Review Article

咖啡因对神经退行性疾病的保护作用

卷 26, 期 27, 2019

页: [5137 - 5151] 页: 15

弟呕挨: 10.2174/0929867324666171009104040

价格: $65

摘要

背景:最近的研究以及科学界的日益关注,有助于弄清咖啡因的神经健康特性,咖啡因是世界上最消耗的药理活性物质之一。 方法:本文是一篇综述性搜索,以概述咖啡因的神经生化影响的当前状态,重点是该药物有效抵抗多种神经退行性疾病的能力,例如阿尔茨海默氏症,帕金森氏症,亨廷顿氏病,多发性硬化症和肌萎缩性硬化。 结果:本综述中显示的数据收集提供了咖啡因的显着治疗和预防潜力,咖啡因由于其抗氧化活性和多个分子靶点而通过多种途径作用于人脑。但是,由于某些人比其他人对药物更敏感,因此需要根据个人情况调整CF剂量,这可能会限制CF的有效性。 结论:从临床和流行病学研究的复杂性中得出的结果是,CF对所有神经系统疾病都有潜在的显着影响。虽然,仍需要进一步的研究以充分阐明部分仍然难以捉摸的药物作用的几种机制。

关键词: 咖啡因,神经变性,腺苷受体,抗氧化活性,神经保护作用,线粒体生物发生,ALS。

[1]
Arnaud, M.J. Metabolism of caffeine and other components of coffee.Caffeine, Coffee, and Health; Garattini, S., Ed.; Raven Press: New York, 1993, pp. 43-95.
[2]
Daly, J.W. Caffeine analogs: biomedical impact. Cell. Mol. Life Sci., 2007, 64(16), 2153-2169.
[http://dx.doi.org/10.1007/s00018-007-7051-9] [PMID: 17514358]
[3]
Franke, A.G.; Lieb, K. Pharmacological neuroenhancement and brain doping: Chances and risks. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz, 2010, 53(8), 853-859.
[http://dx.doi.org/10.1007/s00103-010-1105-0] [PMID: 20700786]
[4]
Ribeiro, J.A.; Sebastião, A.M. Caffeine and adenosine. J. Alzheimers Dis., 2010, 20(Suppl. 1), S3-S15.
[http://dx.doi.org/10.3233/JAD-2010-1379]
[5]
Collomp, K.; Anselme, F.; Audran, M.; Gay, J.P.; Chanal, J.L.; Prefaut, C. Effects of moderate exercise on the pharmacokinetics of caffeine. Eur. J. Clin. Pharmacol., 1991, 40(3), 279-282.
[http://dx.doi.org/10.1007/BF00315209] [PMID: 2060565]
[6]
Tellone, E.; Ficarra, S.; Russo, A.; Bellocco, E.; Barreca, D.; Laganà, G.; Leuzzi, U.; Pirolli, D.; De Rosa, M.C.; Giardina, B.; Galtieri, A. Caffeine inhibits erythrocyte membrane derangement by antioxidant activity and by blocking caspase 3 activation. Biochimie, 2012, 94(2), 393-402.
[http://dx.doi.org/10.1016/j.biochi.2011.08.007] [PMID: 21856371]
[7]
Agostinho, P.; Cunha, R.A.; Oliveira, C. Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr. Pharm. Des., 2010, 16(25), 2766-2778.
[http://dx.doi.org/10.2174/138161210793176572] [PMID: 20698820]
[8]
Andorn, A.C.; Britton, R.S.; Bacon, B.R. Evidence that lipid peroxidation and total iron are increased in Alzheimer’s brain. Neurobiol. Aging, 1990, 11, 316-320.
[http://dx.doi.org/10.1016/0197-4580(90)90814-G]
[9]
Dinkova-Kostova, A.T.; Talalay, P.; Sharkey, J.; Zhang, Y.; Holtzclaw, W.D.; Wang, X.J.; David, E.; Schiavoni, K.H.; Finlayson, S.; Mierke, D.F.; Honda, T. An exceptionally potent inducer of cytoprotective enzymes: elucidation of the structural features that determine inducer potency and reactivity with Keap1. J. Biol. Chem., 2010, 285(44), 33747-33755.
[http://dx.doi.org/10.1074/jbc.M110.163485]
[10]
Gil-Mohapel, J.; Brocardo, P.S.; Christie, B.R. The role of oxidative stress in Huntington’s disease: are antioxidants good therapeutic candidates? Curr. Drug Targets, 2014, 15(4), 454-468.
[http://dx.doi.org/10.2174/1389450115666140115113734] [PMID: 24428525]
[11]
Martinc, B.; Grabnar, I.; Vovk, T. Antioxidants as a preventive treatment for epileptic process: a review of the current status. Curr. Neuropharmacol., 2014, 12(6), 527-550.
[http://dx.doi.org/10.2174/1570159X12666140923205715] [PMID: 25977679]
[12]
Tellone, E.; De Rosa, M.C.; Pirolli, D.; Russo, A.; Giardina, B.; Galtieri, A.; Ficarra, S. Molecular interactions of hemoglobin with resveratrol: potential protective antioxidant role and metabolic adaptations of the erythrocyte. Biol. Chem., 2014, 395(3), 347-354.
[http://dx.doi.org/10.1515/hsz-2013-0257] [PMID: 24150206]
[13]
Tellone, E.; Galtieri, A.; Russo, A.; Giardina, B.; Ficarra, S. Resveratrol: a focus on several neurodegenerative diseases. Oxid. Med. Cell. Longev., 2015.2015392169
[http://dx.doi.org/10.1155/2015/392169] [PMID: 26180587]
[14]
Selkoe, D.J. Soluble oligomers of the amyloid β-protein impair synaptic plasticity and behavior. Behav. Brain Res., 2008, 192(1), 106-113.
[http://dx.doi.org/10.1016/j.bbr.2008.02.016] [PMID: 18359102]
[15]
Bertram, L.; Tanzi, R.E. Thirty years of Alzheimer’s disease genetics: the implications of systematic meta-analyses. Nat. Rev. Neurosci., 2008, 9(10), 768-778.
[http://dx.doi.org/10.1038/nrn2494] [PMID: 18802446]
[16]
Hébert, S.S.; Papadopoulou, A.S.; Smith, P.; Galas, M.C.; Planel, E.; Silahtaroglu, A.N.; Sergeant, N.; Buée, L.; De Strooper, B. Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration. Hum. Mol. Genet., 2010, 19(20), 3959-3969.
[http://dx.doi.org/10.1093/hmg/ddq311] [PMID: 20660113]
[17]
Sergeant, N.; Bretteville, A.; Hamdane, M.; Caillet-Boudin, M.L.; Grognet, P.; Bombois, S.; Blum, D.; Delacourte, A.; Pasquier, F.; Vanmechelen, E.; Schraen-Maschke, S.; Buée, L. Biochemistry of tau in alzheimer’s disease and related neurological disorders. Expert Rev. Proteomics, 2008, 5(2), 207-224.
[http://dx.doi.org/10.1586/14789450.5.2.207] [PMID: 18466052]
[18]
Joshi, Y.B.; Praticò, D. Neuroinflammation and alzheimer’s disease: lessons learned from 5-lypoxigenase. Transl. Neurosci., 2014, 5, 197-202.
[http://dx.doi.org/10.2478/s13380-014-0225-7]
[19]
Cho, E.S.; Jang, Y.J.; Hwang, M.K.; Kang, N.J.; Lee, K.W.; Lee, H.J. Attenuation of oxidative neuronal cell death by coffee phenolic phytochemicals. Mutat. Res., 2009, 661(1-2), 18-24.
[http://dx.doi.org/10.1016/j.mrfmmm.2008.10.021] [PMID: 19028509]
[20]
Cunha, R.A.; Agostinho, P.M. Chronic caffeine consumption prevents memory disturbance in different animal models of memory decline. J. Alzheimers Dis., 2010, 20(Suppl. 1), S95-S116.
[http://dx.doi.org/10.3233/JAD-2010-1408] [PMID: 20182043]
[21]
Albasanz, J.L.; Perez, S.; Barrachina, M.; Ferrer, I.; Martín, M. Up-regulation of adenosine receptors in the frontal cortex in Alzheimer’s disease. Brain Pathol., 2008, 18(2), 211-219.
[http://dx.doi.org/10.1111/j.1750-3639.2007.00112.x] [PMID: 18241242]
[22]
Canas, P.M.; Porciúncula, L.O.; Cunha, G.M.A.; Silva, C.G.; Machado, N.J.; Oliveira, J.M.A.; Oliveira, C.R.; Cunha, R.A. Adenosine A2A receptor blockade prevents synaptotoxicity and memory dysfunction caused by beta-amyloid peptides via p38 mitogen-activated protein kinase pathway. J. Neurosci., 2009, 29(47), 14741-14751.
[http://dx.doi.org/10.1523/JNEUROSCI.3728-09.2009] [PMID: 19940169]
[23]
Dall’Igna, O.P.; Porciúncula, L.O.; Souza, D.O.; Cunha, R.A.; Lara, D.R.; Dall’lgna, O.P. Neuroprotection by caffeine and adenosine A2A receptor blockade of beta-amyloid neurotoxicity. Br. J. Pharmacol., 2003, 138(7), 1207-1209.
[http://dx.doi.org/10.1038/sj.bjp.0705185] [PMID: 12711619]
[24]
Marques, S.; Batalha, V.L.; Lopes, L.V.; Outeiro, T.F. Modulating Alzheimer’s disease through caffeine: a putative link to epigenetics. J. Alzheimers Dis., 2011, 24(Suppl. 2), 161-171.
[http://dx.doi.org/10.3233/JAD-2011-110032] [PMID: 21427489]
[25]
Dai, S.S.; Zhou, Y.G.; Li, W.; An, J.H.; Li, P.; Yang, N.; Chen, X.Y.; Xiong, R.P.; Liu, P.; Zhao, Y.; Shen, H.Y.; Zhu, P.F.; Chen, J.F. Local glutamate level dictates adenosine A2A receptor regulation of neuroinflammation and traumatic brain injury. J. Neurosci., 2010, 30(16), 5802-5810.
[http://dx.doi.org/10.1523/JNEUROSCI.0268-10.2010] [PMID: 20410132]
[26]
Popoli, P.; Blum, D.; Martire, A.; Ledent, C.; Ceruti, S.; Abbracchio, M.P. Functions, dysfunctions and possible therapeutic relevance of adenosine A2A receptors in Huntington’s disease. Prog. Neurobiol., 2007, 81(5-6), 331-348.
[http://dx.doi.org/10.1016/j.pneurobio.2006.12.005] [PMID: 17303312]
[27]
Le Freche, H.; Brouillette, J.; Fernandez-Gomez, F.J.; Patin, P.; Caillierez, R.; Zommer, N.; Sergeant, N.; Buée-Scherrer, V.; Lebuffe, G.; Blum, D.; Buée, L. Tau phosphorylation and sevoflurane anesthesia: an association to postoperative cognitive impairment. Anesthesiology, 2012, 116(4), 779-787.
[http://dx.doi.org/10.1097/ALN.0b013e31824be8c7] [PMID: 22343471]
[28]
Laurent, C.; Eddarkaoui, S.; Derisbourg, M.; Leboucher, A.; Demeyer, D.; Carrier, S.; Schneider, M.; Hamdane, M.; Müller, C.E.; Buée, L.; Blum, D. Beneficial effects of caffeine in a transgenic model of Alzheimer’s disease-like tau pathology. Neurobiol. Aging, 2014, 35(9), 2079-2090.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.03.027] [PMID: 24780254]
[29]
Liu, F.; Grundke-Iqbal, I.; Iqbal, K.; Gong, C.X. Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur. J. Neurosci., 2005, 22(8), 1942-1950.
[http://dx.doi.org/10.1111/j.1460-9568.2005.04391.x] [PMID: 16262633]
[30]
Corcoran, N.M.; Martin, D.; Hutter-Paier, B.; Windisch, M.; Nguyen, T.; Nheu, L.; Sundstrom, L.E.; Costello, A.J.; Hovens, C.M. Sodium selenate specifically activates PP2A phosphatase, dephosphorylates tau and reverses memory deficits in an Alzheimer’s disease model. J. Clin. Neurosci., 2010, 17(8), 1025-1033.
[http://dx.doi.org/10.1016/j.jocn.2010.04.020] [PMID: 20537899]
[31]
van Eersel, J.; Ke, Y.D.; Liu, X.; Delerue, F.; Kril, J.J.; Götz, J.; Ittner, L.M. Sodium selenate mitigates tau pathology, neurodegeneration, and functional deficits in Alzheimer’s disease models. Proc. Natl. Acad. Sci. USA, 2010, 107(31), 13888-13893.
[http://dx.doi.org/10.1073/pnas.1009038107] [PMID: 20643941]
[32]
Park, S.; Scheffler, T.L.; Rossie, S.S.; Gerrard, D.E. AMPK activity is regulated by calcium-mediated protein phosphatase 2A activity. Cell Calcium, 2013, 53(3), 217-223.
[http://dx.doi.org/10.1016/j.ceca.2012.12.001] [PMID: 23298795]
[33]
Proctor, C.J.; Gray, D.A. GSK3 and p53 is there a link in Alzheimer’s disease? Mol. Neurodegener., 2010, 26-57.
[http://dx.doi.org/10.1186/1750-1326-5-7]
[34]
Qin, W.; Haroutunian, V.; Katsel, P.; Cardozo, C.P.; Ho, L.; Buxbaum, J.D.; Pasinetti, G.M. PGC-1alpha expression decreases in the Alzheimer disease brain as a function of dementia. Arch. Neurol., 2009, 66(3), 352-361.
[http://dx.doi.org/10.1001/archneurol.2008.588] [PMID: 19273754]
[35]
Zheng, B.; Liao, Z.; Locascio, J.J.; Lesniak, K.A.; Roderick, S.S.; Watt, M.L.; Eklund, A.C.; Zhang-James, Y.; Kim, P.D.; Hauser, M.A.; Grünblatt, E.; Moran, L.B.; Mandel, S.A.; Riederer, P.; Miller, R.M.; Federoff, H.J.; Wüllner, U.; Papapetropoulos, S.; Youdim, M.B.; Cantuti-Castelvetri, I.; Young, A.B.; Vance, J.M.; Davis, R.L.; Hedreen, J.C.; Adler, C.H.; Beach, T.G.; Graeber, M.B.; Middleton, F.A.; Rochet, J.C.; Scherzer, C.R.; Global, P.D.; Global, PD. Gene Expression (GPEX) Consortium. PGC-1α, a potential therapeutic target for early intervention in Parkinson’s disease. Sci. Transl. Med., 2010, 2(52), ra73.
[http://dx.doi.org/10.1126/scitranslmed.3001059] [PMID: 20926834]
[36]
St-Pierre, J.; Drori, S.; Uldry, M.; Silvaggi, J.M.; Rhee, J.; Jäger, S.; Handschin, C.; Zheng, K.; Lin, J.; Yang, W.; Simon, D.K.; Bachoo, R.; Spiegelman, B.M. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell, 2006, 127(2), 397-408.
[http://dx.doi.org/10.1016/j.cell.2006.09.024] [PMID: 17055439]
[37]
Weydt, P.; Pineda, V.V.; Torrence, A.E.; Libby, R.T.; Satterfield, T.F.; Lazarowski, E.R.; Gilbert, M.L.; Morton, G.J.; Bammler, T.K.; Strand, A.D.; Cui, L.; Beyer, R.P.; Easley, C.N.; Smith, A.C.; Krainc, D.; Luquet, S.; Sweet, I.R.; Schwartz, M.W.; La Spada, A.R. Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1alpha in Huntington’s disease neurodegeneration. Cell Metab., 2006, 4(5), 349-362.
[http://dx.doi.org/10.1016/j.cmet.2006.10.004] [PMID: 17055784]
[38]
McConell, G.K.; Ng, G.P.; Phillips, M.; Ruan, Z.; Macaulay, S.L.; Wadley, G.D. Central role of nitric oxide synthase in AICAR and caffeine-induced mitochondrial biogenesis in L6 myocytes. J. Appl. Physiol., 2010, 108(3), 589-595.
[http://dx.doi.org/10.1152/japplphysiol.00377.2009] [PMID: 20044477]
[39]
Alonso, E.; Vale, C.; Vieytes, M.R.; Botana, L.M. Translocation of PKC by yessotoxin in an in vitro model of Alzheimer’s disease with improvement of tau and β-amyloid pathology. ACS Chem. Neurosci., 2013, 4(7), 1062-1070.
[http://dx.doi.org/10.1021/cn400018y] [PMID: 23527608]
[40]
Hasham, M.I.; Pelech, S.L.; Krieger, C. Glutamate-mediated activation of protein kinase C in hippocampal neurons. Neurosci. Lett., 1997, 228(2), 115-118.
[http://dx.doi.org/10.1016/S0304-3940(97)00382-0] [PMID: 9209112]
[41]
Maurice, N.; Tkatch, T.; Meisler, M.; Sprunger, L.K.; Surmeier, D.J. D1/D5 dopamine receptor activation differentially modulates rapidly inactivating and persistent sodium currents in prefrontal cortex pyramidal neurons. J. Neurosci., 2001, 21(7), 2268-2277.
[http://dx.doi.org/10.1523/JNEUROSCI.21-07-02268.2001] [PMID: 11264302]
[42]
Vicente-Torres, M.A.; Dávila, D.; Bartolomé, M.V.; Carricondo, F.; Gil-Loyzaga, P. Biochemical evidence for the presence of serotonin transporters in the rat cochlea. Hear. Res., 2003, 182(1-2), 43-47.
[http://dx.doi.org/10.1016/S0378-5955(03)00140-0] [PMID: 12948600]
[43]
Chen, C.; Li, M.; Chai, H.; Yang, H.; Fisher, W.E.; Yao, Q. Roles of neuropilins in neuronal development, angiogenesis, and cancers. World J. Surg., 2005, 29(3), 271-275.
[http://dx.doi.org/10.1007/s00268-004-7818-1] [PMID: 15696396]
[44]
Carelli-Alinovi, C.; Ficarra, S.; Russo, A.M.; Giunta, E.; Barreca, D.; Galtieri, A.; Misiti, F.; Tellone, E. Involvement of acetylcholinesterase and protein kinase C in the protective effect of caffeine against β-amyloid-induced alterations in red blood cells. Biochimie, 2016, 121, 52-59.
[http://dx.doi.org/10.1016/j.biochi.2015.11.022] [PMID: 26620258]
[45]
Qosa, H.; Abuznait, A.H.; Hill, R.A.; Kaddoumi, A. Enhanced brain amyloid-β clearance by rifampicin and caffeine as a possible protective mechanism against Alzheimer’s disease. J. Alzheimers Dis., 2012, 31(1), 151-165.
[http://dx.doi.org/10.3233/JAD-2012-120319] [PMID: 22504320]
[46]
Arendash, G.W.; Schleif, W.; Rezai-Zadeh, K.; Jackson, E.K.; Zacharia, L.C.; Cracchiolo, J.R.; Shippy, D.; Tan, J. Caffeine protects Alzheimer’s mice against cognitive impairment and reduces brain beta-amyloid production. Neuroscience, 2006, 142(4), 941-952.
[http://dx.doi.org/10.1016/j.neuroscience.2006.07.021] [PMID: 16938404]
[47]
Moore, D.J.; West, A.B.; Dawson, V.L.; Dawson, T.M. Molecular pathophysiology of Parkinson’s disease. Annu. Rev. Neurosci., 2005, 28, 57-87.
[http://dx.doi.org/10.1146/annurev.neuro.28.061604.135718] [PMID: 16022590]
[48]
Kansara, S.; Trivedi, A.; Chen, S.; Jankovic, J.; Le, W. Early diagnosis and therapy of Parkinson’s disease: can disease progression be curbed? J. Neural Transm. (Vienna), 2013, 120(1), 197-210.
[http://dx.doi.org/10.1007/s00702-012-0840-9] [PMID: 22733089]
[49]
Thenganatt, M.A.; Jankovic, J. Parkinson disease subtypes. JAMA Neurol., 2014, 71(4), 499-504.
[http://dx.doi.org/10.1001/jamaneurol.2013.6233] [PMID: 24514863]
[50]
Dauer, W.; Przedborski, S. Parkinson’s disease: mechanisms and models. Neuron, 2003, 39(6), 889-909.
[51]
Blesa, J.; Phani, S.; Jackson-Lewis, V.; Przedborski, S. Classic and new animal models of Parkinson’s disease. J. Biomed. Biotechnol., 2012, 2012845618
[http://dx.doi.org/10.1155/2012/845618] [PMID: 22536024]
[52]
Lees, A.J.; Hardy, J.; Revesz, T. Parkinson’s disease. Lancet, 2009, 373(9680), 2055-2066.
[http://dx.doi.org/10.1016/S0140-6736(09)60492-X] [PMID: 19524782]
[53]
Wirdefeldt, K.; Adami, H.O.; Cole, P.; Trichopoulos, D.; Mandel, J. Epidemiology and etiology of Parkinson’s disease: a review of the evidence. Eur. J. Epidemiol., 2011, 26(Suppl. 1), S1-S58.
[http://dx.doi.org/10.1007/s10654-011-9581-6]
[54]
Fitzgerald, J.C.; Plun-Favreau, H. Emerging pathways in genetic Parkinson’s disease: autosomal-recessive genes in Parkinson’s disease--a common pathway? FEBS J., 2008, 275(23), 5758-5766.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06708.x] [PMID: 19021753]
[55]
Rodriguez, M.; Morales, I.; Rodriguez-Sabate, C.; Sanchez, A.; Castro, R.; Brito, J.M.; Sabate, M. The degeneration and replacement of dopamine cells in Parkinson’s disease: the role of aging. Front. Neuroanat., 2014, 8, 80.
[http://dx.doi.org/10.3389/fnana.2014.00080] [PMID: 25147507]
[56]
Harris, M.A.; Shen, H.; Marion, S.A.; Tsui, J.K.; Teschke, K. Head injuries and Parkinson’s disease in a case-control study. Occup. Environ. Med., 2013, 70(12), 839-844.
[http://dx.doi.org/10.1136/oemed-2013-101444] [PMID: 24142978]
[57]
Schapira, A.H. Mitochondrial dysfunction in Parkinson’s disease. Cell Death Differ., 2007, 14(7), 1261-1266.
[http://dx.doi.org/10.1038/sj.cdd.4402160] [PMID: 17464321]
[58]
Schapira, A.H. Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol., 2008, 7(1), 97-109.
[http://dx.doi.org/10.1016/S1474-4422(07)70327-7] [PMID: 18093566]
[59]
Segura-Aguilar, J.; Paris, I.; Muñoz, P.; Ferrari, E.; Zecca, L.; Zucca, F.A. Protective and toxic roles of dopamine in Parkinson’s disease. J. Neurochem., 2014, 129(6), 898-915.
[http://dx.doi.org/10.1111/jnc.12686] [PMID: 24548101]
[60]
Blesa, J.; Trigo-Damas, I.; Quiroga-Varela, A.; Jackson-Lewis, V.R. Oxidative stress and Parkinson’s disease. Front. Neuroanat., 2015, 9, 91.
[http://dx.doi.org/10.3389/fnana.2015.00091] [PMID: 26217195]
[61]
Hu, D.; Viskin, S.; Oliva, A.; Cordeiro, J.M.; Guerchicoff, A.; Pollevick, G.D.; Antzelevitch, C. Genetic predisposition and cellular basis for ischemia-induced ST-segment changes and arrhythmias. J. Electrocardiol., 2007, 40(6)(Suppl.), S26-S29.
[http://dx.doi.org/10.1016/j.jelectrocard.2007.05.019] [PMID: 17993325]
[62]
Cereda, E.; Barichella, M.; Pedrolli, C.; Klersy, C.; Cassani, E.; Caccialanza, R.; Pezzoli, G. Diabetes and risk of Parkinson’s disease: a systematic review and meta-analysis. Diabetes Care, 2011, 34(12), 2614-2623.
[http://dx.doi.org/10.2337/dc11-1584] [PMID: 22110170]
[63]
Cereda, E.; Barichella, M.; Pedrolli, C.; Klersy, C.; Cassani, E.; Caccialanza, R.; Pezzoli, G. Diabetes and risk of Parkinson’s disease. Mov. Disord., 2013, 28(2), 257.
[http://dx.doi.org/10.1002/mds.25211] [PMID: 23032425]
[64]
Hu, G.; Jousilahti, P.; Nissinen, A.; Antikainen, R.; Kivipelto, M.; Tuomilehto, J. Body mass index and the risk of Parkinson disease. Neurology, 2006, 67(11), 1955-1959.
[http://dx.doi.org/10.1212/01.wnl.0000247052.18422.e5] [PMID: 17159100]
[65]
Rahman, K. Studies on free radicals, antioxidants, and co-factors. Clin. Interv. Aging, 2007, 2(2), 219-236.
[PMID: 18044138]
[66]
Katzenschlager, R.; Lees, A.J. Treatment of Parkinson’s disease: levodopa as the first choice. J. Neurol., 2002, 249(2)(Suppl. 2), II19-II24.
[http://dx.doi.org/10.1007/s00415-002-1204-4] [PMID: 12375059]
[67]
Chen, J-F.; Xu, K.; Petzer, J.P.; Staal, R.; Xu, Y-H.; Beilstein, M.; Sonsalla, P.K.; Castagnoli, K.; Castagnoli, N., Jr; Schwarzschild, M.A.J. Neuroprotection by caffeine and A(2A) adenosine receptor inactivation in a model of Parkinson’s disease. J. Neurosci., 2001, 21(10), RC143.
[http://dx.doi.org/10.1523/JNEUROSCI.21-10-j0001.2001] [PMID: 11319241]
[68]
Yu, L.; Schwarzschild, M.A.; Chen, J-F. Cross-sensitization between caffeine- and L-dopa-induced behaviors in hemiparkinsonian mice. Neurosci. Lett., 2006, 393(1), 31-35.
[http://dx.doi.org/10.1016/j.neulet.2005.09.036] [PMID: 16236444]
[69]
Prediger, R.D. Effects of caffeine in Parkinson’s disease: from neuroprotection to the management of motor and non-motor symptoms. J. Alzheimers Dis., 2010, 20(Suppl. 1), S205-S220.
[http://dx.doi.org/10.3233/JAD-2010-091459] [PMID: 20182024]
[70]
Jenner, P.; Mori, A.; Hauser, R.; Morelli, M.; Fredholm, B.B.; Chen, J.F. Adenosine, adenosine A 2A antagonists, and Parkinson’s disease. Parkinsonism Relat. Disord., 2009, 15(6), 406-413.
[http://dx.doi.org/10.1016/j.parkreldis.2008.12.006] [PMID: 19446490]
[71]
Okaecwe, T.; Swanepoel, A.J.; Petzer, A.; Bergh, J.J.; Petzer, J.P. Inhibition of monoamine oxidase by 8-phenoxymethylcaffeine derivatives. Bioorg. Med. Chem., 2012, 20(14), 4336-4347.
[http://dx.doi.org/10.1016/j.bmc.2012.05.048] [PMID: 22705191]
[72]
Petzer, A.; Pienaar, A.; Petzer, J.P. The interactions of caffeine with monoamine oxidase. Life Sci., 2013, 93(7), 283-287.
[http://dx.doi.org/10.1016/j.lfs.2013.06.020] [PMID: 23850513]
[73]
Petzer, J.P.; Petzer, A. Caffeine as a lead compound for the design of therapeutic agents for the treatment of Parkinson’s disease. Curr. Med. Chem., 2015, 22(8), 975-988.
[http://dx.doi.org/10.2174/0929867322666141215160015] [PMID: 25544641]
[74]
Eschbach, J.; von Einem, B.; Müller, K.; Bayer, H.; Scheffold, A.; Morrison, B.E.; Rudolph, K.L.; Thal, D.R.; Witting, A.; Weydt, P.; Otto, M.; Fauler, M.; Liss, B.; McLean, P.J.; Spada, A.R.; Ludolph, A.C.; Weishaupt, J.H.; Danzer, K.M. Mutual exacerbation of peroxisome proliferator-activated receptor γ coactivator 1α deregulation and α-synuclein oligomerization. Ann. Neurol., 2015, 77(1), 15-32.
[http://dx.doi.org/10.1002/ana.24294] [PMID: 25363075]
[75]
Ciron, C.; Zheng, L.; Bobela, W.; Knott, G.W.; Leone, T.C.; Kelly, D.P.; Schneider, B.L. PGC-1α activity in nigral dopamine neurons determines vulnerability to α-synuclein. Acta Neuropathol. Commun., 2015, 3, 16.
[http://dx.doi.org/10.1186/s40478-015-0200-8] [PMID: 25853296]
[76]
Yokoyama, M.; Okada, S.; Nakagomi, A.; Moriya, J.; Shimizu, I.; Nojima, A.; Yoshida, Y.; Ichimiya, H.; Kamimura, N.; Kobayashi, Y.; Ohta, S.; Fruttiger, M.; Lozano, G.; Minamino, T. Inhibition of endothelial p53 improves metabolic abnormalities related to dietary obesity. Cell Rep., 2014, 7(5), 1691-1703.
[http://dx.doi.org/10.1016/j.celrep.2014.04.046] [PMID: 24857662]
[77]
Kardani, J.; Roy, I. Understanding caffeine’s role in attenuating the toxicity of α-synuclein aggregates: implications for risk of parkinson’s disease. ACS Chem. Neurosci., 2015, 6(9), 1613-1625.
[http://dx.doi.org/10.1021/acschemneuro.5b00158] [PMID: 26167732]
[78]
Salvemini, D.; Kim, S.F.; Mollace, V. Reciprocal regulation of the nitric oxide and cyclooxygenase pathway in pathophysiology: relevance and clinical implications. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2013, 304(7), R473-R487.
[http://dx.doi.org/10.1152/ajpregu.00355.2012] [PMID: 23389111]
[79]
Tsutsui, S.; Schnermann, J.; Noorbakhsh, F.; Henry, S.; Yong, V.W.; Winston, B.W.; Warren, K.; Power, C. A1 adenosine receptor upregulation and activation attenuates neuroinflammation and demyelination in a model of multiple sclerosis. J. Neurosci., 2004, 24(6), 1521-1529.
[http://dx.doi.org/10.1523/JNEUROSCI.4271-03.2004] [PMID: 14960625]
[80]
Yadav, S.; Gupta, S.P.; Srivastava, G.; Srivastava, P.K.; Singh, M.P. Role of secondary mediators in caffeine-mediated neuroprotection in maneb- and paraquat-induced Parkinson’s disease phenotype in the mouse. Neurochem. Res., 2012, 37(4), 875-884.
[http://dx.doi.org/10.1007/s11064-011-0682-0] [PMID: 22201039]
[81]
Margolis, R.L.; Ross, C.A. Diagnosis of Huntington disease. Clin. Chem., 2003, 49(10), 1726-1732.
[http://dx.doi.org/10.1373/49.10.1726] [PMID: 14500613]
[82]
La Spada, A.R. Finding a sirtuin truth in Huntington’s disease. Nat. Med., 2012, 18(1), 24-26.
[http://dx.doi.org/10.1038/nm.2624] [PMID: 22227661]
[83]
Lajoie, P.; Snapp, E.L. Formation and toxicity of soluble polyglutamine oligomers in living cells. PLoS One, 2010, 5(12)e15245
[http://dx.doi.org/10.1371/journal.pone.0015245] [PMID: 21209946]
[84]
Cisbani, G.; Cicchetti, F. An in vitro perspective on the molecular mechanisms underlying mutant huntingtin protein toxicity. Cell Death Dis., 2012, 3e382
[http://dx.doi.org/10.1038/cddis.2012.121] [PMID: 22932724]
[85]
McCampbell, A.; Taylor, J.P.; Taye, A.A.; Robitschek, J.; Li, M.; Walcott, J.; Merry, D.; Chai, Y.; Paulson, H.; Sobue, G.; Fischbeck, K.H. CREB-binding protein sequestration by expanded polyglutamine. Hum. Mol. Genet., 2000, 9(14), 2197-2202.
[http://dx.doi.org/10.1093/hmg/9.14.2197] [PMID: 10958659]
[86]
Nucifora, F.C., Jr; Sasaki, M.; Peters, M.F.; Huang, H.; Cooper, J.K.; Yamada, M.; Takahashi, H.; Tsuji, S.; Troncoso, J.; Dawson, V.L.; Dawson, T.M.; Ross, C.A. Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science, 2001, 291(5512), 2423-2428.
[http://dx.doi.org/10.1126/science.1056784] [PMID: 11264541]
[87]
Steffan, J.S.; Kazantsev, A.; Spasic-Boskovic, O.; Greenwald, M.; Zhu, Y.Z.; Gohler, H.; Wanker, E.E.; Bates, G.P.; Housman, D.E.; Thompson, L.M. The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc. Natl. Acad. Sci. USA, 2000, 97(12), 6763-6768.
[http://dx.doi.org/10.1073/pnas.100110097] [PMID: 10823891]
[88]
Cummings, C.J.; Mancini, M.A.; Antalffy, B.; DeFranco, D.B.; Orr, H.T.; Zoghbi, H.Y. Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat. Genet., 1998, 19(2), 148-154.
[http://dx.doi.org/10.1038/502] [PMID: 9620770]
[89]
Donaldson, K.M.; Li, W.; Ching, K.A.; Batalov, S.; Tsai, C.C.; Joazeiro, C.A. Ubiquitin-mediated sequestration of normal cellular proteins into polyglutamine aggregates. Proc. Natl. Acad. Sci. USA, 2003, 100(15), 8892-8897.
[http://dx.doi.org/10.1073/pnas.1530212100] [PMID: 12857950]
[90]
Suhr, S.T.; Senut, M.C.; Whitelegge, J.P.; Faull, K.F.; Cuizon, D.B.; Gage, F.H. Identities of sequestered proteins in aggregates from cells with induced polyglutamine expression. J. Cell Biol., 2001, 153(2), 283-294.
[http://dx.doi.org/10.1083/jcb.153.2.283] [PMID: 11309410]
[91]
Orr, A.L.; Li, S.; Wang, C.E.; Li, H.; Wang, J.; Rong, J.; Xu, X.; Mastroberardino, P.G.; Greenamyre, J.T.; Li, X.J. N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking. J. Neurosci., 2008, 28(11), 2783-2792.
[http://dx.doi.org/10.1523/JNEUROSCI.0106-08.2008] [PMID: 18337408]
[92]
Mochel, F.; Haller, R.G. Energy deficit in Huntington disease: why it matters. J. Clin. Invest., 2011, 121(2), 493-499.
[http://dx.doi.org/10.1172/JCI45691] [PMID: 21285522]
[93]
Blum, K.; Gardner, E.; Oscar-Berman, M.; Gold, M. “Liking” and “wanting” linked to Reward Deficiency Syndrome (RDS): hypothesizing differential responsivity in brain reward circuitry. Curr. Pharm. Des., 2012, 18(1), 113-118.
[http://dx.doi.org/10.2174/138161212798919110] [PMID: 22236117]
[94]
Chen, J.F.; Chern, Y. Impacts of methylxanthines and adenosine receptors on neurodegeneration: human and experimental studies. Handb. Exp. Pharmacol., 2011, 200(200), 267-310.
[http://dx.doi.org/10.1007/978-3-642-13443-2_10] [PMID: 20859800]
[95]
Acheson, A.; Conover, J.C.; Fandl, J.P.; DeChiara, T.M.; Russell, M.; Thadani, A.; Squinto, S.P.; Yancopoulos, G.D.; Lindsay, R.M. A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature, 1995, 374(6521), 450-453.
[http://dx.doi.org/10.1038/374450a0] [PMID: 7700353]
[96]
Huang, E.J.; Reichardt, L.F. Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci., 2001, 24, 677-736.
[http://dx.doi.org/10.1146/annurev.neuro.24.1.677] [PMID: 11520916]
[97]
Zuccato, C.; Ciammola, A.; Rigamonti, D.; Leavitt, B.R.; Goffredo, D.; Conti, L.; MacDonald, M.E.; Friedlander, R.M.; Silani, V.; Hayden, M.R.; Timmusk, T.; Sipione, S.; Cattaneo, E. Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science, 2001, 293(5529), 493-498.
[http://dx.doi.org/10.1126/science.1059581] [PMID: 11408619]
[98]
Zuccato, C.; Cattaneo, E. Role of brain-derived neurotrophic factor in Huntington’s disease. Prog. Neurobiol., 2007, 81(5-6), 294-330.
[http://dx.doi.org/10.1016/j.pneurobio.2007.01.003] [PMID: 17379385]
[99]
Costa, M.S.; Botton, P.H.; Mioranzza, S.; Ardais, A.P.; Moreira, J.D.; Souza, D.O.; Porciúncula, L.O. Caffeine improves adult mice performance in the object recognition task and increases BDNF and TrkB independent on phospho-CREB immunocontent in the hippocampus. Neurochem. Int., 2008, 53(3-4), 89-94.
[http://dx.doi.org/10.1016/j.neuint.2008.06.006] [PMID: 18620014]
[100]
Moy, G.A.; McNay, E.C. Caffeine prevents weight gain and cognitive impairment caused by a high-fat diet while elevating hippocampal BDNF. Physiol. Behav., 2013, 109, 69-74.
[http://dx.doi.org/10.1016/j.physbeh.2012.11.008] [PMID: 23220362]
[101]
Cui, L.; Jeong, H.; Borovecki, F.; Parkhurst, C.N.; Tanese, N.; Krainc, D. Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell, 2006, 127(1), 59-69.
[http://dx.doi.org/10.1016/j.cell.2006.09.015] [PMID: 17018277]
[102]
Johri, A.; Chandra, A.; Flint Beal, M. PGC-1α, mitochondrial dysfunction, and Huntington’s disease. Free Radic. Biol. Med., 2013, 62, 37-46.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.04.016] [PMID: 23602910]
[103]
Vaughan, R.A.; Garcia-Smith, R.; Bisoffi, M.; Trujillo, K.A.; Conn, C.A. Effects of caffeine on metabolism and mitochondria biogenesis in rhabdomyosarcoma cells compared with 2,4-dinitrophenol. Nutr. Metab. Insights, 2012, 5, 59-70.
[http://dx.doi.org/10.4137/NMI.S10233] [PMID: 23882149]
[104]
Labbadia, J.; Morimoto, R.I. Huntington’s disease: underlying molecular mechanisms and emerging concepts. Trends Biochem. Sci., 2013, 38(8), 378-385.
[http://dx.doi.org/10.1016/j.tibs.2013.05.003] [PMID: 23768628]
[105]
Jonson, I.; Ougland, R.; Klungland, A.; Larsen, E. Oxidative stress causes DNA triplet expansion in Huntington’s disease mouse embryonic stem cells. Stem Cell Res. (Amst.), 2013, 11(3), 1264-1271.
[http://dx.doi.org/10.1016/j.scr.2013.08.010] [PMID: 24041806]
[106]
Sen, N.; Satija, Y.K.; Das, S. PGC-1α, a key modulator of p53, promotes cell survival upon metabolic stress. Mol. Cell, 2011, 44(4), 621-634.
[http://dx.doi.org/10.1016/j.molcel.2011.08.044] [PMID: 22099309]
[107]
Vigneron, A.; Vousden, K.H. p53, ROS and senescence in the control of aging. Aging (Albany NY), 2010, 2(8), 471-474.
[http://dx.doi.org/10.18632/aging.100189] [PMID: 20729567]
[108]
Bae, B.I.; Xu, H.; Igarashi, S.; Fujimuro, M.; Agrawal, N.; Taya, Y.; Hayward, S.D.; Moran, T.H.; Montell, C.; Ross, C.A.; Snyder, S.H.; Sawa, A. p53 mediates cellular dysfunction and behavioral abnormalities in Huntington’s disease. Neuron, 2005, 47(1), 29-41.
[http://dx.doi.org/10.1016/j.neuron.2005.06.005] [PMID: 15996546]
[109]
Liang, Z.Q.; Wang, X.X.; Wang, Y.; Chuang, D.M.; DiFiglia, M.; Chase, T.N.; Qin, Z.H. Susceptibility of striatal neurons to excitotoxic injury correlates with basal levels of Bcl-2 and the induction of P53 and c-Myc immunoreactivity. Neurobiol. Dis., 2005, 20(2), 562-573.
[http://dx.doi.org/10.1016/j.nbd.2005.04.011] [PMID: 15922606]
[110]
Ryan, A.B.; Zeitlin, S.O.; Scrable, H. Genetic interaction between expanded murine Hdh alleles and p53 reveal deleterious effects of p53 on Huntington’s disease pathogenesis. Neurobiol. Dis., 2006, 24(2), 419-427.
[http://dx.doi.org/10.1016/j.nbd.2006.08.002] [PMID: 16978870]
[111]
Chang, J.R.; Ghafouri, M.; Mukerjee, R.; Bagashev, A.; Chabrashvili, T.; Sawaya, B.E. Role of p53 in neurodegenerative diseases. Neurodegener. Dis., 2012, 9(2), 68-80.
[http://dx.doi.org/10.1159/000329999] [PMID: 22042001]
[112]
Ali, Y.O.; Bradley, G.; Lu, H.C. Screening with an NMNAT2-MSD platform identifies small molecules that modulate NMNAT2 levels in cortical neurons. Sci. Rep., 2017, 7, 43846.
[http://dx.doi.org/10.1038/srep43846] [PMID: 28266613]
[113]
Wijesekera, L.C.; Leigh, P.N. Amyotrophic lateral sclerosis. Orphanet J. Rare Dis., 2009, 4, 3.
[http://dx.doi.org/10.1186/1750-1172-4-3] [PMID: 19192301]
[114]
D’Amico, E.; Factor-Litvak, P.; Santella, R.M.; Mitsumoto, H. Clinical perspective on oxidative stress in sporadic amyotrophic lateral sclerosis. Free Radic. Biol. Med., 2013, 65, 509-527.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.06.029] [PMID: 23797033]
[115]
Ticozzi, N.; Tiloca, C.; Morelli, C.; Colombrita, C.; Poletti, B.; Doretti, A.; Maderna, L.; Messina, S.; Ratti, A.; Silani, V. Genetics of familial Amyotrophic lateral sclerosis. Arch. Ital. Biol., 2011, 149(1), 65-82.
[PMID: 21412717]
[116]
Ingre, C.; Roos, P.M.; Piehl, F.; Kamel, F.; Fang, F. Risk factors for amyotrophic lateral sclerosis. Clin. Epidemiol., 2015, 7, 181-193.
[PMID: 25709501]
[117]
Muyderman, H.; Chen, T. Mitochondrial dysfunction in amyotrophic lateral sclerosis - a valid pharmacological target? Br. J. Pharmacol., 2014, 171(8), 2191-2205.
[http://dx.doi.org/10.1111/bph.12476] [PMID: 24148000]
[118]
Thuault, S. The RNAs of ALS. Nat. Neurosci., 2015, 18(8), 1066.
[http://dx.doi.org/10.1038/nn0815-1066] [PMID: 26216462]
[119]
Pollari, E.; Goldsteins, G.; Bart, G.; Koistinaho, J.; Giniatullin, R. The role of oxidative stress in degeneration of the neuromuscular junction in amyotrophic lateral sclerosis. Front. Cell. Neurosci., 2014, 8, 131.
[http://dx.doi.org/10.3389/fncel.2014.00131] [PMID: 24860432]
[120]
Carrì, M.T.; Valle, C.; Bozzo, F.; Cozzolino, M. Oxidative stress and mitochondrial damage: importance in non-SOD1 ALS. Front. Cell. Neurosci., 2015, 9, 41.
[http://dx.doi.org/10.3389/fncel.2015.00041] [PMID: 25741238]
[121]
Bruijn, L.I.; Miller, T.M.; Cleveland, D.W. Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu. Rev. Neurosci., 2004, 27, 723-749.
[http://dx.doi.org/10.1146/annurev.neuro.27.070203.144244] [PMID: 15217349]
[122]
Prudencio, M.; Hart, P.J.; Borchelt, D.R.; Andersen, P.M. Variation in aggregation propensities among ALS-associated variants of SOD1: correlation to human disease. Hum. Mol. Genet., 2009, 18(17), 3217-3226.
[http://dx.doi.org/10.1093/hmg/ddp260] [PMID: 19483195]
[123]
DeJesus-Hernandez, M.; Mackenzie, I.R.; Boeve, B.F.; Boxer, A.L.; Baker, M.; Rutherford, N.J.; Nicholson, A.M.; Finch, N.A.; Flynn, H.; Adamson, J.; Kouri, N.; Wojtas, A.; Sengdy, P.; Hsiung, G.Y.; Karydas, A.; Seeley, W.W.; Josephs, K.A.; Coppola, G.; Geschwind, D.H.; Wszolek, Z.K.; Feldman, H.; Knopman, D.S.; Petersen, R.C.; Miller, B.L.; Dickson, D.W.; Boylan, K.B.; Graff-Radford, N.R.; Rademakers, R. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron, 2011, 72(2), 245-256.
[http://dx.doi.org/10.1016/j.neuron.2011.09.011] [PMID: 21944778]
[124]
Renton, A.E.; Majounie, E.; Waite, A.; Simón-Sánchez, J.; Rollinson, S.; Gibbs, J.R.; Schymick, J.C.; Laaksovirta, H.; van Swieten, J.C.; Myllykangas, L.; Kalimo, H.; Paetau, A.; Abramzon, Y.; Remes, A.M.; Kaganovich, A.; Scholz, S.W.; Duckworth, J.; Ding, J.; Harmer, D.W.; Hernandez, D.G.; Johnson, J.O.; Mok, K.; Ryten, M.; Trabzuni, D.; Guerreiro, R.J.; Orrell, R.W.; Neal, J.; Murray, A.; Pearson, J.; Jansen, I.E.; Sondervan, D.; Seelaar, H.; Blake, D.; Young, K.; Halliwell, N.; Callister, J.B.; Toulson, G.; Richardson, A.; Gerhard, A.; Snowden, J.; Mann, D.; Neary, D.; Nalls, M.A.; Peuralinna, T.; Jansson, L.; Isoviita, V.M.; Kaivorinne, A.L.; Hölttä-Vuori, M.; Ikonen, E.; Sulkava, R.; Benatar, M.; Wuu, J.; Chiò, A.; Restagno, G.; Borghero, G.; Sabatelli, M.; Heckerman, D.; Rogaeva, E.; Zinman, L.; Rothstein, J.D.; Sendtner, M.; Drepper, C.; Eichler, E.E.; Alkan, C.; Abdullaev, Z.; Pack, S.D.; Dutra, A.; Pak, E.; Hardy, J.; Singleton, A.; Williams, N.M.; Heutink, P.; Pickering-Brown, S.; Morris, H.R.; Tienari, P.J.; Traynor, B.J. ITALSGEN Consortium A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron, 2011, 72(2), 257-268.
[http://dx.doi.org/10.1016/j.neuron.2011.09.010] [PMID: 21944779]
[125]
Rothstein, J.D. Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann. Neurol., 2009, 65(1)(Suppl. 1), S3-S9.
[http://dx.doi.org/10.1002/ana.21543] [PMID: 19191304]
[126]
Qi, Y.; Yin, X.; Wang, S.; Jiang, H.; Wang, X.; Ren, M.; Su, X.P.; Lei, S.; Feng, H. PGC-1α silencing compounds the perturbation of mitochondrial function caused by mutant SOD1 in skeletal muscle of ALS mouse model. Front. Aging Neurosci., 2015, 7, 204.
[http://dx.doi.org/10.3389/fnagi.2015.00204] [PMID: 26539112]
[127]
Pasquinelli, A.; Chico, L.; Pasquali, L.; Bisordi, C.; Lo Gerfo, A.; Fabbrini, M.; Petrozzi, L.; Marconi, L.; Caldarazzo Ienco, E.; Mancuso, M.; Siciliano, G. Gly482Ser PGC-1α gene polymorphism and exercise-related oxidative stress in amyotrophic lateral sclerosis patients. Front. Cell. Neurosci., 2016, 10, 102.
[http://dx.doi.org/10.3389/fncel.2016.00102] [PMID: 27147974]
[128]
Liang, H.; Ward, W.F.; Jang, Y.C.; Bhattacharya, A.; Bokov, A.F.; Li, Y.; Jernigan, A.; Richardson, A.; Van Remmen, H. PGC-1α protects neurons and alters disease progression in an amyotrophic lateral sclerosis mouse model. Muscle Nerve, 2011, 44(6), 947-956.
[http://dx.doi.org/10.1002/mus.22217] [PMID: 22102466]
[129]
Da Cruz, S.; Parone, P.A.; Lopes, V.S.; Lillo, C.; McAlonis-Downes, M.; Lee, S.K.; Vetto, A.P.; Petrosyan, S.; Marsala, M.; Murphy, A.N.; Williams, D.S.; Spiegelman, B.M.; Cleveland, D.W. Elevated PGC-1α activity sustains mitochondrial biogenesis and muscle function without extending survival in a mouse model of inherited ALS. Cell Metab., 2012, 15(5), 778-786.
[http://dx.doi.org/10.1016/j.cmet.2012.03.019] [PMID: 22560226]
[130]
Thau, N.; Knippenberg, S.; Körner, S.; Rath, K.J.; Dengler, R.; Petri, S. Decreased mRNA expression of PGC-1α and PGC-1α-regulated factors in the SOD1G93A ALS mouse model and in human sporadic ALS. J. Neuropathol. Exp. Neurol., 2012, 71(12), 1064-1074.
[http://dx.doi.org/10.1097/NEN.0b013e318275df4b] [PMID: 23147503]
[131]
St-Pierre, J.; Drori, S.; Uldry, M.; Silvaggi, J.M.; Rhee, J.; Jäger, S.; Handschin, C.; Zheng, K.; Lin, J.; Yang, W.; Simon, D.K.; Bachoo, R.; Spiegelman, B.M. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell, 2006, 127(2), 397-408.
[http://dx.doi.org/10.1016/j.cell.2006.09.024] [PMID: 17055439]
[132]
Lassmann, H.; van Horssen, J.; Mahad, D. Progressive multiple sclerosis: pathology and pathogenesis. Nat. Rev. Neurol., 2012, 8(11), 647-656.
[http://dx.doi.org/10.1038/nrneurol.2012.168] [PMID: 23007702]
[133]
O’Gorman, C.; Lucas, R.; Taylor, B. Environmental risk factors for multiple sclerosis: a review with a focus on molecular mechanisms. Int. J. Mol. Sci., 2012, 13(9), 11718-11752.
[http://dx.doi.org/10.3390/ijms130911718] [PMID: 23109880]
[134]
Stadelmann, C.; Wegner, C.; Brück, W. Inflammation, demyelination, and degeneration - recent insights from MS pathology. Biochim. Biophys. Acta, 2011, 1812(2), 275-282.
[http://dx.doi.org/10.1016/j.bbadis.2010.07.007] [PMID: 20637864]
[135]
Benveniste, E.N. Role of macrophages/microglia in multiple sclerosis and experimental allergic encephalomyelitis. J. Mol. Med. (Berl.), 1997, 75(3), 165-173.
[http://dx.doi.org/10.1007/s001090050101] [PMID: 9106073]
[136]
Hedström, A.K.; Mowry, E.M.; Gianfrancesco, M.A.; Shao, X.; Schaefer, C.A.; Shen, L.; Olsson, T.; Barcellos, L.F.; Alfredsson, L. High consumption of coffee is associated with decreased multiple sclerosis risk; results from two independent studies. J. Neurol. Neurosurg. Psychiatry, 2016, 87(5), 454-460.
[http://dx.doi.org/10.1136/jnnp-2015-312176] [PMID: 26940586]
[137]
Horrigan, L.A.; Kelly, J.P.; Connor, T.J. Caffeine suppresses TNF-alpha production via activation of the cyclic AMP/protein kinase A pathway. Int. Immunopharmacol., 2004, 4(10-11), 1409-1417.
[http://dx.doi.org/10.1016/j.intimp.2004.06.005] [PMID: 15313438]
[138]
Tsutsui, S.; Schnermann, J.; Noorbakhsh, F.; Henry, S.; Yong, V.W.; Winston, B.W.; Warren, K.; Power, C. A1 adenosine receptor upregulation and activation attenuates neuroinflammation and demyelination in a model of multiple sclerosis. J. Neurosci., 2004, 24(6), 1521-1529.
[http://dx.doi.org/10.1523/JNEUROSCI.4271-03.2004] [PMID: 14960625]
[139]
Nijland, P.G.; Witte, M.E.; van het Hof, B.; van der Pol, S.; Bauer, J.; Lassmann, H.; van der Valk, P.; de Vries, H.E.; van Horssen, J. Astroglial PGC-1alpha increases mitochondrial antioxidant capacity and suppresses inflammation: implications for multiple sclerosis. Acta Neuropathol. Commun., 2014, 2, 170.
[http://dx.doi.org/10.1186/s40478-014-0170-2] [PMID: 25492529]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy