org/10.1111/j.1526-4610.2007.00812.x] [PMID: 17578532]
[65]
Gorji, A.; Scheller, D.; Straub, H.; Tegtmeier, F.; Köhling, R.; Höhling, J.M.; Tuxhorn, I.; Ebner, A.; Wolf, P.; Werner Panneck, H.; Oppel, F.; Speckmann, E.J. Spreading depression in human neocortical slices. Brain Res., 2001, 906(1-2), 74-83.
[http://dx.doi.org/10.1016/S0006-8993(01)02557-4] [PMID: 11430863]
[66]
Xiao, Y.; Richter, J.A.; Hurley, J.H. Release of glutamate and CGRP from trigeminal ganglion neurons: Role of calcium channels and 5-HT1 receptor signaling. Mol. Pain, 2008, 4, 12.
[http://dx.doi.org/10.1186/1744-8069-4-12] [PMID: 18416824]
[67]
Oshinsky, M.L.; Luo, J. Neurochemistry of trigeminal activation in an animal model of migraine. Headache, 2006, 46(Suppl. 1), S39-S44.
[http://dx.doi.org/10.1111/j.1526-4610.2006.00489.x] [PMID: 16927963]
[68]
Lukács, M.; Warfvinge, K.; Tajti, J.; Fülöp, F.; Toldi, J.; Vécsei, L.; Edvinsson, L. Topical dura mater application of CFA induces enhanced expression of c-fos and glutamate in rat trigeminal nucleus caudalis: attenuated by KYNA derivate (SZR72). J. Headache Pain, 2017, 18(1), 39.
[http://dx.doi.org/10.1186/s10194-017-0746-x] [PMID: 28337634]
[69]
Monaghan, D.T.; Bridges, R.J.; Cotman, C.W. The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu. Rev. Pharmacol. Toxicol., 1989, 29, 365-402.
[http://dx.doi.org/10.1146/annurev.pa.29.040189.002053] [PMID: 2543272]
[70]
Traynelis, S.F.; Wollmuth, L.P.; McBain, C.J.; Menniti, F.S.; Vance, K.M.; Ogden, K.K.; Hansen, K.B.; Yuan, H.; Myers, S.J.; Dingledine, R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev., 2010, 62(3), 405-496.
[http://dx.doi.org/10.1124/pr.109.002451] [PMID: 20716669]
[71]
Kumar, J.; Mayer, M.L. Functional insights from glutamate receptor ion channel structures. Annu. Rev. Physiol., 2013, 75, 313-337.
[http://dx.doi.org/10.1146/annurev-physiol-030212-183711] [PMID: 22974439]
[72]
Paoletti, P.; Neyton, J. NMDA receptor subunits: function and pharmacology. Curr. Opin. Pharmacol., 2007, 7(1), 39-47.
[http://dx.doi.org/10.1016/j.coph.2006.08.011] [PMID: 17088105]
[73]
Kaszaki, J.; Erces, D.; Varga, G.; Szabó, A.; Vécsei, L.; Boros, M. Kynurenines and intestinal neurotransmission: the role of N-methyl-D-aspartate receptors. J. Neural Transm. (Vienna), 2012, 119(2), 211-223.
[http://dx.doi.org/10.1007/s00702-011-0658-x] [PMID: 21617892]
[74]
Chan, K. MaassenVanDenBrink, A. Glutamate receptor antagonists in the management of migraine. Drugs, 2014, 74(11), 1165-1176.
[http://dx.doi.org/10.1007/s40265-014-0262-0] [PMID: 25030431]
[75]
Yin, S.; Niswender, C.M. Progress toward advanced understanding of metabotropic glutamate receptors: structure, signaling and therapeutic indications. Cell. Signal., 2014, 26(10), 2284-2297.
[http://dx.doi.org/10.1016/j.cellsig.2014.04.022] [PMID: 24793301]
[76]
Tsuchiya, D.; Kunishima, N.; Kamiya, N.; Jingami, H.; Morikawa, K. Structural views of the ligand-binding cores of a metabotropic glutamate receptor complexed with an antagonist and both glutamate and Gd3+. Proc. Natl. Acad. Sci. USA, 2002, 99(5), 2660-2665.
[http://dx.doi.org/10.1073/pnas.052708599] [PMID: 11867751]
[77]
Muto, T.; Tsuchiya, D.; Morikawa, K.; Jingami, H. Structures of the extracellular regions of the group II/III metabotropic glutamate receptors. Proc. Natl. Acad. Sci. USA, 2007, 104(10), 3759-3764.
[http://dx.doi.org/10.1073/pnas.0611577104] [PMID: 17360426]
[78]
Kaube, H.; Herzog, J.; Käufer, T.; Dichgans, M.; Diener, H.C. Aura in some patients with familial hemiplegic migraine can be stopped by intranasal ketamine. Neurology, 2000, 55(1), 139-141.
[http://dx.doi.org/10.1212/WNL.55.1.139] [PMID: 10891926]
[79]
Afridi, S.K.; Giffin, N.J.; Kaube, H.; Goadsby, P.J. A ran-domized controlled trial of intranasal ketamine in migraine with prolonged aura. Neurology, 2013, 80(7), 642-647.
[http://dx.doi.org/10.1212/WNL.0b013e3182824e66] [PMID: 23365053]
[80]
Weiss, B.; Alt, A.; Ogden, A.M.; Gates, M.; Dieckman, D.K.; Clemens-Smith, A.; Ho, K.H.; Jarvie, K.; Rizkalla, G.; Wright, R.A.; Calligaro, D.O.; Schoepp, D.; Mattiuz, E.L.; Stratford, R.E.; Johnson, B.; Salhoff, C.; Katofiasc, M.; Phebus, L.A.; Schenck, K.; Cohen, M.; Filla, S.A.; Ornstein, P.L.; Johnson, K.W.; Bleakman, D. Pharmacological characterization of the competitive GLUK5 receptor antagonist decahydroisoquinoline LY466195 in vitro and in vivo. J. Pharmacol. Exp. Ther., 2006, 318(2), 772-781.
[http://dx.doi.org/10.1124/jpet.106.101428] [PMID: 16690725]
[81]
Sang, C.N.; Ramadan, N.M.; Wallihan, R.G.; Chappell, A.S.; Freitag, F.G.; Smith, T.R.; Silberstein, S.D.; Johnson, K.W.; Phebus, L.A.; Bleakman, D.; Ornstein, P.L.; Arnold, B.; Tepper, S.J.; Vandenhende, F. LY293558, a novel AMPA/GluR5 antagonist, is efficacious and well-tolerated in acute migraine. Cephalalgia, 2004, 24(7), 596-602.
[http://dx.doi.org/10.1111/j.1468-2982.2004.00723.x] [PMID: 15196302]
[82]
Johnson, K.W.N.E.; Johnson, M.P.; Dieckman, D.K.; Clemens-Smith, A.; Siuda, E.R.; Dell, C.P.; Dehlinger, V.; Hudziak, K.J.; Filla, S.A.; Ornstein, P.L.; Ramadan, N.M.; Bleakman, D. Innovative drug development for headache disorders: glutamate.Innovative Drug Development for Headache Disorders; Olesen, J; Ramadan, N., Ed.; Oxford Univ. Press: Oxford, UK, 2008, pp. 185-194.
[http://dx.doi.org/10.1093/med/9780199552764.003.0022]
[83]
Goadsby, P.J.K.C. Investigation of the role of mGluR5 inhibition in migraine: a proof of concept study of ADX10059 in acute migraine treatment. Cephalalgia, 2009, 29(Suppl. 1), 7.
[84]
Edvinsson, L.; Ekman, R.; Jansen, I.; McCulloch, J.; Uddman, R. Calcitonin gene-related peptide and cerebral blood vessels: distribution and vasomotor effects. J. Cereb. Blood Flow Metab., 1987, 7(6), 720-728.
[http://dx.doi.org/10.1038/jcbfm.1987.126] [PMID: 3500957]
[85]
Knyihar-Csillik, E.; Tajti, J.; Mohtasham, S.; Sari, G.; Vecsei, L. Electrical stimulation of the Gasserian ganglion induces structural alterations of calcitonin gene-related peptide-immunoreactive perivascular sensory nerve terminals in the rat cerebral dura mater: a possible model of migraine headache. Neurosci. Lett., 1995, 184(3), 189-192.
[http://dx.doi.org/10.1016/0304-3940(94)11203-U] [PMID: 7715843]
[86]
Steenbergh, P.H.; Höppener, J.W.; Zandberg, J.; Visser, A.; Lips, C.J.; Jansz, H.S. Structure and expression of the human calcitonin/CGRP genes. FEBS Lett., 1986, 209(1), 97-103.
[http://dx.doi.org/10.1016/0014-5793(86)81091-2] [PMID: 3492393]
[87]
Lou, H.; Gagel, R.F. Alternative RNA processing--its role in regulating expression of calcitonin/calcitonin gene-related peptide. J. Endocrinol., 1998, 156(3), 401-405.
[http://dx.doi.org/10.1677/joe.0.1560401] [PMID: 9582495]
[88]
Mulderry, P.K.; Ghatei, M.A.; Bishop, A.E.; Allen, Y.S.; Polak, J.M.; Bloom, S.R. Distribution and chromatographic characterisation of CGRP-like immunoreactivity in the brain and gut of the rat. Regul. Pept., 1985, 12(2), 133-143.
[http://dx.doi.org/10.1016/0167-0115(85)90194-6] [PMID: 3877953]
[89]
Choksi, T.; Hay, D.L.; Legon, S.; Poyner, D.R.; Hagner, S.; Bloom, S.R.; Smith, D.M. Comparison of the expression of calcitonin receptor-like receptor (CRLR) and receptor activity modifying proteins (RAMPs) with CGRP and adrenomedullin binding in cell lines. Br. J. Pharmacol., 2002, 136(5), 784-792.
[http://dx.doi.org/10.1038/sj.bjp.0704761] [PMID: 12086988]
[90]
Walker, C.S.; Conner, A.C.; Poyner, D.R.; Hay, D.L. Regulation of signal transduction by calcitonin gene-related peptide receptors. Trends Pharmacol. Sci., 2010, 31(10), 476-483.
[http://dx.doi.org/10.1016/j.tips.2010.06.006] [PMID: 20633935]
[91]
Goadsby, P.J.; Edvinsson, L.; Ekman, R. Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann. Neurol., 1990, 28(2), 183-187.
[http://dx.doi.org/10.1002/ana.410280213] [PMID: 1699472]
[92]
Bellamy, J.L.; Cady, R.K.; Durham, P.L. Salivary levels of CGRP and VIP in rhinosinusitis and migraine patients. Headache, 2006, 46(1), 24-33.
[http://dx.doi.org/10.1111/j.1526-4610.2006.00294.x] [PMID: 16412148]
[93]
van Dongen, R.M.; Zielman, R.; Noga, M.; Dekkers, O.M.; Hankemeier, T.; van den Maagdenberg, A.M.; Terwindt, G.M.; Ferrari, M.D. Migraine biomarkers in cerebrospinal fluid: A systematic review and meta-analysis. Cephalalgia, 2017, 37(1), 49-63.
[http://dx.doi.org/10.1177/0333102415625614] [PMID: 26888294]
[94]
Eftekhari, S.; Salvatore, C.A.; Johansson, S.; Chen, T.B.; Zeng, Z.; Edvinsson, L. Localization of CGRP, CGRP receptor, PACAP and glutamate in trigeminal ganglion. Relation to the blood-brain barrier. Brain Res., 2015, 1600, 93-109.
[http://dx.doi.org/10.1016/j.brainres.2014.11.031] [PMID: 25463029]
[95]
Eftekhari, S.; Salvatore, C.A.; Gaspar, R.C.; Roberts, R.; O’Malley, S.; Zeng, Z.; Edvinsson, L. Localization of CGRP receptor components, CGRP, and receptor binding sites in human and rhesus cerebellar cortex. Cerebellum, 2013, 12(6), 937-949.
[http://dx.doi.org/10.1007/s12311-013-0509-4] [PMID: 23917876]
[96]
Csati, A.; Tajti, J.; Tuka, B.; Edvinsson, L.; Warfvinge, K. Calcitonin gene-related peptide and its receptor components in the human sphenopalatine ganglion -- interaction with the sensory system. Brain Res., 2012, 1435, 29-39.
[http://dx.doi.org/10.1016/j.brainres.2011.11.058] [PMID: 22208649]
[97]
Knyihár-Csillik, E.; Tajti, J.; Chadaide, Z.; Csillik, B.; Vécsei, L. Functional immunohistochemistry of neuropeptides and nitric oxide synthase in the nerve fibers of the supratentorial dura mater in an experimental migraine model. Microsc. Res. Tech., 2001, 53(3), 193-211.
[http://dx.doi.org/10.1002/jemt.1084] [PMID: 11301495]
[98]
Lukács, M.; Haanes, K.A.; Majláth, Z.; Tajti, J.; Vécsei, L.; Warfvinge, K.; Edvinsson, L. Dural administration of inflammatory soup or Complete Freund’s Adjuvant induces activation and inflammatory response in the rat trigeminal ganglion. J. Headache Pain, 2015, 16, 564.
[http://dx.doi.org/10.1186/s10194-015-0564-y] [PMID: 26329487]
[99]
Tajti, J.; Kuris, A.; Vécsei, L.; Xu, C.B.; Edvinsson, L. Organ culture of the trigeminal ganglion induces enhanced expression of calcitonin gene-related peptide via activation of extracellular signal-regulated protein kinase 1/2. Cephalalgia, 2011, 31(1), 95-105.
[http://dx.doi.org/10.1177/0333102410382796] [PMID: 20851839]
[100]
Hou, J.F.; Yu, L.C. Blockade effects of BIBN4096BS on CGRP-induced inhibition on whole-cell K+ currents in spinal dorsal horn neuron of rats. Neurosci. Lett., 2010, 469(1), 15-18.
[http://dx.doi.org/10.1016/j.neulet.2009.11.035] [PMID: 19925849]
[101]
Iovino, M.; Feifel, U.; Yong, C.L.; Wolters, J.M.; Wallenstein, G. Safety, tolerability and pharmacokinetics of BIBN 4096 BS, the first selective small molecule calcitonin gene-related peptide receptor antagonist, following single intravenous administration in healthy volunteers. Cephalalgia, 2004, 24(8), 645-656.
[http://dx.doi.org/10.1111/j.1468-2982.2004.00726.x] [PMID: 15265053]
[102]
Olesen, J.; Diener, H.C.; Husstedt, I.W.; Goadsby, P.J.; Hall, D.; Meier, U.; Pollentier, S.; Lesko, L.M. Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N. Engl. J. Med., 2004, 350(11), 1104-1110.
[http://dx.doi.org/10.1056/NEJMoa030505] [PMID: 15014183]
[103]
Vécsei, L.; Szok, D.; Csáti, A.; Tajti, J. CGRP antagonists and antibodies for the treatment of migraine. Expert Opin. Investig. Drugs, 2015, 24(1), 31-41.
[http://dx.doi.org/10.1517/13543784.2015.960921] [PMID: 25219387]
[104]
Edvinsson, L.; Chan, K.Y.; Eftekhari, S.; Nilsson, E.; de Vries, R.; Säveland, H.; Dirven, C.M.; Danser, A.H. MaassenVanDenBrink, A. Effect of the calcitonin gene-related peptide (CGRP) receptor antagonist telcagepant in human cranial arteries. Cephalalgia, 2010, 30(10), 1233-1240.
[http://dx.doi.org/10.1177/0333102410362122] [PMID: 20855369]
[105]
Tepper, S.J.; Cleves, C. Telcagepant, a calcitonin gene-related peptide antagonist for the treatment of migraine. Curr. Opin. Investig. Drugs, 2009, 10(7), 711-720.
[PMID: 19579177]
[106]
Goadsby, P.J.; Holland, P.R.; Martins-Oliveira, M.; Hoffmann, J.; Schankin, C.; Akerman, S. Pathophysiology of migraine: a disorder of sensory processing. Physiol. Rev., 2017, 97(2), 553-622.
[http://dx.doi.org/10.1152/physrev.00034.2015] [PMID: 28179394]
[107]
Marcus, R.; Goadsby, P.J.; Dodick, D.; Stock, D.; Manos, G.; Fischer, T.Z. BMS-927711 for the acute treatment of migraine: a double-blind, randomized, placebo controlled, dose-ranging trial. Cephalalgia, 2014, 34(2), 114-125.
[http://dx.doi.org/10.1177/0333102413500727] [PMID: 23965396]
[108]
Diener, H.C.; Barbanti, P.; Dahlöf, C.; Reuter, U.; Habeck, J.; Podhorna, J. BI 44370 TA, an oral CGRP antagonist for the treatment of acute migraine attacks: results from a phase II study. Cephalalgia, 2011, 31(5), 573-584.
[http://dx.doi.org/10.1177/0333102410388435] [PMID: 21172952]
[109]
Voss, T.; Lipton, R.B.; Dodick, D.W.; Dupre, N.; Ge, J.Y.; Bachman, R.; Assaid, C.; Aurora, S.K.; Michelson, D. A phase IIb randomized, double-blind, placebo-controlled trial of ubrogepant for the acute treatment of migraine. Cephalalgia, 2016, 36(9), 887-898.
[http://dx.doi.org/10.1177/0333102416653233] [PMID: 27269043]
[110]
Wrobel Goldberg, S.; Silberstein, S.D. Targeting CGRP: A new era for migraine treatment. CNS Drugs, 2015, 29(6), 443-452.
[http://dx.doi.org/10.1007/s40263-015-0253-z] [PMID: 26138383]
[111]
Pellesi, L.; Guerzoni, S.; Pini, L.A. Spotlight on Anti-CGRP monoclonal antibodies in migraine: the clinical evidence to date. Clin. Pharmacol. Drug Dev., 2017, 6(6), 534-547.
[http://dx.doi.org/10.1002/cpdd.345] [PMID: 28409893]
[112]
Edvinsson, L. CGRP receptor antagonists and antibodies against CGRP and its receptor in migraine treatment. Br. J. Clin. Pharmacol., 2015, 80(2), 193-199.
[http://dx.doi.org/10.1111/bcp.12618] [PMID: 25731075]
[113]
Azanza, J.R.; Sádaba, B.; Gómez-Guiu, A. Monoclonal antibodies: pharmacokinetics as a basis for new dosage regimens? J. Oncol. Pharm. Pract., 2015, 21(5), 370-376.
[http://dx.doi.org/10.1177/1078155214538085] [PMID: 24903270]
[114]
Bigal, M.E.; Walter, S. Monoclonal antibodies for migraine: preventing calcitonin gene-related peptide activity. CNS Drugs, 2014, 28(5), 389-399.
[http://dx.doi.org/10.1007/s40263-014-0156-4] [PMID: 24638916]
[115]
Zhou, H.; Mascelli, M.A. Mechanisms of monoclonal antibody-drug interactions. Annu. Rev. Pharmacol. Toxicol., 2011, 51, 359-372.
[http://dx.doi.org/10.1146/annurev-pharmtox-010510-100510] [PMID: 20936946]
[116]
Descotes, J. Immunotoxicity of monoclonal antibodies. MAbs, 2009, 1(2), 104-111.
[http://dx.doi.org/10.4161/mabs.1.2.7909] [PMID: 20061816]
[117]
Vial, T.; Choquet-Kastylevsky, G.; Descotes, J. Adverse effects of immunotherapeutics involving the immune system. Toxicology, 2002, 174(1), 3-11.
[http://dx.doi.org/10.1016/S0300-483X(02)00051-3] [PMID: 11972986]
[118]
Stallmach, A.; Giese, T.; Schmidt, C.; Meuer, S.C.; Zeuzem, S.S. Severe anaphylactic reaction to infliximab: successful treatment with adalimumab - report of a case. Eur. J. Gastroenterol. Hepatol., 2004, 16(6), 627-630.
[http://dx.doi.org/10.1097/00042737-200406000-00018] [PMID: 15167167]
[119]
Dodick, D.W.; Goadsby, P.J.; Spierings, E.L.; Scherer, J.C.; Sweeney, S.P.; Grayzel, D.S. Safety and efficacy of LY2951742, a monoclonal antibody to calcitonin gene-related peptide, for the prevention of migraine: a phase 2, randomised, double-blind, placebo-controlled study. Lancet Neurol., 2014, 13(9), 885-892.
[http://dx.doi.org/10.1016/S1474-4422(14)70128-0] [PMID: 25127173]
[120]
Dodick, D.W.; Goadsby, P.J.; Spierings, E.L.; Scherer, J.C.; Sweeney, S.P.; Grayzel, D.S. Site of effect of LY2951742 for migraine prophylaxis--authors’ reply. Lancet Neurol., 2015, 14(1), 32-33.
[http://dx.doi.org/10.1016/S1474-4422(14)70309-6] [PMID: 25496895]
[121]
Sun, H.; Dodick, D.W.; Silberstein, S.; Goadsby, P.J.; Reuter, U.; Ashina, M.; Saper, J.; Cady, R.; Chon, Y.; Dietrich, J.; Lenz, R. Safety and efficacy of AMG 334 for prevention of episodic migraine: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol., 2016, 15(4), 382-390.
[http://dx.doi.org/10.1016/S1474-4422(16)00019-3] [PMID: 26879279]
[122]
Bigal, M.E.; Dodick, D.W.; Rapoport, A.M.; Silberstein, S.D.; Ma, Y.; Yang, R.; Loupe, P.S.; Burstein, R.; Newman, L.C.; Lipton, R.B. Safety, tolerability, and efficacy of TEV-48125 for preventive treatment of high-frequency episodic migraine: a multicentre, randomised, double-blind, placebo-controlled, phase 2b study. Lancet Neurol., 2015, 14(11), 1081-1090.
[http://dx.doi.org/10.1016/S1474-4422(15)00249-5] [PMID: 26432182]
[123]
Bigal, M.E.; Edvinsson, L.; Rapoport, A.M.; Lipton, R.B.; Spierings, E.L.; Diener, H.C.; Burstein, R.; Loupe, P.S.; Ma, Y.; Yang, R.; Silberstein, S.D. Safety, tolerability, and efficacy of TEV-48125 for preventive treatment of chronic migraine: a multicentre, randomised, double-blind, placebo-controlled, phase 2b study. Lancet Neurol., 2015, 14(11), 1091-1100.
[http://dx.doi.org/10.1016/S1474-4422(15)00245-8] [PMID: 26432181]
[124]
IHC oral abstracts and posters, Cephalalgia, 2017, 37(Issue 1_suppl)
[125]
Linde, M.; Gustavsson, A.; Stovner, L.J.; Steiner, T.J.; Barré, J.; Katsarava, Z.; Lainez, J.M.; Lampl, C.; Lantéri-Minet, M.; Rastenyte, D.; Ruiz de la Torre, E.; Tassorelli, C.; Andrée, C. The cost of headache disorders in Europe: the Eurolight project. Eur. J. Neurol., 2012, 19(5), 703-711.
[http://dx.doi.org/10.1111/j.1468-1331.2011.03612.x] [PMID: 22136117]
[126]
Miyata, A.; Arimura, A.; Dahl, R.R.; Minamino, N.; Uehara, A.; Jiang, L.; Culler, M.D.; Coy, D.H. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem. Biophys. Res. Commun., 1989, 164(1), 567-574.
[http://dx.doi.org/10.1016/0006-291X(89)91757-9] [PMID: 2803320]
[127]
Emery, A.C.; Alvarez, R.A.; Abboud, P.; Xu, W.; Westover, C.D.; Eiden, M.V.; Eiden, L.E. C-terminal amidation of PACAP-38 and PACAP-27 is dispensable for biological activity at the PAC1 receptor. Peptides, 2016, 79, 39-48.
[http://dx.doi.org/10.1016/j.peptides.2016.03.003] [PMID: 26976270]
[128]
Banks, W.A.; Kastin, A.J.; Komaki, G.; Arimura, A. Passage of pituitary adenylate cyclase activating polypeptide1-27 and pituitary adenylate cyclase activating polypeptide1-38 across the blood-brain barrier. J. Pharmacol. Exp. Ther., 1993, 267(2), 690-696.
[PMID: 8246142]
[129]
Tajti, J.; Szok, D.; Nagy-Grocz, G.; Tuka, B.; Petrovics-Balog, A.; Toldi, J.; Vecsei, L. Kynurenines and PACAP in migraine: medicinal chemistry and pathogenetic aspects. Curr. Med. Chem., 2017, 24(13), 1332-1349.
[http://dx.doi.org/10.2174/0929867324666170227115019] [PMID: 28245765]
[130]
Vécsei, L.; Tuka, B.; Tajti, J. Role of PACAP in migraine headaches. Brain, 2014, 137(Pt 3), 650-651.
[http://dx.doi.org/10.1093/brain/awu014] [PMID: 24549810]
[131]
Tajti, J.; Uddman, R.; Edvinsson, L. Neuropeptide localization in the “migraine generator” region of the human brainstem. Cephalalgia, 2001, 21(2), 96-101.
[http://dx.doi.org/10.1046/j.1468-2982.2001.00140.x] [PMID: 11422090]
[132]
Tajti, J.; Uddman, R.; Möller, S.; Sundler, F.; Edvinsson, L. Messenger molecules and receptor mRNA in the human trigeminal ganglion. J. Auton. Nerv. Syst., 1999, 76(2-3), 176-183.
[http://dx.doi.org/10.1016/S0165-1838(99)00024-7] [PMID: 10412842]
[133]
Uddman, R.; Tajti, J.; Hou, M.; Sundler, F.; Edvinsson, L. Neuropeptide expression in the human trigeminal nucleus caudalis and in the cervical spinal cord C1 and C2. Cephalalgia, 2002, 22(2), 112-116.
[http://dx.doi.org/10.1046/j.1468-2982.2002.00324.x] [PMID: 11972578]
[134]
Uddman, R.; Tajti, J.; Möller, S.; Sundler, F.; Edvinsson, L. Neuronal messengers and peptide receptors in the human sphenopalatine and otic ganglia. Brain Res., 1999, 826(2), 193-199.
[http://dx.doi.org/10.1016/S0006-8993(99)01260-3] [PMID: 10224296]
[135]
Steinberg, A.; Frederiksen, S.D.; Blixt, F.W.; Warfvinge, K.; Edvinsson, L. Expression of messenger molecules and receptors in rat and human sphenopalatine ganglion indicating therapeutic targets. J. Headache Pain, 2016, 17(1), 78.
[http://dx.doi.org/10.1186/s10194-016-0664-3] [PMID: 27587062]
[136]
Tuka, B.; Helyes, Z.; Markovics, A.; Bagoly, T.; Szolcsányi, J.; Szabó, N.; Tóth, E.; Kincses, Z.T.; Vécsei, L.; Tajti, J. Alterations in PACAP-38-like immunoreactivity in the plasma during ictal and interictal periods of migraine patients. Cephalalgia, 2013, 33(13), 1085-1095.
[http://dx.doi.org/10.1177/0333102413483931] [PMID: 23598374]
[137]
Tuka, B.; Szabó, N.; Tóth, E.; Kincses, Z.T.; Párdutz, Á.; Szok, D.; Körtési, T.; Bagoly, T.; Helyes, Z.; Edvinsson, L.; Vécsei, L.; Tajti, J. Release of PACAP-38 in episodic cluster headache patients - an exploratory study. J. Headache Pain, 2016, 17(1), 69.
[http://dx.doi.org/10.1186/s10194-016-0660-7] [PMID: 27475101]
[138]
Amin, F.M.; Hougaard, A.; Magon, S.; Asghar, M.S.; Ahmad, N.N.; Rostrup, E.; Sprenger, T.; Ashina, M. Change in brain network connectivity during PACAP38-induced migraine attacks: A resting-state functional MRI study. Neurology, 2016, 86(2), 180-187.
[http://dx.doi.org/10.1212/WNL.0000000000002261] [PMID: 26674334]
[139]
Schytz, H.W.; Olesen, J.; Ashina, M. The PACAP receptor: a novel target for migraine treatment. Neurotherapeutics, 2010, 7(2), 191-196.
[http://dx.doi.org/10.1016/j.nurt.2010.02.003] [PMID: 20430318]
[140]
Laburthe, M.; Couvineau, A.; Tan, V. Class II G protein-coupled receptors for VIP and PACAP: structure, models of activation and pharmacology. Peptides, 2007, 28(9), 1631-1639.
[http://dx.doi.org/10.1016/j.peptides.2007.04.026] [PMID: 17574305]
[141]
Schäfer, H.; Zheng, J.; Morys-Wortmann, C.; Fölsch, U.R.; Schmidt, W.E. Structural motifs of pituitary adenylate cyclase-activating polypeptide (PACAP) defining PAC1-receptor selectivity. Regul. Pept., 1999, 79(2-3), 83-92.
[http://dx.doi.org/10.1016/S0167-0115(98)00147-5] [PMID: 10100920]
[142]
Akerman, S.; Goadsby, P.J. Neuronal PAC1 receptors mediate delayed activation and sensitization of trigeminocervical neurons: Relevance to migraine. Sci. Transl. Med., 2015, 7(308)308ra157
[http://dx.doi.org/10.1126/scitranslmed.aaa7557] [PMID: 26446954]
[143]
Davis-Taber, R.; Baker, S.; Lehto, S.G.; Zhong, C.; Surowy, C.S.; Faltynek, C.R.; Scott, V.E.; Honore, P. Central pituitary adenylate cyclase 1 receptors modulate nociceptive behaviors in both inflammatory and neuropathic pain states. J. Pain, 2008, 9(5), 449-456.
[http://dx.doi.org/10.1016/j.jpain.2008.01.329] [PMID: 18337184]
[144]
Vollesen, A.L.; Guo, S.; Ashina, M. PACAP38 dose-response pilot study in migraine patients. Cephalalgia, 2017, 37(4), 391-395.
[http://dx.doi.org/10.1177/0333102416644435] [PMID: 27084887]
[145]
Vécsei, L.; Szalárdy, L.; Fülöp, F.; Toldi, J. Kynurenines in the CNS: recent advances and new questions. Nat. Rev. Drug Discov., 2013, 12(1), 64-82.
[http://dx.doi.org/10.1038/nrd3793] [PMID: 23237916]
[146]
Bohár, Z.; Toldi, J.; Fülöp, F.; Vécsei, L. Changing the face of kynurenines and neurotoxicity: therapeutic considerations. Int. J. Mol. Sci., 2015, 16(5), 9772-9793.
[http://dx.doi.org/10.3390/ijms16059772] [PMID: 25938971]
[147]
Hartai, Z.; Juhász, A.; Rimanóczy, A.; Janáky, T.; Donkó, T.; Dux, L.; Penke, B.; Tóth, G.K.; Janka, Z.; Kálmán, J. Decreased serum and red blood cell kynurenic acid levels in Alzheimer’s disease. Neurochem. Int., 2007, 50(2), 308-313.
[http://dx.doi.org/10.1016/j.neuint.2006.08.012] [PMID: 17023091]
[148]
Zádori, D.; Klivényi, P.; Toldi, J.; Fülöp, F.; Vécsei, L. Kynurenines in Parkinson’s disease: therapeutic perspectives. J. Neural Transm. (Vienna), 2012, 119(2), 275-283.
[http://dx.doi.org/10.1007/s00702-011-0697-3] [PMID: 21858430]
[149]
Szalardy, L.; Klivenyi, P.; Zadori, D.; Fulop, F.; Toldi, J.; Vecsei, L. Mitochondrial disturbances, tryptophan metabolites and neurodegeneration: medicinal chemistry aspects. Curr. Med. Chem., 2012, 19(13), 1899-1920.
[http://dx.doi.org/10.2174/092986712800167365] [PMID: 22429096]
[150]
Rejdak, K.; Bartosik-Psujek, H.; Dobosz, B.; Kocki, T.; Grieb, P.; Giovannoni, G.; Turski, W.A.; Stelmasiak, Z. Decreased level of kynurenic acid in cerebrospinal fluid of relapsing-onset multiple sclerosis patients. Neurosci. Lett., 2002, 331(1), 63-65.
[http://dx.doi.org/10.1016/S0304-3940(02)00710-3] [PMID: 12359324]
[151]
Fejes, A.; Párdutz, A.; Toldi, J.; Vécsei, L. Kynurenine metabolites and migraine: experimental studies and therapeutic perspectives. Curr. Neuropharmacol., 2011, 9(2), 376-387.
[http://dx.doi.org/10.2174/157015911795596621] [PMID: 22131946]
[152]
Prescott, C.; Weeks, A.M.; Staley, K.J.; Partin, K.M. Kynurenic acid has a dual action on AMPA receptor responses. Neurosci. Lett., 2006, 402(1-2), 108-112.
[http://dx.doi.org/10.1016/j.neulet.2006.03.051] [PMID: 16644124]
[153]
Rózsa, E.; Robotka, H.; Vécsei, L.; Toldi, J. The Janus-face kynurenic acid. J. Neural Transm. (Vienna), 2008, 115(8), 1087-1091.
[http://dx.doi.org/10.1007/s00702-008-0052-5] [PMID: 18446262]
[154]
Vécsei, L.; Miller, J.; MacGarvey, U.; Beal, M.F. Kynurenine and probenecid inhibit pentylenetetrazol- and NMDLA-induced seizures and increase kynurenic acid concentrations in the brain. Brain Res. Bull., 1992, 28(2), 233-238.
[http://dx.doi.org/10.1016/0361-9230(92)90184-Y] [PMID: 1596743]
[155]
Vámos, E.; Párdutz, A.; Varga, H.; Bohár, Z.; Tajti, J.; Fülöp, F.; Toldi, J.; Vécsei, L. l-kynurenine combined with probenecid and the novel synthetic kynurenic acid derivative attenuate nitroglycerin-induced nNOS in the rat caudal trigeminal nucleus. Neuropharmacology, 2009, 57(4), 425-429.
[http://dx.doi.org/10.1016/j.neuropharm.2009.06.033] [PMID: 19580819]
[156]
Knyihár-Csillik, E.; Toldi, J.; Mihály, A.; Krisztin-Péva, B.; Chadaide, Z.; Németh, H.; Fenyo, R.; Vécsei, L. Kynurenine in combination with probenecid mitigates the stimulation-induced increase of c-fos immunoreactivity of the rat caudal trigeminal nucleus in an experimental migraine model. J. Neural Transm. (Vienna), 2007, 114(4), 417-421.
[http://dx.doi.org/10.1007/s00702-006-0545-z] [PMID: 16897600]
[157]
Röver, S.; Cesura, A.M.; Huguenin, P.; Kettler, R.; Szente, A. Synthesis and biochemical evaluation of N-(4-phenylthiazol-2-yl)benzenesulfonamides as high-affinity inhibitors of kynurenine 3-hydroxylase. J. Med. Chem., 1997, 40(26), 4378-4385.
[http://dx.doi.org/10.1021/jm970467t] [PMID: 9435907]
[158]
Walsh, H.A.; Leslie, P.L.; O’Shea, K.C.; Botting, N.P. 2-Amino-4-[3′-hydroxyphenyl]-4-hydroxybutanoic acid; a potent inhibitor of rat and recombinant human kynureninase. Bioorg. Med. Chem. Lett., 2002, 12(3), 361-363.
[http://dx.doi.org/10.1016/S0960-894X(01)00758-2] [PMID: 11814797]
[159]
Gellért, L.; Fuzik, J.; Göblös, A.; Sárközi, K.; Marosi, M.; Kis, Z.; Farkas, T.; Szatmári, I.; Fülöp, F.; Vécsei, L.; Toldi, J. Neuroprotection with a new kynurenic acid analog in the four-vessel occlusion model of ischemia. Eur. J. Pharmacol., 2011, 667(1-3), 182-187.
[http://dx.doi.org/10.1016/j.ejphar.2011.05.069] [PMID: 21664350]
[160]
Zádori, D.; Nyiri, G.; Szonyi, A.; Szatmári, I.; Fülöp, F.; Toldi, J.; Freund, T.F.; Vécsei, L.; Klivényi, P. Neuroprotective effects of a novel kynurenic acid analogue in a transgenic mouse model of Huntington’s disease. J. Neural Transm. (Vienna), 2011, 118(6), 865-875.
[http://dx.doi.org/10.1007/s00702-010-0573-6] [PMID: 21194001]
[161]
Demeter, I.; Nagy, K.; Gellért, L.; Vécsei, L.; Fülöp, F.; Toldi, J. A novel kynurenic acid analog (SZR104) inhibits pentylenetetrazole-induced epileptiform seizures. An electrophysiological study: special issue related to kynurenine. J. Neural Transm. (Vienna), 2012, 119(2), 151-154.
[http://dx.doi.org/10.1007/s00702-011-0755-x] [PMID: 22231843]
[162]
Lukács, M.; Warfvinge, K.; Kruse, L.S.; Tajti, J.; Fülöp, F.; Toldi, J.; Vécsei, L.; Edvinsson, L. KYNA analogue SZR72 modifies CFA-induced dural inflammation- regarding expression of pERK1/2 and IL-1β in the rat trigeminal ganglion. J. Headache Pain, 2016, 17(1), 64.
[http://dx.doi.org/10.1186/s10194-016-0654-5] [PMID: 27377707]
[163]
Csáti, A.; Edvinsson, L.; Vécsei, L.; Toldi, J.; Fülöp, F.; Tajti, J.; Warfvinge, K. Kynurenic acid modulates experimentally induced inflammation in the trigeminal ganglion. J. Headache Pain, 2015, 16, 99.
[http://dx.doi.org/10.1186/s10194-015-0581-x] [PMID: 26627709]
[164]
Fülöp, F.; Szatmári, I.; Vámos, E.; Zádori, D.; Toldi, J.; Vécsei, L. Syntheses, transformations and pharmaceutical applications of kynurenic acid derivatives. Curr. Med. Chem., 2009, 16(36), 4828-4842.
[http://dx.doi.org/10.2174/092986709789909602] [PMID: 19929784]
[165]
Fülöp, F.; Szatmári, I.; Toldi, J.; Vécsei, L. Modifications on the carboxylic function of kynurenic acid. J. Neural Transm. (Vienna), 2012, 119(2), 109-114.
[http://dx.doi.org/10.1007/s00702-011-0721-7] [PMID: 21997444]
[166]
Veres, G.; Fejes-Szabó, A.; Zádori, D.; Nagy-Grócz, G.; László, A.M.; Bajtai, A.; Mándity, I.; Szentirmai, M.; Bohár, Z.; Laborc, K.; Szatmári, I.; Fülöp, F.; Vécsei, L.; Párdutz, Á. A comparative assessment of two kynurenic acid analogs in the formalin model of trigeminal activation: a behavioral, immunohistochemical and pharmacokinetic study. J. Neural Transm. (Vienna), 2017, 124(1), 99-112.
[http://dx.doi.org/10.1007/s00702-016-1615-5] [PMID: 27629500]
[167]
Zádori, D.; Ilisz, I.; Klivényi, P.; Szatmári, I.; Fülöp, F.; Toldi, J.; Vécsei, L.; Péter, A. Time-course of kynurenic acid concentration in mouse serum following the administration of a novel kynurenic acid analog. J. Pharm. Biomed. Anal., 2011, 55(3), 540-543.
[http://dx.doi.org/10.1016/j.jpba.2011.02.014] [PMID: 21392919]
[168]
Fejes-Szabó, A.; Bohár, Z.; Vámos, E.; Nagy-Grócz, G.; Tar, L.; Veres, G.; Zádori, D.; Szentirmai, M.; Tajti, J.; Szatmári, I.; Fülöp, F.; Toldi, J.; Párdutz, Á.; Vécsei, L. Pre-treatment with new kynurenic acid amide dose-dependently prevents the nitroglycerine-induced neuronal activation and sensitization in cervical part of trigemino-cervical complex. J. Neural Transm. (Vienna), 2014, 121(7), 725-738.
[http://dx.doi.org/10.1007/s00702-013-1146-2] [PMID: 24385076]
[169]
Lukacs, M.; Tajti, J.; Fulop, F.; Toldi, J.; Edvinsson, L.; Vecsei, L. Migraine, neurogenic inflammation, drug development - pharmacochemical aspects. Curr. Med. Chem., 2017, 24(33), 3649-3665.
[http://dx.doi.org/10.2174/0929867324666170712163437] [PMID: 28707585]
[170]
Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature, 1997, 389(6653), 816-824.
[http://dx.doi.org/10.1038/39807] [PMID: 9349813]
[171]
Ji, R.R.; Samad, T.A.; Jin, S.X.; Schmoll, R.; Woolf, C.J. p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron, 2002, 36(1), 57-68.
[http://dx.doi.org/10.1016/S0896-6273(02)00908-X] [PMID: 12367506]
[172]
Kitagawa, Y.; Tamai, I.; Hamada, Y.; Usui, K.; Wada, M.; Sakata, M.; Matsushita, M. Orally administered selective TRPV1 antagonist, JTS-653, attenuates chronic pain refractory to non-steroidal anti-inflammatory drugs in rats and mice including post-herpetic pain. J. Pharmacol. Sci., 2013, 122(2), 128-137.
[http://dx.doi.org/10.1254/jphs.12276FP] [PMID: 23728381]
[173]
Summ, O.; Holland, P.R.; Akerman, S.; Goadsby, P.J. TRPV1 receptor blockade is ineffective in different in vivo models of migraine. Cephalalgia, 2011, 31(2), 172-180.
[http://dx.doi.org/10.1177/0333102410375626] [PMID: 20974587]
[174]
Lambert, G.A.; Davis, J.B.; Appleby, J.M.; Chizh, B.A.; Hoskin, K.L.; Zagami, A.S. The effects of the TRPV1 receptor antagonist SB-705498 on trigeminovascular sensitisation and neurotransmission. Naunyn Schmiedebergs Arch. Pharmacol., 2009, 380(4), 311-325.
[http://dx.doi.org/10.1007/s00210-009-0437-5] [PMID: 19690836]
[175]
Gunthorpe, M.J.; Hannan, S.L.; Smart, D.; Jerman, J.C.; Arpino, S.; Smith, G.D.; Brough, S.; Wright, J.; Egerton, J.; Lappin, S.C.; Holland, V.A.; Winborn, K.; Thompson, M.; Rami, H.K.; Randall, A.; Davis, J.B. Characterization of SB-705498, a potent and selective vanilloid receptor-1 (VR1/TRPV1) antagonist that inhibits the capsaicin-, acid-, and heat-mediated activation of the receptor. J. Pharmacol. Exp. Ther., 2007, 321(3), 1183-1192.
[http://dx.doi.org/10.1124/jpet.106.116657] [PMID: 17392405]
[176]
Chizh, B.P.J.; Lai, R.; Guillard, F.; Bullman, J.; Baines, A.; Napolitano, A.; Appleby, J. A randomised, two-period cross-over study to investigate the efficacy of the Trpv1 antagonist SB-705498 in acute migraine. Eur. J. Pain, 2009, 13, S202a-S202.
[http://dx.doi.org/10.1016/S1090-3801(09)60705-9]
[177]
Sicuteri, F.; Renzi, D.; Geppetti, P. Substance P and enkephalins: a creditable tandem in the pathophysiology of cluster headache and migraine. Adv Exp Med Biol, 1986, 198(Pt B), 145-152.
[http://dx.doi.org/10.1007/978-1-4757-0154-8_18] [PMID: 2433912]
[178]
Lee, W.S.; Moussaoui, S.M.; Moskowitz, M.A. Blockade by oral or parenteral RPR 100893 (a non-peptide NK1 receptor antagonist) of neurogenic plasma protein extravasation within guinea-pig dura mater and conjunctiva. Br. J. Pharmacol., 1994, 112(3), 920-924.
[http://dx.doi.org/10.1111/j.1476-5381.1994.tb13168.x] [PMID: 7921621]
[179]
Diener, H.C.; Group, R.P.R.S. RPR100893, a substance-P antagonist, is not effective in the treatment of migraine attacks. Cephalalgia, 2003, 23(3), 183-185.
[http://dx.doi.org/10.1046/j.1468-2982.2003.00496.x] [PMID: 12662184]
[180]
Goldstein, D.J.; Offen, W.W.; Klein, E.G.; Phebus, L.A.; Hipskind, P.; Johnson, K.W.; Ryan, R.E. Jr. Lanepitant, an NK-1 antagonist, in migraine prevention. Cephalalgia, 2001, 21(2), 102-106.
[http://dx.doi.org/10.1046/j.1468-2982.2001.00161.x] [PMID: 11422091]
[181]
Taffi, R.; Vignini, A.; Lanciotti, C.; Luconi, R.; Nanetti, L.; Mazzanti, L.; Provinciali, L.; Silvestrini, M.; Bartolini, M. Platelet membrane fluidity and peroxynitrite levels in migraine patients during headache-free periods. Cephalalgia, 2005, 25(5), 353-358.
[http://dx.doi.org/10.1111/j.1468-2982.2004.00863.x] [PMID: 15839850]
[182]
Lassen, L.H.; Christiansen, I.; Iversen, H.K.; Jansen-Olesen, I.; Olesen, J. The effect of nitric oxide synthase inhibition on histamine induced headache and arterial dilatation in migraineurs. Cephalalgia, 2003, 23(9), 877-886.
[http://dx.doi.org/10.1046/j.1468-2982.2003.00586.x] [PMID: 14616929]
[183]
Alderton, W.K.; Angell, A.D.; Craig, C.; Dawson, J.; Garvey, E.; Moncada, S.; Monkhouse, J.; Rees, D.; Russell, L.J.; Russell, R.J.; Schwartz, S.; Waslidge, N.; Knowles, R.G. GW274150 and GW273629 are potent and highly selective inhibitors of inducible nitric oxide synthase in vitro and in vivo. Br. J. Pharmacol., 2005, 145(3), 301-312.
[http://dx.doi.org/10.1038/sj.bjp.0706168] [PMID: 15778742]
[184]
Van der Schueren, B.J.; Lunnon, M.W.; Laurijssens, B.E.; Guillard, F.; Palmer, J.; Van Hecken, A.; Depré, M.; Vanmolkot, F.H.; de Hoon, J.N. Does the unfavorable pharmacokinetic and pharmacodynamic profile of the iNOS inhibitor GW273629 lead to inefficacy in acute migraine? J. Clin. Pharmacol., 2009, 49(3), 281-290.
[http://dx.doi.org/10.1177/0091270008329548] [PMID: 19246728]
[185]
de Lecea, L.; Kilduff, T.S.; Peyron, C.; Gao, X.; Foye, P.E.; Danielson, P.E.; Fukuhara, C.; Battenberg, E.L.; Gautvik, V.T.; Bartlett, F.S., II; Frankel, W.N.; van den Pol, A.N.; Bloom, F.E.; Gautvik, K.M.; Sutcliffe, J.G. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl. Acad. Sci. USA, 1998, 95(1), 322-327.
[http://dx.doi.org/10.1073/pnas.95.1.322] [PMID: 9419374]
[186]
Sakurai, T.; Mieda, M.; Tsujino, N. The orexin system: roles in sleep/wake regulation. Ann. N. Y. Acad. Sci., 2010, 1200, 149-161.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05513.x] [PMID: 20633143]
[187]
Holland, P.R.; Akerman, S.; Goadsby, P.J. Modulation of nociceptive dural input to the trigeminal nucleus caudalis via activation of the orexin 1 receptor in the rat. Eur. J. Neurosci., 2006, 24(10), 2825-2833.
[http://dx.doi.org/10.1111/j.1460-9568.2006.05168.x] [PMID: 17156207]
[188]
Chabi, A.; Zhang, Y.; Jackson, S.; Cady, R.; Lines, C.; Herring, W.J.; Connor, K.M.; Michelson, D. Randomized controlled trial of the orexin receptor antagonist filorexant for migraine prophylaxis. Cephalalgia, 2015, 35(5), 379-388.
[http://dx.doi.org/10.1177/0333102414544979] [PMID: 25106663]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy