Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

Gene Silencing Strategies in Cancer Therapy: An Update for Drug Resistance

Author(s): Sanaz Naghizadeh, Behzad Mansoori, Ali Mohammadi, Ebrahim Sakhinia and Behzad Baradaran*

Volume 26, Issue 34, 2019

Page: [6282 - 6303] Pages: 22

DOI: 10.2174/0929867325666180403141554

Price: $65

Abstract

RNAi, post-transcriptional gene silencing mechanism, could be considered as one of the most important breakthroughs and rapidly growing fields in science. Researchers are trying to use this discovery in the treatment of various diseases and cancer is one of them although there are multiple treatment procedures for treatment-resistant cancers, eradication of resistance remain as an unsolvable problem yet. The current review summarizes both transcriptional and post-transcriptional gene silencing mechanisms, and highlights mechanisms leading to drug-resistance such as, drug efflux, drug inactivation, drug target alteration, DNA damages repair, and the epithelial-mesenchymal transition, as well as the role of tumor cell heterogeneity and tumor microenvironment, involving genes in these processes. It ultimately points out the obstacles of RNAi application for in vivo treatment of diseases and progressions that have been achieved in this field.

Keywords: Drug resistance, gene silencing, cancer, RNA interference, post-transcriptional gene, treatment-resistant cancers.

[1]
Shah, S.M.; Saini, N.; Ashraf, S.; Kumar, G.R.; Center, A.B. Gene Silencing, mechanism and applications. Int J Biomed Life Sci, 2012, 3(1), 114-126.
[2]
Miele, E.; Spinelli, G.P.; Miele, E.; Di Fabrizio, E.; Ferretti, E.; Tomao, S.; Gulino, A. Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy. Int. J. Nanomedicine, 2012, 7, 3637-3657.
[http://dx.doi.org/10.2147/IJN.S23696] [PMID: 22915840]
[3]
Lu, B.; Huang, X.; Mo, J.; Zhao, W. Drug delivery using nanoparticles for cancer stem-like cell targeting. Front. Pharmacol., 2016, 7, 84.
[http://dx.doi.org/10.3389/fphar.2016.00084] [PMID: 27148051]
[4]
Liu, T.; Liu, X.; Li, W. Tetrandrine, a Chinese plant-derived alkaloid, is a potential candidate for cancer chemotherapy. Oncotarget, 2016, 7(26), 40800-40815.
[http://dx.doi.org/10.18632/oncotarget.8315] [PMID: 27027348]
[5]
Kapse-Mistry, S.; Govender, T.; Srivastava, R.; Yergeri, M. Nanodrug delivery in reversing multidrug resistance in cancer cells. Front. Pharmacol., 2014, 5, 159.
[http://dx.doi.org/10.3389/fphar.2014.00159] [PMID: 25071577]
[6]
Shi, W-J.; Gao, J-B. Molecular mechanisms of chemoresistance in gastric cancer. World J. Gastrointest. Oncol., 2016, 8(9), 673-681.
[http://dx.doi.org/10.4251/wjgo.v8.i9.673] [PMID: 27672425]
[7]
Chen, Y-Y.; Li, Z-Z.; Ye, Y-Y.; Xu, F.; Niu, R-J.; Zhang, H-C.; Zhang, Y-J.; Liu, Y-B.; Han, B-S. Knockdown of SALL4 inhibits the proliferation and reverses the resistance of MCF-7/ADR cells to doxorubicin hydrochloride. BMC Mol. Biol., 2016, 17(1), 6.
[http://dx.doi.org/10.1186/s12867-016-0055-y] [PMID: 26935744]
[8]
Jones, V.S.; Huang, R-Y.; Chen, L-P.; Chen, Z-S.; Fu, L.; Huang, R-P. Cytokines in cancer drug resistance: Cues to new therapeutic strategies. Biochim. Biophys. Acta, 2016, 1865(2), 255-265.
[http://dx.doi.org/10.1016/j.bbcan.2016.03.005] [PMID: 26993403]
[9]
Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: an overview. Cancers (Basel), 2014, 6(3), 1769-1792.
[http://dx.doi.org/10.3390/cancers6031769] [PMID: 25198391]
[10]
Hu, T.; Li, Z.; Gao, C-Y.; Cho, C.H. Mechanisms of drug resistance in colon cancer and its therapeutic strategies. World J. Gastroenterol., 2016, 22(30), 6876-6889.
[http://dx.doi.org/10.3748/wjg.v22.i30.6876] [PMID: 27570424]
[11]
Chorawala, M.; Oza, P.; Shah, G. Mechanisms of anticancer drugs resistance: an overview. Int. J. Pharm. Sci. Drug Res., 2012, 4(1), 1-9.
[12]
Magee, P.; Shi, L.; Garofalo, M. Role of microRNAs in chemoresistance. Ann. Transl. Med., 2015, 3(21), 332.
[http://dx.doi.org/10.3978/j.issn.2305-5839.2015.11.32] [PMID: 26734642]
[13]
Zhang, G-N.; Ashby, C.R. Jr.; Zhang, Y-K.; Chen, Z-S.; Guo, H. The reversal of antineoplastic drug resistance in cancer cells by β-elemene. Chin. J. Cancer, 2015, 34(11), 488-495.
[http://dx.doi.org/10.1186/s40880-015-0048-0] [PMID: 26370907]
[14]
Schmidt, F.; Efferth, T. Tumor heterogeneity, single-cell sequencing, and drug resistance. Pharmaceuticals (Basel), 2016, 9(2), 33.
[http://dx.doi.org/10.3390/ph9020033] [PMID: 27322289]
[15]
Wang, P.; An, F.; Zhuang, X.; Liu, J.; Zhao, L.; Zhang, B.; Liu, L.; Lin, P.; Li, M. Chronopharmacology and mechanism of antitumor effect of erlotinib in Lewis tumor-bearing mice. PLoS One, 2014, 9(7)e101720
[http://dx.doi.org/10.1371/journal.pone.0101720] [PMID: 25000529]
[16]
Almåsbak, H.; Aarvak, T.; Vemuri, M.C.M.C. CAR T cell therapy: A game changer in cancer treatment. Journal of immunology research, 2016.
[http://dx.doi.org/10.1155/2016/5474602]
[17]
Li, H.; Wu, X.; Cheng, X. Advances in diagnosis and treatment of metastatic cervical cancer. J. Gynecol. Oncol., 2016, 27(4)e43
[http://dx.doi.org/10.3802/jgo.2016.27.e43] [PMID: 27171673]
[18]
Yin, F.; Liu, X.; Li, D.; Wang, Q.; Zhang, W.; Li, L. Tumor suppressor genes associated with drug resistance in ovarian cancer. (review) Oncol. Rep., 2013, 30(1), 3-10.
[http://dx.doi.org/10.3892/or.2013.2446] [PMID: 23660957]
[19]
Xu, J-H.; Hu, S-L.; Shen, G-D.; Shen, G. Tumor suppressor genes and their underlying interactions in paclitaxel resistance in cancer therapy. Cancer Cell Int., 2016, 16(1), 13.
[http://dx.doi.org/10.1186/s12935-016-0290-9] [PMID: 26900348]
[20]
Luqmani, Y.A. Mechanisms of drug resistance in cancer chemotherapy. Med. Princ. Pract., 2005, 14(Suppl. 1), 35-48.
[http://dx.doi.org/10.1159/000086183] [PMID: 16103712]
[21]
Yadav, S.; van Vlerken, L.E.; Little, S.R.; Amiji, M.M. Evaluations of combination MDR-1 gene silencing and paclitaxel administration in biodegradable polymeric nanoparticle formulations to overcome multidrug resistance in cancer cells. Cancer Chemother. Pharmacol., 2009, 63(4), 711-722.
[http://dx.doi.org/10.1007/s00280-008-0790-y] [PMID: 18618115]
[22]
Barakate, A.; Stephens, J. An overview of CRISPR-based tools and their improvements: new opportunities in understanding plant–pathogen interactions for better crop protection. Front. Plant Sci., 2016, 7, 765.
[http://dx.doi.org/10.3389/fpls.2016.00765] [PMID: 27313592]
[23]
Esteller, M. Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum. Mol. Genet., 2007, 16(Spec No 1), R50-R59.
[http://dx.doi.org/10.1093/hmg/ddm018] [PMID: 17613547]
[24]
Schoeberl, U.E.; Kurth, H.M.; Noto, T.; Mochizuki, K. Biased transcription and selective degradation of small RNAs shape the pattern of DNA elimination in Tetrahymena. Genes Dev., 2012, 26(15), 1729-1742.
[http://dx.doi.org/10.1101/gad.196493.112] [PMID: 22855833]
[25]
Noto, T.; Kataoka, K.; Suhren, J.H.; Hayashi, A.; Woolcock, K.J.; Gorovsky, M.A.; Mochizuki, K. Small-RNA-mediated genome-wide trans-recognition network in Tetrahymena DNA elimination. Mol. Cell, 2015, 59(2), 229-242.
[http://dx.doi.org/10.1016/j.molcel.2015.05.024] [PMID: 26095658]
[26]
Coruh, C.; Cho, S.H.; Shahid, S.; Liu, Q.; Wierzbicki, A.; Axtell, M.J. Comprehensive annotation of Physcomitrella patens small RNA loci reveals that the heterochromatic short interfering RNA pathway is largely conserved in land plants. Plant Cell, 2015, 27(8), 2148-2162.
[http://dx.doi.org/10.1105/tpc.15.00228] [PMID: 26209555]
[27]
Blevins, T.; Podicheti, R.; Mishra, V.; Marasco, M.; Wang, J.; Rusch, D.; Tang, H.; Pikaard, C.S. Identification of Pol IV and RDR2-dependent precursors of 24 nt siRNAs guiding de novo DNA methylation in Arabidopsis. eLife, 2015, 4e09591
[http://dx.doi.org/10.7554/eLife.09591] [PMID: 26430765]
[28]
Wassenegger, M. The role of the RNAi machinery in heterochromatin formation. Cell, 2005, 122(1), 13-16.
[http://dx.doi.org/10.1016/j.cell.2005.06.034] [PMID: 16009128]
[29]
Götz, U.; Marker, S.; Cheaib, M.; Andresen, K.; Shrestha, S.; Durai, D.A.; Nordström, K.J.; Schulz, M.H.; Simon, M. Two sets of RNAi components are required for heterochromatin formation in trans triggered by truncated transgenes. Nucleic Acids Res., 2016, 44(12), 5908-5923.
[http://dx.doi.org/10.1093/nar/gkw267] [PMID: 27085807]
[30]
Fagegaltier, D.; Bougé, A-L.; Berry, B.; Poisot, E.; Sismeiro, O.; Coppée, J-Y.; Théodore, L.; Voinnet, O.; Antoniewski, C. The endogenous siRNA pathway is involved in heterochromatin formation in Drosophila. Proc. Natl. Acad. Sci. USA, 2009, 106(50), 21258-21263.
[http://dx.doi.org/10.1073/pnas.0809208105] [PMID: 19948966]
[31]
Zhao, Y.; Sun, H.; Wang, H. Long noncoding RNAs in DNA methylation: new players stepping into the old game. Cell Biosci., 2016, 6(1), 45.
[http://dx.doi.org/10.1186/s13578-016-0109-3] [PMID: 27408682]
[32]
Jacinto, F.V.; Esteller, M. Mutator pathways unleashed by epigenetic silencing in human cancer. Mutagenesis, 2007, 22(4), 247-253.
[http://dx.doi.org/10.1093/mutage/gem009] [PMID: 17412712]
[33]
Yong, W-S.; Hsu, F-M.; Chen, P-Y. Profiling genome-wide DNA methylation. Epigenetics Chromatin, 2016, 9(1), 26.
[http://dx.doi.org/10.1186/s13072-016-0075-3] [PMID: 27358654]
[34]
Abdelfatah, E.; Kerner, Z.; Nanda, N.; Ahuja, N. Epigenetic therapy in gastrointestinal cancer: the right combination. Therap. Adv. Gastroenterol., 2016, 9(4), 560-579.
[http://dx.doi.org/10.1177/1756283X16644247] [PMID: 27366224]
[35]
Richter, S.; Morrison, S.; Connor, T.; Su, J.; Print, C.G.; Ronimus, R.S.; McGee, S.L.; Wilson, W.R. Zinc finger nuclease mediated knockout of ADP-dependent glucokinase in cancer cell lines: effects on cell survival and mitochondrial oxidative metabolism. PLoS One, 2013, 8(6)e65267
[http://dx.doi.org/10.1371/journal.pone.0065267] [PMID: 23799003]
[36]
Cui, C.; Song, Y.; Liu, J.; Ge, H.; Li, Q.; Huang, H.; Hu, L.; Zhu, H.; Jin, Y.; Zhang, Y. Gene targeting by TALEN-induced homologous recombination in goats directs production of β-lactoglobulin-free, high-human lactoferrin milk. Sci. Rep., 2015, 5, 10482.
[http://dx.doi.org/10.1038/srep10482] [PMID: 25994151]
[37]
Meng, X.; Noyes, M.B.; Zhu, L.J.; Lawson, N.D.; Wolfe, S.A. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat. Biotechnol., 2008, 26(6), 695-701.
[http://dx.doi.org/10.1038/nbt1398] [PMID: 18500337]
[38]
Koo, T.; Lee, J.; Kim, J-S. Measuring and reducing off-target activities of programmable nucleases including CRISPR-Cas9. Mol. Cells, 2015, 38(6), 475-481.
[http://dx.doi.org/10.14348/molcells.2015.0103] [PMID: 25985872]
[39]
Tokuda, S.; Furuse, M. Claudin-2 knockout by TALEN-mediated gene targeting in MDCK cells: claudin-2 independently determines the leaky property of tight junctions in MDCK cells. PLoS One, 2015, 10(3)e0119869
[http://dx.doi.org/10.1371/journal.pone.0119869] [PMID: 25781928]
[40]
Butler, N.M.; Atkins, P.A.; Voytas, D.F.; Douches, D.S. Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR/Cas system. PLoS One, 2015, 10(12)e0144591
[http://dx.doi.org/10.1371/journal.pone.0144591] [PMID: 26657719]
[41]
Savić, N.; Schwank, G. Advances in therapeutic CRISPR/Cas9 genome editing. Transl. Res., 2016, 168, 15-21.
[http://dx.doi.org/10.1016/j.trsl.2015.09.008] [PMID: 26470680]
[42]
Unniyampurath, U.; Pilankatta, R.; Krishnan, M.N. RNA Interference in the Age of CRISPR: Will CRISPR Interfere with RNAi? Int. J. Mol. Sci., 2016, 17(3), 291.
[http://dx.doi.org/10.3390/ijms17030291] [PMID: 26927085]
[43]
Gratz, S.J.; Rubinstein, C.D.; Harrison, M.M.; Wildonger, J.; O'Connor‐Giles, K.M. CRISPR‐Cas9 Genome Editing in Drosophila. Current protocols in molecular biology, 2015. 31.32., 31-31, 32. 20..
[44]
Park, C-Y.; Halevy, T.; Lee, D.R.; Sung, J.J.; Lee, J.S.; Yanuka, O.; Benvenisty, N.; Kim, D-W. Reversion of FMR1 methylation and silencing by editing the triplet repeats in fragile X iPSC-derived neurons. Cell Rep., 2015, 13(2), 234-241.
[http://dx.doi.org/10.1016/j.celrep.2015.08.084] [PMID: 26440889]
[45]
Kolniak, T.A.; Sullivan, J.M. Rapid, cell-based toxicity screen of potentially therapeutic post-transcriptional gene silencing agents. Exp. Eye Res., 2011, 92(5), 328-337.
[http://dx.doi.org/10.1016/j.exer.2011.01.004] [PMID: 21256844]
[46]
Studzińska, S.; Rola, R.; Buszewski, B. Development of a method based on ultra high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry for studying the in vitro metabolism of phosphorothioate oligonucleotides. Anal. Bioanal. Chem., 2016, 408(6), 1585-1595.
[http://dx.doi.org/10.1007/s00216-015-9266-1] [PMID: 26758600]
[47]
Mastroyiannopoulos, N.P.; Uney, J.B.; Phylactou, L.A. The application of ribozymes and DNAzymes in muscle and brain. Molecules, 2010, 15(8), 5460-5472.
[http://dx.doi.org/10.3390/molecules15085460] [PMID: 20714308]
[48]
Vickers, T.A.; Crooke, S.T. The rates of the major steps in the molecular mechanism of RNase H1-dependent antisense oligonucleotide induced degradation of RNA. Nucleic Acids Res., 2015, 43(18), 8955-8963.
[http://dx.doi.org/10.1093/nar/gkv920] [PMID: 26384424]
[49]
Koo, T.; Wood, M.J. Clinical trials using antisense oligonucleotides in duchenne muscular dystrophy. Hum. Gene Ther., 2013, 24(5), 479-488.
[http://dx.doi.org/10.1089/hum.2012.234] [PMID: 23521559]
[50]
Juliano, R.L. The delivery of therapeutic oligonucleotides. Nucleic Acids Res., 2016, 44(14), 6518-6548.
[http://dx.doi.org/10.1093/nar/gkw236] [PMID: 27084936]
[51]
Burel, S.A.; Hart, C.E.; Cauntay, P.; Hsiao, J.; Machemer, T.; Katz, M.; Watt, A.; Bui, H.H.; Younis, H.; Sabripour, M.; Freier, S.M.; Hung, G.; Dan, A.; Prakash, T.P.; Seth, P.P.; Swayze, E.E.; Bennett, C.F.; Crooke, S.T.; Henry, S.P. Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts. Nucleic Acids Res., 2016, 44(5), 2093-2109.
[http://dx.doi.org/10.1093/nar/gkv1210] [PMID: 26553810]
[52]
Phylactou, L.A.; Kilpatrick, M.W.; Wood, M.J. Ribozymes as therapeutic tools for genetic disease. Hum. Mol. Genet., 1998, 7(10), 1649-1653.
[http://dx.doi.org/10.1093/hmg/7.10.1649] [PMID: 9735387]
[53]
Scanlon, K.J. Anti-genes: siRNA, ribozymes and antisense. Curr. Pharm. Biotechnol., 2004, 5(5), 415-420.
[http://dx.doi.org/10.2174/1389201043376689] [PMID: 15544489]
[54]
Karami, H.; Baradaran, B.; Esfehani, A.; Sakhinia, M.; Sakhinia, E. Down-regulation of Mcl-1 by small interference RNA induces apoptosis and sensitizes HL-60 leukemia cells to etoposide. Asian Pac. J. Cancer Prev., 2014, 15(2), 629-635.
[http://dx.doi.org/10.7314/APJCP.2014.15.2.629] [PMID: 24568469]
[55]
Bora, R.S.; Gupta, D.; Mukkur, T.K.S.; Saini, K.S. RNA interference therapeutics for cancer: challenges and opportunities. Mol. Med. Rep., 2012, 6(1), 9-15.
[http://dx.doi.org/10.3892/mmr.2012.871] [PMID: 22576734]
[56]
Ui-Tei, K. Is the efficiency of RNA silencing evolutionarily regulated? Int. J. Mol. Sci., 2016, 17(5), 719.
[http://dx.doi.org/10.3390/ijms17050719] [PMID: 27187367]
[57]
Nakanishi, K. Anatomy of RISC: how do small RNAs and chaperones activate Argonaute proteins? Wiley Interdiscip. Rev. RNA, 2016, 7(5), 637-660.
[http://dx.doi.org/10.1002/wrna.1356] [PMID: 27184117]
[58]
Mahgoub, A.; Steer, C.J. MicroRNAs in the evaluation and potential treatment of liver diseases. J. Clin. Med., 2016, 5(5), 52.
[http://dx.doi.org/10.3390/jcm5050052] [PMID: 27171116]
[59]
Baulina, N.M.; Kulakova, O.G.; Favorova, O.O. MicroRNAs: the role in autoimmune inflammation. Acta Naturae, 2016, 8(1), 21-33.
[http://dx.doi.org/10.32607/20758251-2016-8-1-21-33] [PMID: 27099782]
[60]
Gurtner, A.; Falcone, E.; Garibaldi, F.; Piaggio, G. Dysregulation of microRNA biogenesis in cancer: the impact of mutant p53 on Drosha complex activity. J. Exp. Clin. Cancer Res., 2016, 35(1), 45.
[http://dx.doi.org/10.1186/s13046-016-0319-x] [PMID: 26971015]
[61]
Yao, S. MicroRNA biogenesis and their functions in regulating stem cell potency and differentiation. Biol. Proced. Online, 2016, 18(1), 8.
[http://dx.doi.org/10.1186/s12575-016-0037-y] [PMID: 26966421]
[62]
Ohtsuka, M.; Ling, H.; Doki, Y.; Mori, M.; Calin, G.A. MicroRNA processing and human cancer. J. Clin. Med., 2015, 4(8), 1651-1667.
[http://dx.doi.org/10.3390/jcm4081651] [PMID: 26308063]
[63]
Kim, Y.J.; Maizel, A.; Chen, X. Traffic into silence: endomembranes and post-transcriptional RNA silencing. EMBO J., 2014, 33(9), 968-980.
[http://dx.doi.org/10.1002/embj.201387262] [PMID: 24668229]
[64]
Pecot, C.V.; Calin, G.A.; Coleman, R.L.; Lopez-Berestein, G.; Sood, A.K. RNA interference in the clinic: challenges and future directions. Nat. Rev. Cancer, 2011, 11(1), 59-67.
[http://dx.doi.org/10.1038/nrc2966] [PMID: 21160526]
[65]
Riquelme, I.; Letelier, P.; Riffo-Campos, A.L.; Brebi, P.; Roa, J.C. Emerging role of miRNAs in the drug resistance of gastric cancer. Int. J. Mol. Sci., 2016, 17(3), 424.
[http://dx.doi.org/10.3390/ijms17030424] [PMID: 27011182]
[66]
Guo, J.; Jiang, X.; Gui, S. RNA interference-based nanosystems for inflammatory bowel disease therapy. Int. J. Nanomedicine, 2016, 11, 5287-5310.
[http://dx.doi.org/10.2147/IJN.S116902] [PMID: 27789943]
[67]
Li, B-P.; Liu, J-L.; Chen, J-Q.; Wang, Z.; Mao, Y-T.; Chen, Y-Y. Effects of siRNA-mediated silencing of myeloid cell leukelia-1 on the biological behaviors and drug resistance of gastric cancer cells. Am. J. Transl. Res., 2015, 7(11), 2397-2411.
[PMID: 26807186]
[68]
Patil, V.S.; Zhou, R.; Rana, T.M. Gene regulation by non-coding RNAs. Crit. Rev. Biochem. Mol. Biol., 2014, 49(1), 16-32.
[http://dx.doi.org/10.3109/10409238.2013.844092] [PMID: 24164576]
[69]
Weick, E-M.; Miska, E.A. piRNAs: from biogenesis to function. Development, 2014, 141(18), 3458-3471.
[http://dx.doi.org/10.1242/dev.094037] [PMID: 25183868]
[70]
El-Tanani, M.; Dakir, H.; Raynor, B.; Morgan, R. Mechanisms of nuclear export in cancer and resistance to chemotherapy. Cancers (Basel), 2016, 8(3), 35.
[http://dx.doi.org/10.3390/cancers8030035] [PMID: 26985906]
[71]
Gu, S.; Hu, Z.; Ngamcherdtrakul, W.; Castro, D.J.; Morry, J.; Reda, M.M.; Gray, J.W.; Yantasee, W. Therapeutic siRNA for drug-resistant HER2-positive breast cancer. Oncotarget, 2016, 7(12), 14727-14741.
[http://dx.doi.org/10.18632/oncotarget.7409] [PMID: 26894975]
[72]
Hafsi, S.; Pezzino, F.M.; Candido, S.; Ligresti, G.; Spandidos, D.A.; Soua, Z.; McCubrey, J.A.; Travali, S.; Libra, M. Gene alterations in the PI3K/PTEN/AKT pathway as a mechanism of drug-resistance. Int. J. Oncol., 2012, 40(3), 639-644.
[http://dx.doi.org/10.3892/ijo.2011.1312] [PMID: 22200790]
[73]
Pao, W.; Miller, V.A.; Politi, K.A.; Riely, G.J.; Somwar, R.; Zakowski, M.F.; Kris, M.G.; Varmus, H. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med., 2005, 2(3)e73
[http://dx.doi.org/10.1371/journal.pmed.0020073] [PMID: 15737014]
[74]
Liu, C.; Armstrong, C.; Zhu, Y.; Lou, W.; Gao, A.C. Niclosamide enhances abiraterone treatment via inhibition of androgen receptor variants in castration resistant prostate cancer. Oncotarget, 2016, 7(22), 32210-32220.
[http://dx.doi.org/10.18632/oncotarget.8493] [PMID: 27049719]
[75]
Johnson, K.R.; Fan, W. Reduced expression of p53 and p21WAF1/CIP1 sensitizes human breast cancer cells to paclitaxel and its combination with 5-fluorouracil. Anticancer Res., 2002, 22(6A), 3197-3204.
[PMID: 12530065]
[76]
Garofalo, M.; Croce, C.M. MicroRNAs as therapeutic targets in chemoresistance. Drug Resist. Updat., 2013, 16(3-5), 47-59.
[http://dx.doi.org/10.1016/j.drup.2013.05.001] [PMID: 23757365]
[77]
Oronsky, B.T.; Oronsky, A.L.; Lybeck, M.; Oronsky, N.C.; Scicinski, J.J.; Carter, C.; Day, R.M.; Rodriguez Orengo, J.F.; Rodriguez-Torres, M.; Fanger, G.F.; Reid, T.R. Episensitization: defying time’s arrow. Front. Oncol., 2015, 5, 134.
[http://dx.doi.org/10.3389/fonc.2015.00134] [PMID: 26125013]
[78]
Trimarchi, M.P.; Mouangsavanh, M.; Huang, T.H-M. Cancer epigenetics: a perspective on the role of DNA methylation in acquired endocrine resistance. Chin. J. Cancer, 2011, 30(11), 749-756.
[http://dx.doi.org/10.5732/cjc.011.10128] [PMID: 22035855]
[79]
Ganapathi, R.N.; Ganapathi, M.K. Mechanisms regulating resistance to inhibitors of topoisomerase II. Front. Pharmacol., 2013, 4, 89.
[http://dx.doi.org/10.3389/fphar.2013.00089] [PMID: 23914174]
[80]
Szöllősi, D.; Rose-Sperling, D.; Hellmich, U.A.; Stockner, T. Comparison of mechanistic transport cycle models of ABC exporters. Biochimica et Biophysica Acta (BBA)-. Biomembranes, 2018, 1860(4), 818-832.
[http://dx.doi.org/10.1016/j.bbamem.2017.10.028] [PMID: 29097275]
[81]
Pokharel, D.; Roseblade, A.; Oenarto, V.; Lu, J.F.; Bebawy, M. Proteins regulating the intercellular transfer and function of P-glycoprotein in multidrug-resistant cancer ecancermedicalscience, 2017, 11.
[82]
Kachalaki, S.; Baradaran, B.; Majidi, J.; Yousefi, M.; Shanehbandi, D.; Mohammadinejad, S.; Mansoori, B. Reversal of chemoresistance with small interference RNA (siRNA) in etoposide resistant acute myeloid leukemia cells (HL-60). Biomed. Pharmacother., 2015, 75, 100-104.
[http://dx.doi.org/10.1016/j.biopha.2015.08.032] [PMID: 26463638]
[83]
Leung, A.W.; Dragowska, W.H.; Ricaurte, D.; Kwok, B.; Mathew, V.; Roosendaal, J.; Ahluwalia, A.; Warburton, C.; Laskin, J.J.; Stirling, P.C.; Qadir, M.A.; Bally, M.B. 3′-Phosphoadenosine 5′-phosphosulfate synthase 1 (PAPSS1) knockdown sensitizes non-small cell lung cancer cells to DNA damaging agents. Oncotarget, 2015, 6(19), 17161-17177.
[http://dx.doi.org/10.18632/oncotarget.3635] [PMID: 26220590]
[84]
Pistritto, G.; Trisciuoglio, D.; Ceci, C.; Garufi, A.; D’Orazi, G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY), 2016, 8(4), 603-619.
[http://dx.doi.org/10.18632/aging.100934] [PMID: 27019364]
[85]
Huang, D.; Duan, H.; Huang, H.; Tong, X.; Han, Y.; Ru, G.; Qu, L.; Shou, C.; Zhao, Z. Cisplatin resistance in gastric cancer cells is associated with HER2 upregulation-induced epithelial-mesenchymal transition. Sci. Rep., 2016, 6, 20502.
[http://dx.doi.org/10.1038/srep20502] [PMID: 26846307]
[86]
Suda, K.; Tomizawa, K.; Fujii, M.; Murakami, H.; Osada, H.; Maehara, Y.; Yatabe, Y.; Sekido, Y.; Mitsudomi, T. Epithelial to mesenchymal transition in an epidermal growth factor receptor-mutant lung cancer cell line with acquired resistance to erlotinib. J. Thorac. Oncol., 2011, 6(7), 1152-1161.
[http://dx.doi.org/10.1097/JTO.0b013e318216ee52] [PMID: 21597390]
[87]
Singh, A.; Settleman, J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene, 2010, 29(34), 4741-4751.
[http://dx.doi.org/10.1038/onc.2010.215] [PMID: 20531305]
[88]
Haslehurst, A.M.; Koti, M.; Dharsee, M.; Nuin, P.; Evans, K.; Geraci, J.; Childs, T.; Chen, J.; Li, J.; Weberpals, J.; Davey, S.; Squire, J.; Park, P.C.; Feilotter, H. EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer, 2012, 12(1), 91.
[http://dx.doi.org/10.1186/1471-2407-12-91] [PMID: 22429801]
[89]
Zhao, Y.; Alakhova, D.Y.; Kabanov, A.V. Can nanomedicines kill cancer stem cells? Adv. Drug Deliv. Rev., 2013, 65(13-14), 1763-1783.
[http://dx.doi.org/10.1016/j.addr.2013.09.016] [PMID: 24120657]
[90]
Giuffrida, R.; Adamo, L.; Iannolo, G.; Vicari, L.; Giuffrida, D.; Eramo, A.; Gulisano, M.; Memeo, L.; Conticello, C. Resistance of papillary thyroid cancer stem cells to chemotherapy. Oncol. Lett., 2016, 12(1), 687-691.
[http://dx.doi.org/10.3892/ol.2016.4666] [PMID: 27347201]
[91]
Canter, R.J.; Grossenbacher, S.K.; Ames, E.; Murphy, W.J. Immune targeting of cancer stem cells in gastrointestinal oncology. J. Gastrointest. Oncol., 2016, 7(Suppl. 1), S1-S10.
[http://dx.doi.org/10.3978/j.issn.2078-6891.2015.066] [PMID: 27034806]
[92]
Heiler, S.; Wang, Z.; Zöller, M. Pancreatic cancer stem cell markers and exosomes - the incentive push. World J. Gastroenterol., 2016, 22(26), 5971-6007.
[http://dx.doi.org/10.3748/wjg.v22.i26.5971] [PMID: 27468191]
[93]
Aminuddin, A.; Ng, P.Y. Promising Druggable Target in Head and Neck Squamous Cell Carcinoma: Wnt Signaling. Front. Pharmacol., 2016, 7, 244.
[http://dx.doi.org/10.3389/fphar.2016.00244] [PMID: 27570510]
[94]
Huang, F.; Wang, B-R.; Wu, Y-Q.; Wang, F-C.; Zhang, J.; Wang, Y-G. Oncolytic viruses against cancer stem cells: A promising approach for gastrointestinal cancer. World J. Gastroenterol., 2016, 22(35), 7999-8009.
[http://dx.doi.org/10.3748/wjg.v22.i35.7999] [PMID: 27672294]
[95]
Yoon, C.; Park, D.J.; Schmidt, B.; Thomas, N.J.; Lee, H-J.; Kim, T.S.; Janjigian, Y.Y.; Cohen, D.J.; Yoon, S.S. CD44 expression denotes a subpopulation of gastric cancer cells in which Hedgehog signaling promotes chemotherapy resistance. Clin. Cancer Res., 2014, 20(15), 3974-3988.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0011] [PMID: 24947926]
[96]
Liebelt, B.D.; Shingu, T.; Zhou, X.; Ren, J.; Shin, S.A.; Hu, J. Glioma stem cells: signaling, microenvironment, and therapy. Stem Cells Int., 2016, 20167849890
[http://dx.doi.org/10.1155/2016/7849890] [PMID: 26880988]
[97]
Liu, H.; Wang, H.; Li, C.; Zhang, T.; Meng, X.; Zhang, Y.; Qian, H. Spheres from cervical cancer cells display stemness and cancer drug resistance. Oncol. Lett., 2016, 12(3), 2184-2188.
[http://dx.doi.org/10.3892/ol.2016.4893] [PMID: 27602161]
[98]
Lyakhovich, A.; Lleonart, M.E. Bypassing mechanisms of mitochondria-mediated cancer stem cells resistance to chemo-and radiotherapy. Oxid. Med.and Cell. Longev., 2016, 20161716341
[http://dx.doi.org/10.1155/2016/1716341] [PMID: 26697128]
[99]
Kakar, S.S.; Worth, C.A.; Wang, Z.; Carter, K.; Ratajczak, M.; Gunjal, P. DOXIL when combined with Withaferin A (WFA) targets ALDH1 positive cancer stem cells in ovarian cancer. J. Cancer Stem Cell Res., 2016, 4e1002
[http://dx.doi.org/10.14343/JCSCR.2016.4e1002] [PMID: 27668267]
[100]
Bandhavkar, S. Cancer stem cells: a metastasizing menace! Cancer Med., 2016, 5(4), 649-655.
[http://dx.doi.org/10.1002/cam4.629] [PMID: 26773710]
[101]
Codony-Servat, J.; Rosell, R. Cancer stem cells and immunoresistance: clinical implications and solutions. Transl. Lung Cancer Res., 2015, 4(6), 689-703.
[PMID: 26798578]
[102]
Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med., 2013, 19(11), 1423-1437.
[http://dx.doi.org/10.1038/nm.3394] [PMID: 24202395]
[103]
Deng, Q.F.; Su, B.O.; Zhao, Y.M.; Tang, L.; Zhang, J.; Zhou, C.C. Integrin β1-mediated acquired gefitinib resistance in non-small cell lung cancer cells occurs via the phosphoinositide 3-kinase-dependent pathway. Oncol. Lett., 2016, 11(1), 535-542.
[http://dx.doi.org/10.3892/ol.2015.3945] [PMID: 26870244]
[104]
Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer, 2013, 13(10), 714-726.
[http://dx.doi.org/10.1038/nrc3599] [PMID: 24060863]
[105]
Minchinton, A.I.; Tannock, I.F. Drug penetration in solid tumours. Nat. Rev. Cancer, 2006, 6(8), 583-592.
[http://dx.doi.org/10.1038/nrc1893] [PMID: 16862189]
[106]
Zhao, M.; Sun, J.; Zhao, Z. TSGene: a web resource for tumor suppressor genes. Nucleic Acids Res., 2013, 41(Database issue), D970-D976.
[http://dx.doi.org/10.1093/nar/gks937] [PMID: 23066107]
[107]
Raghav, K.P.S.; Gonzalez-Angulo, A.M.; Blumenschein, G.R. Jr. Role of HGF/MET axis in resistance of lung cancer to contemporary management. Transl. Lung Cancer Res., 2012, 1(3), 179-193.
[http://dx.doi.org/10.3978/j.issn.2218-6751.2012.09.04] [PMID: 25806180]
[108]
Martinez, L.; Arnaud, O.; Henin, E.; Tao, H.; Chaptal, V.; Doshi, R.; Andrieu, T.; Dussurgey, S.; Tod, M.; Di Pietro, A.; Zhang, Q.; Chang, G.; Falson, P. Understanding polyspecificity within the substrate-binding cavity of the human multidrug resistance P-glycoprotein. FEBS J., 2014, 281(3), 673-682.
[http://dx.doi.org/10.1111/febs.12613] [PMID: 24219411]
[109]
Kimura, Y.; Morita, S.Y.; Matsuo, M.; Ueda, K. Mechanism of multidrug recognition by MDR1/ABCB1. Cancer Sci., 2007, 98(9), 1303-1310.
[http://dx.doi.org/10.1111/j.1349-7006.2007.00538.x] [PMID: 17608770]
[110]
Wang, W-B.; Yang, Y.; Zhao, Y-P.; Zhang, T-P.; Liao, Q.; Shu, H. Recent studies of 5-fluorouracil resistance in pancreatic cancer. World J. Gastroenterol., 2014, 20(42), 15682-15690.
[http://dx.doi.org/10.3748/wjg.v20.i42.15682] [PMID: 25400452]
[111]
Nakamura, Y.; Oka, M.; Soda, H.; Shiozawa, K.; Yoshikawa, M.; Itoh, A.; Ikegami, Y.; Tsurutani, J.; Nakatomi, K.; Kitazaki, T.; Doi, S.; Yoshida, H.; Kohno, S. Gefitinib (“Iressa”, ZD1839), an epidermal growth factor receptor tyrosine kinase inhibitor, reverses breast cancer resistance protein/ABCG2-mediated drug resistance. Cancer Res., 2005, 65(4), 1541-1546.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2417] [PMID: 15735043]
[112]
Zhao, X.M.; Pan, S.Y.; Huang, Q.L.; Lu, Y.N.; Wu, X.H.; Chang, J.H.; Liu, Z.B.; Cai, X.W.; Liu, Q.; Wang, J.L.; Fu, X.L. PA-MSHA in combination with EGFR tyrosine kinase inhibitor: A new strategy to overcome the drug resistance of non-small cell lung cancer cells. Oncotarget, 2016, 7(31), 49384-49396.
[http://dx.doi.org/10.18632/oncotarget.9891] [PMID: 27283902]
[113]
Yan, D.; An, G.; Kuo, M.T. C-Jun N-terminal kinase signalling pathway in response to cisplatin. J. Cell. Mol. Med., 2016, 20(11), 2013-2019.
[http://dx.doi.org/10.1111/jcmm.12908] [PMID: 27374471]
[114]
Bai, X-Y.; Zhang, X-C.; Yang, S-Q.; An, S-J.; Chen, Z-H.; Su, J.; Xie, Z.; Gou, L-Y.; Wu, Y-L. Blockade of hedgehog signaling synergistically increases sensitivity to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer cell lines. PLoS One, 2016, 11(3)e0149370
[http://dx.doi.org/10.1371/journal.pone.0149370] [PMID: 26943330]
[115]
Rondón-Lagos, M.; Villegas, V.E.; Rangel, N.; Sánchez, M.C.; Zaphiropoulos, P.G. Tamoxifen resistance: emerging molecular targets. Int. J. Mol. Sci., 2016, 17(8), 1357.
[http://dx.doi.org/10.3390/ijms17081357] [PMID: 27548161]
[116]
Youn, C-K.; Kim, M-H.; Cho, H-J.; Kim, H-B.; Chang, I-Y.; Chung, M-H.; You, H.J. Oncogenic H-Ras up-regulates expression of ERCC1 to protect cells from platinum-based anticancer agents. Cancer Res., 2004, 64(14), 4849-4857.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0348] [PMID: 15256455]
[117]
Amaral, C.L.; Freitas, L.B.; Tamura, R.E.; Tavares, M.R.; Pavan, I.C.; Bajgelman, M.C.; Simabuco, F.M. S6Ks isoforms contribute to viability, migration, docetaxel resistance and tumor formation of prostate cancer cells. BMC Cancer, 2016, 16(1), 602.
[http://dx.doi.org/10.1186/s12885-016-2629-y] [PMID: 27491285]
[118]
Martin, M.; Wei, H.; Lu, T. Targeting microenvironment in cancer therapeutics. Oncotarget, 2016, 7(32), 52575-52583.
[http://dx.doi.org/10.18632/oncotarget.9824] [PMID: 27270649]
[119]
Haga, A.; Funasaka, T.; Niinaka, Y.; Raz, A.; Nagase, H. Autocrine motility factor signaling induces tumor apoptotic resistance by regulations Apaf-1 and Caspase-9 apoptosome expression. Int. J. Cancer, 2003, 107(5), 707-714.
[http://dx.doi.org/10.1002/ijc.11449] [PMID: 14566819]
[120]
Drozd, E.; Gruber, B.; Marczewska, J.; Drozd, J.; Anuszewska, E. Intracellular glutathione level and efflux in human melanoma and cervical cancer cells differing in doxorubicin resistance. Postepy Hig. Med. Dosw., 2016, 70, 319-328.
[http://dx.doi.org/10.5604/17322693.1199712] [PMID: 27117108]
[121]
Wickström, M.; Dyberg, C.; Milosevic, J.; Einvik, C.; Calero, R.; Sveinbjörnsson, B.; Sandén, E.; Darabi, A.; Siesjö, P.; Kool, M.; Kogner, P.; Baryawno, N.; Johnsen, J.I. Wnt/β-catenin pathway regulates MGMT gene expression in cancer and inhibition of Wnt signalling prevents chemoresistance. Nat. Commun., 2015, 6, 8904.
[http://dx.doi.org/10.1038/ncomms9904] [PMID: 26603103]
[122]
Cabrini, G.; Fabbri, E.; Lo Nigro, C.; Dechecchi, M.C.; Gambari, R. Regulation of expression of O6-methylguanine-DNA methyltransferase and the treatment of glioblastoma (Review). Int. J. Oncol., 2015, 47(2), 417-428.
[http://dx.doi.org/10.3892/ijo.2015.3026] [PMID: 26035292]
[123]
Chang, I.; Mitsui, Y.; Fukuhara, S.; Gill, A.; Wong, D.K.; Yamamura, S.; Shahryari, V.; Tabatabai, Z.L.; Dahiya, R.; Shin, D.M.; Tanaka, Y. Loss of miR-200c up-regulates CYP1B1 and confers docetaxel resistance in renal cell carcinoma. Oncotarget, 2015, 6(10), 7774-7787.
[http://dx.doi.org/10.18632/oncotarget.3484] [PMID: 25860934]
[124]
Wang, T-L.; Diaz, L.A., Jr; Romans, K.; Bardelli, A.; Saha, S.; Galizia, G.; Choti, M.; Donehower, R.; Parmigiani, G.; Shih, IeM.; Iacobuzio-Donahue, C.; Kinzler, K.W.; Vogelstein, B.; Lengauer, C.; Velculescu, V.E. Digital karyotyping identifies thymidylate synthase amplification as a mechanism of resistance to 5-fluorouracil in metastatic colorectal cancer patients. Proc. Natl. Acad. Sci. USA, 2004, 101(9), 3089-3094.
[http://dx.doi.org/10.1073/pnas.0308716101] [PMID: 14970324]
[125]
Zhang, X.; Yashiro, M.; Qiu, H.; Nishii, T.; Matsuzaki, T.; Hirakawa, K. Establishment and characterization of multidrug-resistant gastric cancer cell lines. Anticancer Res., 2010, 30(3), 915-921.
[PMID: 20393015]
[126]
Meng, X.; Qi, X.; Guo, H.; Cai, M.; Li, C.; Zhu, J.; Chen, F.; Guo, H.; Li, J.; Zhao, Y.; Liu, P.; Jia, X.; Yu, J.; Zhang, C.; Sun, W.; Yu, Y.; Jin, Y.; Bai, J.; Wang, M.; Rosales, J.; Lee, K.Y.; Fu, S. Novel role for non-homologous end joining in the formation of double minutes in methotrexate-resistant colon cancer cells. J. Med. Genet., 2015, 52(2), 135-144.
[http://dx.doi.org/10.1136/jmedgenet-2014-102703] [PMID: 25537274]
[127]
McNeil, E.M.; Melton, D.W. DNA repair endonuclease ERCC1-XPF as a novel therapeutic target to overcome chemoresistance in cancer therapy. Nucleic Acids Res., 2012, 40(20), 9990-10004.
[http://dx.doi.org/10.1093/nar/gks818] [PMID: 22941649]
[128]
Stewart, D.J. Tumor and host factors that may limit efficacy of chemotherapy in non-small cell and small cell lung cancer. Crit. Rev. Oncol. Hematol., 2010, 75(3), 173-234.
[http://dx.doi.org/10.1016/j.critrevonc.2009.11.006] [PMID: 20047843]
[129]
Liu, C.L.; Chen, S.F.; Wu, M.Z.; Jao, S.W.; Lin, Y.S.; Yang, C.Y.; Lee, T.Y.; Wen, L.W.; Lan, G.L.; Nieh, S. The molecular and clinical verification of therapeutic resistance via the p38 MAPK-Hsp27 axis in lung cancer. Oncotarget, 2016, 7(12), 14279-14290.
[http://dx.doi.org/10.18632/oncotarget.7306] [PMID: 26872057]
[130]
Kimura, A.; Ogata, K.; Altan, B.; Yokobori, T.; Ide, M.; Mochiki, E.; Toyomasu, Y.; Kogure, N.; Yanoma, T.; Suzuki, M.; Bai, T.; Oyama, T.; Kuwano, H. Nuclear heat shock protein 110 expression is associated with poor prognosis and chemotherapy resistance in gastric cancer. Oncotarget, 2016, 7(14), 18415-18423.
[http://dx.doi.org/10.18632/oncotarget.7821] [PMID: 26943774]
[131]
Trieb, K.; Sulzbacher, I.; Kubista, B. Recurrence rate and progression of chondrosarcoma is correlated with heat shock protein expression. Oncol. Lett., 2016, 11(1), 521-524.
[http://dx.doi.org/10.3892/ol.2015.3926] [PMID: 26870241]
[132]
Hopkins, T.G.; Mura, M.; Al-Ashtal, H.A.; Lahr, R.M.; Abd-Latip, N.; Sweeney, K.; Lu, H.; Weir, J.; El-Bahrawy, M.; Steel, J.H.; Ghaem-Maghami, S.; Aboagye, E.O.; Berman, A.J.; Blagden, S.P. The RNA-binding protein LARP1 is a post-transcriptional regulator of survival and tumorigenesis in ovarian cancer. Nucleic Acids Res., 2016, 44(3), 1227-1246.
[http://dx.doi.org/10.1093/nar/gkv1515] [PMID: 26717985]
[133]
Wang, J.; Guo, Y.; Chu, H.; Guan, Y.; Bi, J.; Wang, B. Multiple functions of the RNA-binding protein HuR in cancer progression, treatment responses and prognosis. Int. J. Mol. Sci., 2013, 14(5), 10015-10041.
[http://dx.doi.org/10.3390/ijms140510015] [PMID: 23665903]
[134]
Teng, R.; Hu, Y.; Zhou, J.; Seifer, B.; Chen, Y.; Shen, J.; Wang, L. Overexpression of Lin28 decreases the chemosensitivity of gastric cancer cells to oxaliplatin, paclitaxel, doxorubicin, and fluorouracil in part via microRNA-107. PLoS One, 2015, 10(12)e0143716
[http://dx.doi.org/10.1371/journal.pone.0143716] [PMID: 26636340]
[135]
Jiang, P.; Wang, P.; Sun, X.; Yuan, Z.; Zhan, R.; Ma, X.; Li, W. Knockdown of long noncoding RNA H19 sensitizes human glioma cells to temozolomide therapy. OncoTargets Ther., 2016, 9, 3501-3509.
[http://dx.doi.org/10.2147/OTT.S96278] [PMID: 27366087]
[136]
Cheng, N.; Cai, W.; Ren, S.; Li, X.; Wang, Q.; Pan, H.; Zhao, M.; Li, J.; Zhang, Y.; Zhao, C.; Chen, X.; Fei, K.; Zhou, C.; Hirsch, F.R. Long non-coding RNA UCA1 induces non-T790M acquired resistance to EGFR-TKIs by activating the AKT/mTOR pathway in EGFR-mutant non-small cell lung cancer. Oncotarget, 2015, 6(27), 23582-23593.
[http://dx.doi.org/10.18632/oncotarget.4361] [PMID: 26160838]
[137]
Liu, E.; Liu, Z.; Zhou, Y.; Mi, R.; Wang, D. Overexpression of long non-coding RNA PVT1 in ovarian cancer cells promotes cisplatin resistance by regulating apoptotic pathways. Int. J. Clin. Exp. Med., 2015, 8(11), 20565-20572.
[PMID: 26884974]
[138]
Pan, J-J.; Xie, X-J.; Li, X.; Chen, W. Long Non-coding RNAs and Drug Resistance. Asian Pacific journal of cancer prevention. Asian Pac. J. Cancer Prev., 2015, 16(18), 8067-8073.
[http://dx.doi.org/10.7314/APJCP.2015.16.18.8067] [PMID: 26745040]
[139]
Zhou, X.; Chen, J.; Tang, W. The molecular mechanism of HOTAIR in tumorigenesis, metastasis, and drug resistance. Acta Biochim. Biophys. Sin. (Shanghai), 2014, 46(12), 1011-1015.
[http://dx.doi.org/10.1093/abbs/gmu104] [PMID: 25385164]
[140]
Yang, Y.; Jiang, C.; Yang, Y.; Guo, L.; Huang, J.; Liu, X.; Wu, C.; Zou, J. Silencing of LncRNA-HOTAIR decreases drug resistance of non-small cell lung cancer cells by inactivating autophagy via suppressing the phosphorylation of ULK1. Biochem. Biophys. Res. Commun., 2018, 497(4), 1003-1010.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.141] [PMID: 29470986]
[141]
Yang, S.Z.; Xu, F.; Zhou, T.; Zhao, X.; McDonald, J.M.; Chen, Y. The long non-coding RNA HOTAIR enhances pancreatic cancer resistance to TNF-related apoptosis-inducing ligand. J. Biol. Chem., 2017, 292(25), 10390-10397.
[http://dx.doi.org/10.1074/jbc.M117.786830] [PMID: 28476883]
[142]
Worku, T.; Bhattarai, D.; Ayers, D.; Wang, K.; Wang, C.; Rehman, Z.U.; Talpur, H.S.; Yang, L. Long non-coding RNAs: The new horizon of gene regulation in ovarian cancer. Cell. Physiol. Biochem., 2017, 44(3), 948-966.
[http://dx.doi.org/10.1159/000485395] [PMID: 29179183]
[143]
Li, L-J.; Chai, Y.; Guo, X-J.; Chu, S-L.; Zhang, L-S. The effects of the long non-coding RNA MALAT-1 regulated autophagy-related signaling pathway on chemotherapy resistance in diffuse large B-cell lymphoma. Biomed. Pharmacother., 2017, 89, 939-948.
[http://dx.doi.org/10.1016/j.biopha.2017.02.011] [PMID: 28292022]
[144]
Yuan, P.; Cao, W.; Zang, Q.; Li, G.; Guo, X.; Fan, J. The HIF-2α-MALAT1-miR-216b axis regulates multi-drug resistance of hepatocellular carcinoma cells via modulating autophagy. Biochem. Biophys. Res. Commun., 2016, 478(3), 1067-1073.
[http://dx.doi.org/10.1016/j.bbrc.2016.08.065] [PMID: 27524242]
[145]
Valeri, N.; Gasparini, P.; Braconi, C.; Paone, A.; Lovat, F.; Fabbri, M.; Sumani, K.M.; Alder, H.; Amadori, D.; Patel, T.; Nuovo, G.J.; Fishel, R.; Croce, C.M. MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2). Proc. Natl. Acad. Sci. USA, 2010, 107(49), 21098-21103.
[http://dx.doi.org/10.1073/pnas.1015541107] [PMID: 21078976]
[146]
Allen, K.E.; Weiss, G.J. Resistance may not be futile: microRNA biomarkers for chemoresistance and potential therapeutics. Mol. Cancer Ther., 2010, 9(12), 3126-3136.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0397] [PMID: 20940321]
[147]
Wei, X.; Wang, W.; Wang, L.; Zhang, Y.; Zhang, X.; Chen, M.; Wang, F.; Yu, J.; Ma, Y.; Sun, G. MicroRNA-21 induces 5-fluorouracil resistance in human pancreatic cancer cells by regulating PTEN and PDCD4. Cancer Med., 2016, 5(4), 693-702.
[http://dx.doi.org/10.1002/cam4.626] [PMID: 26864640]
[148]
Chen, J.; Tian, W.; Cai, H.; He, H.; Deng, Y. Down-regulation of microRNA-200c is associated with drug resistance in human breast cancer. Med. Oncol., 2012, 29(4), 2527-2534.
[http://dx.doi.org/10.1007/s12032-011-0117-4] [PMID: 22101791]
[149]
Xiang, Y.; Ma, N.; Wang, D.; Zhang, Y.; Zhou, J.; Wu, G.; Zhao, R.; Huang, H.; Wang, X.; Qiao, Y.; Li, F.; Han, D.; Wang, L.; Zhang, G.; Gao, X. MiR-152 and miR-185 co-contribute to ovarian cancer cells cisplatin sensitivity by targeting DNMT1 directly: A novel epigenetic therapy independent of decitabine. Oncogene, 2014, 33(3), 378-386.
[http://dx.doi.org/10.1038/onc.2012.575] [PMID: 23318422]
[150]
Li, T.; Gao, F.; Zhang, X-P. miR-203 enhances chemosensitivity to 5-fluorouracil by targeting thymidylate synthase in colorectal cancer. Oncol. Rep., 2015, 33(2), 607-614.
[http://dx.doi.org/10.3892/or.2014.3646] [PMID: 25482885]
[151]
Li, J.; Zhang, Y.; Zhao, J.; Kong, F.; Chen, Y. Overexpression of miR-22 reverses paclitaxel-induced chemoresistance through activation of PTEN signaling in p53-mutated colon cancer cells. Mol. Cell. Biochem., 2011, 357(1-2), 31-38.
[http://dx.doi.org/10.1007/s11010-011-0872-8] [PMID: 21594648]
[152]
Yin, J.; Zheng, G.; Jia, X.; Zhang, Z.; Zhang, W.; Song, Y.; Xiong, Y.; He, Z.A. Bmi1-miRNAs cross-talk modulates chemotherapy response to 5-fluorouracil in breast cancer cells. PLoS One, 2013, 8(9)e73268
[http://dx.doi.org/10.1371/journal.pone.0073268] [PMID: 24039897]
[153]
Gotanda, K.; Hirota, T.; Matsumoto, N.; Ieiri, I. MicroRNA-433 negatively regulates the expression of thymidylate synthase (TYMS) responsible for 5-fluorouracil sensitivity in HeLa cells. BMC Cancer, 2013, 13(1), 369.
[http://dx.doi.org/10.1186/1471-2407-13-369] [PMID: 23915286]
[154]
Zhang, Y.; Geng, L.; Talmon, G.; Wang, J. MicroRNA-520g confers drug resistance by regulating p21 expression in colorectal cancer. J. Biol. Chem., 2015, 290(10), 6215-6225.
[http://dx.doi.org/10.1074/jbc.M114.620252] [PMID: 25616665]
[155]
Zhang, Y.; Talmon, G.; Wang, J. MicroRNA-587 antagonizes 5-FU-induced apoptosis and confers drug resistance by regulating PPP2R1B expression in colorectal cancer. Cell Death Dis., 2015, 6(8)e1845
[http://dx.doi.org/10.1038/cddis.2015.200] [PMID: 26247730]
[156]
Li, Z.; Hu, S.; Wang, J.; Cai, J.; Xiao, L.; Yu, L.; Wang, Z. MiR-27a modulates MDR1/P-glycoprotein expression by targeting HIPK2 in human ovarian cancer cells. Gynecol. Oncol., 2010, 119(1), 125-130.
[http://dx.doi.org/10.1016/j.ygyno.2010.06.004] [PMID: 20624637]
[157]
Karaayvaz, M.; Zhai, H.; Ju, J. miR-129 promotes apoptosis and enhances chemosensitivity to 5-fluorouracil in colorectal cancer. Cell Death Dis., 2013, 4(6)e659
[http://dx.doi.org/10.1038/cddis.2013.193] [PMID: 23744359]
[158]
Sui, C.; Meng, F.; Li, Y.; Jiang, Y. miR-148b reverses cisplatin-resistance in non-small cell cancer cells via negatively regulating DNA (cytosine-5)-methyltransferase 1(DNMT1) expression. J. Transl. Med., 2015, 13(1), 132.
[http://dx.doi.org/10.1186/s12967-015-0488-y] [PMID: 25927928]
[159]
Mansoori, B.; Mohammadi, A.; Goldar, S.; Shanehbandi, D.; Mohammadnejad, L.; Baghbani, E.; Kazemi, T.; Kachalaki, S.; Baradaran, B. Silencing of high mobility group isoform IC (HMGI-C) enhances paclitaxel chemosensitivity in breast adenocarci-noma cells (MDA-MB-468). Adv. Pharm. Bull., 2016, 6(2), 171-177.
[http://dx.doi.org/10.15171/apb.2016.024] [PMID: 27478778]
[160]
Shen, Q.; Liu, S.; Chen, Y.; Yang, L.; Chen, S.; Wu, X.; Li, B.; Lu, Y.; Zhu, K.; Li, Y. Proliferation inhibition and apoptosis induction of imatinib-resistant chronic myeloid leukemia cells via PPP2R5C down-regulation. J. Hematol. Oncol., 2013, 6(1), 64.
[http://dx.doi.org/10.1186/1756-8722-6-64] [PMID: 24004697]
[161]
Zhang, X.; Cheng, X.; Lai, Y.; Zhou, Y.; Cao, W.; Hua, Z-C. Salmonella VNP20009-mediated RNA interference of ABCB5 moderated chemoresistance of melanoma stem cell and suppressed tumor growth more potently. Oncotarget, 2016, 7(12), 14940-14950.
[http://dx.doi.org/10.18632/oncotarget.7496] [PMID: 26910836]
[162]
Yang, L.; Wei, L.; Zhao, W.; Wang, X.; Zheng, G.; Zheng, M.; Song, X.; Zuo, W. Down-regulation of osteopontin expression by RNA interference affects cell proliferation and chemotherapy sensitivity of breast cancer MDA-MB-231 cells. Mol. Med. Rep., 2012, 5(2), 373-376.
[http://dx.doi.org/10.3892/mmr.2011.679] [PMID: 22143930]
[163]
Pang, H.; Cai, L.; Yang, Y.; Chen, X.; Sui, G.; Zhao, C. Knockdown of osteopontin chemosensitizes MDA-MB-231 cells to cyclophosphamide by enhancing apoptosis through activating p38 MAPK pathway. Cancer Biother. Radiopharm., 2011, 26(2), 165-173.
[http://dx.doi.org/10.1089/cbr.2010.0838] [PMID: 21539449]
[164]
Wang, W.; Zhang, L.; Liu, L.; Zheng, Y.; Zhang, Y.; Yang, S.; Shi, R.; Wang, S. Chemosensitizing effect of shRNA-mediated ERCC1 silencing on a Xuanwei lung adenocarcinoma cell line and its clinical significance. Oncol. Rep., 2017, 37(4), 1989-1997.
[http://dx.doi.org/10.3892/or.2017.5443] [PMID: 28260069]
[165]
Meng, H.; Liong, M.; Xia, T.; Li, Z.; Ji, Z.; Zink, J.I.; Nel, A.E. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano, 2010, 4(8), 4539-4550.
[http://dx.doi.org/10.1021/nn100690m] [PMID: 20731437]
[166]
Li, J-M.; Zhang, W.; Su, H.; Wang, Y-Y.; Tan, C-P.; Ji, L-N.; Mao, Z-W. Reversal of multidrug resistance in MCF-7/Adr cells by codelivery of doxorubicin and BCL2 siRNA using a folic acid-conjugated polyethylenimine hydroxypropyl-β-cyclodextrin nanocarrier. Int. J. Nanomedicine, 2015, 10, 3147-3162.
[http://dx.doi.org/10.2147/IJN.S67146] [PMID: 25960653]
[167]
Zou, S.; Cao, N.; Cheng, D.; Zheng, R.; Wang, J.; Zhu, K.; Shuai, X. Enhanced apoptosis of ovarian cancer cells via nanocarrier-mediated codelivery of siRNA and doxorubicin. Int. J. Nanomedicine, 2012, 7, 3823-3835.
[PMID: 22888237]
[168]
Gao, X.; Dai, M.; Li, Q.; Wang, Z.; Lu, Y.; Song, Z. HMGA2 regulates lung cancer proliferation and metastasis. Thorac. Cancer, 2017, 8(5), 501-510.
[http://dx.doi.org/10.1111/1759-7714.12476] [PMID: 28752530]
[169]
Chen, W.; Yuan, Y.; Cheng, D.; Chen, J.; Wang, L.; Shuai, X. Co-delivery of doxorubicin and siRNA with reduction and pH dually sensitive nanocarrier for synergistic cancer therapy. Small, 2014, 10(13), 2678-2687.
[http://dx.doi.org/10.1002/smll.201303951] [PMID: 24668891]
[170]
Jang, M.; Han, H.D.; Ahn, H.J. A RNA nanotechnology platform for a simultaneous two-in-one siRNA delivery and its application in synergistic RNAi therapy. Sci. Rep., 2016, 6, 32363.
[http://dx.doi.org/10.1038/srep32363] [PMID: 27562435]
[171]
Bäumer, S.; Bäumer, N.; Appel, N.; Terheyden, L.; Fremerey, J.; Schelhaas, S.; Wardelmann, E.; Buchholz, F.; Berdel, W.E.; Müller-Tidow, C. Antibody-mediated delivery of anti-KRAS-siRNA in vivo overcomes therapy resistance in colon cancer. Clin. Cancer Res., 2015, 21(6), 1383-1394.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-2017] [PMID: 25589625]
[172]
Xue, W.; Dahlman, J.E.; Tammela, T.; Khan, O.F.; Sood, S.; Dave, A.; Cai, W.; Chirino, L.M.; Yang, G.R.; Bronson, R.; Crowley, D.G.; Sahay, G.; Schroeder, A.; Langer, R.; Anderson, D.G.; Jacks, T. Small RNA combination therapy for lung cancer. Proc. Natl. Acad. Sci. USA, 2014, 111(34), E3553-E3561.
[http://dx.doi.org/10.1073/pnas.1412686111] [PMID: 25114235]
[173]
Meng, H.; Mai, W.X.; Zhang, H.; Xue, M.; Xia, T.; Lin, S.; Wang, X.; Zhao, Y.; Ji, Z.; Zink, J.I.; Nel, A.E. Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano, 2013, 7(2), 994-1005.
[http://dx.doi.org/10.1021/nn3044066] [PMID: 23289892]
[174]
Gu, J.; Li, Y.; Zeng, J.; Wang, B.; Ji, K.; Tang, Y.; Sun, Q. Knockdown of HIF-1α by siRNA-expressing plasmid delivered by attenuated Salmonella enhances the antitumor effects of cisplatin on prostate cancer. Sci. Rep., 2017, 7(1), 7546.
[http://dx.doi.org/10.1038/s41598-017-07973-4]
[175]
Bobbin, M.L.; Rossi, J.J. RNA interference (RNAi)-based therapeutics: delivering on the promise? Annu. Rev. Pharmacol. Toxicol., 2016, 56, 103-122.
[http://dx.doi.org/10.1146/annurev-pharmtox-010715-103633] [PMID: 26738473]
[176]
Gandhi, N.S.; Tekade, R.K.; Chougule, M.B. Nanocarrier mediated delivery of siRNA/miRNA in combination with chemotherapeutic agents for cancer therapy: current progress and advances. J. Control. Release, 2014, 194, 238-256.
[http://dx.doi.org/10.1016/j.jconrel.2014.09.001] [PMID: 25204288]
[177]
Burnett, J.C.; Rossi, J.J.; Tiemann, K. Current progress of siRNA/shRNA therapeutics in clinical trials. Biotechnol. J., 2011, 6(9), 1130-1146.
[http://dx.doi.org/10.1002/biot.201100054] [PMID: 21744502]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy