Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Neuroprotective Effects of Flavonoid Compounds on Neuronal Death Associated to Alzheimer’s Disease

Author(s): Antoni Sureda*, Xavier Capó and Silvia Tejada

Volume 26, Issue 27, 2019

Page: [5124 - 5136] Pages: 13

DOI: 10.2174/0929867325666171226103237

Price: $65

Abstract

Alzheimer’s disease is an increasing neurodegenerative pathology related to age in many societies. Some aspects of the disease are related to the loss of neuronal cells derived by the formation of extracellular neuritic plaques and the appearance of intracellular neurofibrillary tangles, altogether generating an inflammatory and oxidative status. The accumulation of amyloids in cells induces the activation of the apoptotic cascade which implies caspases activation. Alzheimer’s disease is treated with acetylcholine esterase inhibitors, although their effects are still far away to reduce or eliminate the problems associated with the pathology. The lack of effective treatment has led to the search for new therapeutic alternatives based on natural products. Flavonoids comprise a group of phenolic compounds that have gained great interest since they present great diversity of biological activities. In the present work, we review the potential uses of flavonoids and the proposed mechanisms of action as a new therapeutic strategy in neurological cell death associated with Alzheimer’s disease.

Keywords: Antioxidant, apoptosis, mitochondria, neurodegenerative, polyphenols, Alzheimer's disease.

[1]
Dorsey, E.R.; Constantinescu, R.; Thompson, J.P.; Biglan, K.M.; Holloway, R.G.; Kieburtz, K.; Marshall, F.J.; Ravina, B.M.; Schifitto, G.; Siderowf, A.; Tanner, C.M. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology, 2007, 68(5), 384-386.
[http://dx.doi.org/10.1212/01.wnl.0000247740.47667.03] [PMID: 17082464]
[2]
Masters, C.L.; Simms, G.; Weinman, N.A.; Multhaup, G.; McDonald, B.L.; Beyreuther, K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl. Acad. Sci. USA, 1985, 82(12), 4245-4249.
[http://dx.doi.org/10.1073/pnas.82.12.4245] [PMID: 3159021]
[3]
Takahashi, R.H.; Nagao, T.; Gouras, G.K. Plaque formation and the intraneuronal accumulation of β-amyloid in Alzheimer’s disease. Pathol. Int., 2017, 67(4), 185-193.
[http://dx.doi.org/10.1111/pin.12520] [PMID: 28261941]
[4]
Ramaker, J.M.; Copenhaver, P.F. Amyloid Precursor Protein family as unconventional Go-coupled receptors and the control of neuronal motility. Neurogenesis (Austin), 2017, 4(1)e1288510
[http://dx.doi.org/10.1080/23262133.2017.1288510] [PMID: 28321435]
[5]
Hahr, J.Y. Physiology of the alzheimer’s disease. Med. Hypotheses, 2015, 85(6), 944-946.
[http://dx.doi.org/10.1016/j.mehy.2015.09.005] [PMID: 26386488]
[6]
Iqbal, K.; Liu, F.; Gong, C.X.; Grundke-Iqbal, I. Tau in alzheimer disease and related tauopathies. Curr. Alzheimer Res., 2010, 7(8), 656-664.
[http://dx.doi.org/10.2174/156720510793611592] [PMID: 20678074]
[7]
Henderson, V.W. Alzheimer’s disease: review of hormone therapy trials and implications for treatment and prevention after menopause. J. Steroid Biochem. Mol. Biol., 2014, 142, 99-106.
[http://dx.doi.org/10.1016/j.jsbmb.2013.05.010] [PMID: 23727128]
[8]
Ameisen, J.C. The origin of programmed cell death. Science, 1996, 272(5266), 1278-1279.
[http://dx.doi.org/10.1126/science.272.5266.1278] [PMID: 8650538]
[9]
Kam, P.C.; Ferch, N.I. Apoptosis: mechanisms and clinical implications. Anaesthesia, 2000, 55(11), 1081-1093.
[http://dx.doi.org/10.1046/j.1365-2044.2000.01554.x] [PMID: 11069335]
[10]
Iranshahi, M.; Rezaee, R.; Parhiz, H.; Roohbakhsh, A.; Soltani, F. Protective effects of flavonoids against microbes and toxins: the cases of hesperidin and hesperetin. Life Sci., 2015, 137, 125-132.
[http://dx.doi.org/10.1016/j.lfs.2015.07.014] [PMID: 26188593]
[11]
Parhiz, H.; Roohbakhsh, A.; Soltani, F.; Rezaee, R.; Iranshahi, M. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytother. Res., 2015, 29(3), 323-331.
[http://dx.doi.org/10.1002/ptr.5256] [PMID: 25394264]
[12]
Viña, J.; Lloret, A.; Vallés, S.L.; Borrás, C.; Badía, M.C.; Pallardó, F.V.; Sastre, J.; Alonso, M.D. Mitochondrial oxidant signalling in alzheimer’s disease. J. Alzheimers Dis., 2007, 11(2), 175-181.
[http://dx.doi.org/10.3233/JAD-2007-11205] [PMID: 17522442]
[13]
Arends, M.J.; Wyllie, A.H. Apoptosis: mechanisms and roles in pathology. Int. Rev. Exp. Pathol., 1991, 32, 223-254.
[http://dx.doi.org/10.1016/B978-0-12-364932-4.50010-1] [PMID: 1677933]
[14]
Wyllie, A.H. Apoptosis: an overview. Br. Med. Bull., 1997, 53(3), 451-465.
[http://dx.doi.org/10.1093/oxfordjournals.bmb.a011623] [PMID: 9374030]
[15]
Obulesu, M.; Lakshmi, M.J. Apoptosis in Alzheimer’s disease: an understanding of the physiology, pathology and therapeutic avenues. Neurochem. Res., 2014, 39(12), 2301-2312.
[http://dx.doi.org/10.1007/s11064-014-1454-4] [PMID: 25322820]
[16]
Thatte, U.; Dahanukar, S. Apoptosis: clinical relevance and pharmacological manipulation. Drugs, 1997, 54(4), 511-532.
[http://dx.doi.org/10.2165/00003495-199754040-00002] [PMID: 9339959]
[17]
Earnshaw, W.C. Nuclear changes in apoptosis. Curr. Opin. Cell Biol., 1995, 7(3), 337-343.
[http://dx.doi.org/10.1016/0955-0674(95)80088-3] [PMID: 7662363]
[18]
Kumar, S. Caspase function in programmed cell death. Cell Death Differ., 2007, 14(1), 32-43.
[http://dx.doi.org/10.1038/sj.cdd.4402060] [PMID: 17082813]
[19]
Zhong, L.T.; Sarafian, T.; Kane, D.J.; Charles, A.C.; Mah, S.P.; Edwards, R.H.; Bredesen, D.E. bcl-2 inhibits death of central neural cells induced by multiple agents. Proc. Natl. Acad. Sci. USA, 1993, 90(10), 4533-4537.
[http://dx.doi.org/10.1073/pnas.90.10.4533] [PMID: 8506295]
[20]
Ashkenazi, A.; Dixit, V.M. Death receptors: signaling and modulation. Science, 1998, 281(5381), 1305-1308.
[http://dx.doi.org/10.1126/science.281.5381.1305] [PMID: 9721089]
[21]
Nuñez, G.; Benedict, M.A.; Hu, Y.; Inohara, N. Caspases: the proteases of the apoptotic pathway. Oncogene, 1998, 17(25), 3237-3245.
[http://dx.doi.org/10.1038/sj.onc.1202581] [PMID: 9916986]
[22]
Wei, M.; Chen, L.; Liu, J.; Zhao, J.; Liu, W.; Feng, F. Protective effects of a Chotosan Fraction and its active components on β-amyloid-induced neurotoxicity. Neurosci. Lett., 2016, 617, 143-149.
[http://dx.doi.org/10.1016/j.neulet.2016.02.019] [PMID: 26876445]
[23]
Walsh, D.M.; Selkoe, D.J. A beta oligomers - a decade of discovery. J. Neurochem., 2007, 101(5), 1172-1184.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04426.x] [PMID: 17286590]
[24]
McGeer, P.L.; McGeer, E.G. NSAIDs and Alzheimer disease: epidemiological, animal model and clinical studies. Neurobiol. Aging, 2007, 28(5), 639-647.
[http://dx.doi.org/10.1016/j.neurobiolaging.2006.03.013] [PMID: 16697488]
[25]
Johnson, G.V.; Stoothoff, W.H. Tau phosphorylation in neuronal cell function and dysfunction. J. Cell Sci., 2004, 117(Pt 24), 5721-5729.
[http://dx.doi.org/10.1242/jcs.01558] [PMID: 15537830]
[26]
Hyman, B.T.; Augustinack, J.C.; Ingelsson, M. Transcriptional and conformational changes of the tau molecule in Alzheimer’s disease. Biochim. Biophys. Acta, 2005, 1739(2-3), 150-157.
[http://dx.doi.org/10.1016/j.bbadis.2004.06.015] [PMID: 15615634]
[27]
Lee, K.H.; Lee, S.J.; Lee, H.J.; Choi, G.E.; Jung, Y.H.; Kim, D.I.; Gabr, A.A.; Ryu, J.M.; Han, H.J. Amyloid β1-42 (Aβ1-42) Induces the CDK2-Mediated Phosphorylation of Tau through the activation of the mTORC1 signaling pathway while promoting neuronal cell death. Front. Mol. Neurosci., 2017, 10, 229.
[http://dx.doi.org/10.3389/fnmol.2017.00229] [PMID: 28790888]
[28]
Folch, J.; Junyent, F.; Verdaguer, E.; Auladell, C.; Pizarro, J.G.; Beas-Zarate, C.; Pallàs, M.; Camins, A. Role of cell cycle re-entry in neurons: a common apoptotic mechanism of neuronal cell death. Neurotox. Res., 2012, 22(3), 195-207.
[http://dx.doi.org/10.1007/s12640-011-9277-4] [PMID: 21965004]
[29]
Halle, A.; Hornung, V.; Petzold, G.C.; Stewart, C.R.; Monks, B.G.; Reinheckel, T.; Fitzgerald, K.A.; Latz, E.; Moore, K.J.; Golenbock, D.T. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat. Immunol., 2008, 9(8), 857-865.
[http://dx.doi.org/10.1038/ni.1636] [PMID: 18604209]
[30]
Heneka, M.T.; Kummer, M.P.; Stutz, A.; Delekate, A.; Schwartz, S.; Vieira-Saecker, A.; Griep, A.; Axt, D.; Remus, A.; Tzeng, T.C.; Gelpi, E.; Halle, A.; Korte, M.; Latz, E.; Golenbock, D.T. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature, 2013, 493(7434), 674-678.
[http://dx.doi.org/10.1038/nature11729] [PMID: 23254930]
[31]
Álvarez-Arellano, L.; Pedraza-Escalona, M.; Blanco-Ayala, T.; Camacho-Concha, N.; Cortés-Mendoza, J.; Pérez-Martínez, L.; Pedraza-Alva, G. Autophagy impairment by caspase-1-dependent inflammation mediates memory loss in response to β-Amyloid peptide accumulation. J. Neurosci. Res., 2018, 96(2), 234-246.
[http://dx.doi.org/10.1002/jnr.24130] [PMID: 28801921]
[32]
Go, M.; Kou, J.; Lim, J.E.; Yang, J.; Fukuchi, K.I. Microglial response to LPS increases in wild-type mice during aging but diminishes in an Alzheimer’s mouse model: Implication of TLR4 signaling in disease progression. Biochem. Biophys. Res. Commun., 2016, 479(2), 331-337.
[http://dx.doi.org/10.1016/j.bbrc.2016.09.073] [PMID: 27641666]
[33]
Hines, D.J.; Choi, H.B.; Hines, R.M.; Phillips, A.G.; MacVicar, B.A. Prevention of LPS-induced microglia activation, cytokine production and sickness behavior with TLR4 receptor interfering peptides. PLoS One, 2013, 8(3)e60388
[http://dx.doi.org/10.1371/journal.pone.0060388] [PMID: 23555964]
[34]
Bolós, M.; Perea, J.R.; Avila, J. Alzheimer’s disease as an inflammatory disease. Biomol. Concepts, 2017, 8(1), 37-43.
[http://dx.doi.org/10.1515/bmc-2016-0029] [PMID: 28231054]
[35]
Menzies, F.M.; Fleming, A.; Rubinsztein, D.C. Compromised autophagy and neurodegenerative diseases. Nat. Rev. Neurosci., 2015, 16(6), 345-357.
[http://dx.doi.org/10.1038/nrn3961] [PMID: 25991442]
[36]
Saleem, S.; Biswas, S.C. Tribbles Pseudokinase 3 induces both apoptosis and autophagy in amyloid-β-induced neuronal death. J. Biol. Chem., 2017, 292(7), 2571-2585.
[http://dx.doi.org/10.1074/jbc.M116.744730] [PMID: 28011637]
[37]
François, A.; Rioux Bilan, A.; Quellard, N.; Fernandez, B.; Janet, T.; Chassaing, D.; Paccalin, M.; Terro, F.; Page, G. Longitudinal follow-up of autophagy and inflammation in brain of APPswePS1dE9 transgenic mice. J. Neuroinflammation, 2014, 11, 139.
[http://dx.doi.org/10.1186/s12974-014-0139-x] [PMID: 25158693]
[38]
Nixon, R.A.; Yang, D.S. Autophagy failure in Alzheimer’s disease--locating the primary defect. Neurobiol. Dis., 2011, 43(1), 38-45.
[http://dx.doi.org/10.1016/j.nbd.2011.01.021] [PMID: 21296668]
[39]
Ihara, Y.; Morishima-Kawashima, M.; Nixon, R. The ubiquitin-proteasome system and the autophagic-lysosomal system in Alzheimer disease. Cold Spring Harb. Perspect. Med., 2012, 2(8)a006361
[http://dx.doi.org/10.1101/cshperspect.a006361] [PMID: 22908190]
[40]
Hung, S.Y.; Huang, W.P.; Liou, H.C.; Fu, W.M. Autophagy protects neuron from Abeta-induced cytotoxicity. Autophagy, 2009, 5(4), 502-510.
[http://dx.doi.org/10.4161/auto.5.4.8096] [PMID: 19270530]
[41]
Majumder, S.; Richardson, A.; Strong, R.; Oddo, S. Inducing autophagy by rapamycin before, but not after, the formation of plaques and tangles ameliorates cognitive deficits. PLoS One, 2011, 6(9)e25416
[http://dx.doi.org/10.1371/journal.pone.0025416] [PMID: 21980451]
[42]
Spilman, P.; Podlutskaya, N.; Hart, M.J.; Debnath, J.; Gorostiza, O.; Bredesen, D.; Richardson, A.; Strong, R.; Galvan, V. Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer’s disease. PLoS One, 2010, 5(4)e9979
[http://dx.doi.org/10.1371/journal.pone.0009979] [PMID: 20376313]
[43]
Marais, J.P.J.; Deavours, B.; Dixon, R.A.; Ferreira, D. The stereochemistry of flavonoids. In: The Science of Flavonoids; Grotewold, E., Ed.; Springer Press: New York, 2007, pp. 1-35.
[44]
Lago, J.H.; Toledo-Arruda, A.C.; Mernak, M.; Barrosa, K.H.; Martins, M.A.; Tibério, I.F.; Prado, C.M. Structure-activity association of flavonoids in lung diseases. Molecules, 2014, 19(3), 3570-3595.
[http://dx.doi.org/10.3390/molecules19033570] [PMID: 24662074]
[45]
Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr., 2005, 81(1)(Suppl.), 230S-242S.
[http://dx.doi.org/10.1093/ajcn/81.1.230S] [PMID: 15640486]
[46]
Williamson, G.; Manach, C. Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am. J. Clin. Nutr., 2005, 81(1)(Suppl.), 243S-255S.
[http://dx.doi.org/10.1093/ajcn/81.1.243S] [PMID: 15640487]
[47]
Erdman, J.W., Jr; Balentine, D.; Arab, L.; Beecher, G.; Dwyer, J.T.; Folts, J.; Harnly, J.; Hollman, P.; Keen, C.L.; Mazza, G.; Messina, M.; Scalbert, A.; Vita, J.; Williamson, G.; Burrowes, J. Flavonoids and heart health: proceedings of the ILSI North America flavonoids workshop, May 31-June 1, 2005, Washington, DC. J. Nutr., 2007, 137(3)(Suppl. 1), 718S-737S.
[http://dx.doi.org/10.1093/jn/137.3.718S] [PMID: 17311968]
[48]
Cassidy, A.; Minihane, A.M. The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. Am. J. Clin. Nutr., 2017, 105(1), 10-22.
[http://dx.doi.org/10.3945/ajcn.116.136051] [PMID: 27881391]
[49]
Day, A.J.; Cañada, F.J.; Díaz, J.C.; Kroon, P.A.; Mclauchlan, R.; Faulds, C.B.; Plumb, G.W.; Morgan, M.R.; Williamson, G. Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett., 2000, 468(2-3), 166-170.
[http://dx.doi.org/10.1016/S0014-5793(00)01211-4] [PMID: 10692580]
[50]
Day, A.J.; DuPont, M.S.; Ridley, S.; Rhodes, M.; Rhodes, M.J.; Morgan, M.R.; Williamson, G. Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver beta-glucosidase activity. FEBS Lett., 1998, 436(1), 71-75.
[http://dx.doi.org/10.1016/S0014-5793(98)01101-6] [PMID: 9771896]
[51]
Wolffram, S.; Blöck, M.; Ader, P. Quercetin-3-glucoside is transported by the glucose carrier SGLT1 across the brush border membrane of rat small intestine. J. Nutr., 2002, 132(4), 630-635.
[http://dx.doi.org/10.1093/jn/132.4.630] [PMID: 11925453]
[52]
Walle, T. Absorption and metabolism of flavonoids. Free Radic. Biol. Med., 2004, 36(7), 829-837.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.01.002] [PMID: 15019968]
[53]
Chen, Z.; Zheng, S.; Li, L.; Jiang, H. Metabolism of flavonoids in human: a comprehensive review. Curr. Drug Metab., 2014, 15(1), 48-61.
[http://dx.doi.org/10.2174/138920021501140218125020] [PMID: 24588554]
[54]
Hodek, P.; Trefil, P.; Stiborová, M. Flavonoids-potent and versatile biologically active compounds interacting with cytochromes P450. Chem. Biol. Interact., 2002, 139(1), 1-[2h1t.t.
[http://dx.doi.org/10.1016/S0009-2797(01)00285-X] [PMID: 11803026]
[55]
Donovan, J.L.; Kasim-Karakas, S.; German, J.B.; Waterhouse, A.L. Urinary excretion of catechin metabolites by human subjects after red wine consumption. Br. J. Nutr., 2002, 87(1), 31-37.
[http://dx.doi.org/10.1079/BJN2001482] [PMID: 11895312]
[56]
Zeng, M.; Sun, R.; Basu, S.; Ma, Y.; Ge, S.; Yin, T.; Gao, S.; Zhang, J.; Hu, M. Disposition of flavonoids via recycling: Direct biliary excretion of enterically or extrahepatically derived flavonoid glucuronides. Mol. Nutr. Food Res., 2016, 60(5), 1006-1019.
[http://dx.doi.org/10.1002/mnfr.201500692] [PMID: 26843117]
[57]
Crozier, A.; Del Rio, D.; Clifford, M.N. Bioavailability of dietary flavonoids and phenolic compounds. Mol. Aspects Med., 2010, 31(6), 446-467.
[http://dx.doi.org/10.1016/j.mam.2010.09.007] [PMID: 20854839]
[58]
Choi, S.M.; Kim, B.C.; Cho, Y.H.; Choi, K.H.; Chang, J.; Park, M.S.; Kim, M.K.; Cho, K.H.; Kim, J.K. Effects of flavonoid compounds on beta-amyloid-peptide-induced neuronal death in cultured mouse cortical neurons. Chonnam Med. J., 2014, 50(2), 45-51.
[http://dx.doi.org/10.4068/cmj.2014.50.2.45] [PMID: 25229015]
[59]
Porat, Y.; Abramowitz, A.; Gazit, E. Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem. Biol. Drug Des., 2006, 67(1), 27-37.
[http://dx.doi.org/10.1111/j.1747-0285.2005.00318.x] [PMID: 16492146]
[60]
Porzoor, A.; Alford, B.; Hügel, H.M.; Grando, D.; Caine, J.; Macreadie, I. Anti-amyloidogenic properties of some phenolic compounds. Biomolecules, 2015, 5(2), 505-527.
[http://dx.doi.org/10.3390/biom5020505] [PMID: 25898401]
[61]
Guzzi, C.; Colombo, L.; Luigi, A.; Salmona, M.; Nicotra, F.; Airoldi, C. Flavonoids and their glycosides as anti-amyloidogenic compounds: Aβ1-42 interaction studies to gain new insights into their potential for alzheimer’s disease prevention and therapy. Chem. Asian J., 2017, 12(1), 67-75.
[http://dx.doi.org/10.1002/asia.201601291] [PMID: 27766768]
[62]
Zhao, L.; Wang, J.L.; Liu, R.; Li, X.X.; Li, J.F.; Zhang, L. Neuroprotective, anti-amyloidogenic and neurotrophic effects of apigenin in an Alzheimer’s disease mouse model. Molecules, 2013, 18(8), 9949-9965.
[http://dx.doi.org/10.3390/molecules18089949] [PMID: 23966081]
[63]
Li, W.X.; Deng, Y.Y.; Li, F.; Liu, B.; Liu, H.Y.; Shi, J.S.; Gong, Q.H. Icariin, a major constituent of flavonoids from Epimedium brevicornum, protects against cognitive deficits induced by chronic brain hypoperfusion via its anti-amyloidogenic effect in rats. Pharmacol. Biochem. Behav., 2015, 138, 40-48.
[http://dx.doi.org/10.1016/j.pbb.2015.09.001] [PMID: 26364923]
[64]
Alberdi, E.; Sánchez-Gómez, M.V.; Cavaliere, F.; Pérez-Samartín, A.; Zugaza, J.L.; Trullas, R.; Domercq, M.; Matute, C. Amyloid beta oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors. Cell Calcium, 2010, 47(3), 264-272.
[http://dx.doi.org/10.1016/j.ceca.2009.12.010] [PMID: 20061018]
[65]
Harkany, T.; Hortobágyi, T.; Sasvári, M.; Kónya, C.; Penke, B.; Luiten, P.G.; Nyakas, C. Neuroprotective approaches in experimental models of beta-amyloid neurotoxicity: relevance to Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry, 1999, 23(6), 963-1008.
[http://dx.doi.org/10.1016/S0278-5846(99)00058-5] [PMID: 10621945]
[66]
Ban, J.Y.; Jeon, S.Y.; Bae, K.; Song, K.S.; Seong, Y.H. Catechin and epicatechin from Smilacis chinae rhizome protect cultured rat cortical neurons against amyloid beta protein (25-35)-induced neurotoxicity through inhibition of cytosolic calcium elevation. Life Sci., 2006, 79(24), 2251-2259.
[http://dx.doi.org/10.1016/j.lfs.2006.07.021] [PMID: 16978655]
[67]
Ban, J.Y.; Cho, S.O.; Koh, S.B.; Song, K.S.; Bae, K.; Seong, Y.H. Protection of amyloid beta protein (25-35)-induced neurotoxicity by methanol extract of Smilacis chinae rhizome in cultured rat cortical neurons. J. Ethnopharmacol., 2006, 106(2), 230-237.
[http://dx.doi.org/10.1016/j.jep.2005.12.034] [PMID: 16497458]
[68]
Shimmyo, Y.; Kihara, T.; Akaike, A.; Niidome, T.; Sugimoto, H. Three distinct neuroprotective functions of myricetin against glutamate-induced neuronal cell death: involvement of direct inhibition of caspase-3. J. Neurosci. Res., 2008, 86(8), 1836-1845.
[http://dx.doi.org/10.1002/jnr.21629] [PMID: 18265412]
[69]
Choi, R.C.; Zhu, J.T.; Leung, K.W.; Chu, G.K.; Xie, H.Q.; Chen, V.P.; Zheng, K.Y.; Lau, D.T.; Dong, T.T.; Chow, P.C.; Han, Y.F.; Wang, Z.T.; Tsim, K.W. A flavonol glycoside, isolated from roots of Panax notoginseng, reduces amyloid-beta-induced neurotoxicity in cultured neurons: signaling transduction and drug development for Alzheimer’s disease. J. Alzheimers Dis., 2010, 19(3), 795-811.
[http://dx.doi.org/10.3233/JAD-2010-1293] [PMID: 20157237]
[70]
Yang, E.J.; Kim, G.S.; Jun, M.; Song, K.S. Kaempferol attenuates the glutamate-induced oxidative stress in mouse-derived hippocampal neuronal HT22 cells. Food Funct., 2014, 5(7), 1395-1402.
[http://dx.doi.org/10.1039/c4fo00068d] [PMID: 24770605]
[71]
Cong, L.; Cao, C.; Cheng, Y.; Qin, X.Y. Green tea polyphenols attenuated glutamate excitotoxicity via antioxidative and antiapoptotic pathway in the primary cultured cortical neurons. Oxid. Med. Cell. Longev., 2016.20162050435
[http://dx.doi.org/10.1155/2016/2050435] [PMID: 26788243]
[72]
Ansari, M.A.; Abdul, H.M.; Joshi, G.; Opii, W.O.; Butterfield, D.A. Protective effect of quercetin in primary neurons against aβ(1-42): relevance to Alzheimer’s disease. J. Nutr. Biochem., 2009, 20(4), 269-275.
[http://dx.doi.org/10.1016/j.jnutbio.2008.03.002] [PMID: 18602817]
[73]
Shih, P.H.; Wu, C.H.; Yeh, C.T.; Yen, G.C. Protective effects of anthocyanins against amyloid β-peptide-induced damage in neuro-2A cells. J. Agric. Food Chem., 2011, 59(5), 1683-1689.
[http://dx.doi.org/10.1021/jf103822h] [PMID: 21302893]
[74]
Jia, S.L.; Wu, X.L.; Li, X.X.; Dai, X.L.; Gao, Z.L.; Lu, Z.; Zheng, Q.S.; Sun, Y.X. Neuroprotective effects of liquiritin on cognitive deficits induced by soluble amyloid-β1-42 oligomers injected into the hippocampus. J. Asian Nat. Prod. Res., 2016, 18(12), 1186-1199.
[http://dx.doi.org/10.1080/10286020.2016.1201811] [PMID: 27589374]
[75]
Cho, E.S.; Jang, Y.J.; Kang, N.J.; Hwang, M.K.; Kim, Y.T.; Lee, K.W.; Lee, H.J. Cocoa procyanidins attenuate 4-hydroxynonenal-induced apoptosis of PC12 cells by directly inhibiting mitogen-activated protein kinase kinase 4 activity. Free Radic. Biol. Med., 2009, 46(10), 1319-1327.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.02.010] [PMID: 19248828]
[76]
Xiao, Z.; Huang, C.; Wu, J.; Sun, L.; Hao, W.; Leung, L.K.; Huang, J. The neuroprotective effects of ipriflavone against H 2O 2 and amyloid beta induced toxicity in human neuroblastoma SH-SY5Y cells. Eur. J. Pharmacol., 2013, 721(1-3), 286-293.
[http://dx.doi.org/10.1016/j.ejphar.2013.09.023] [PMID: 24084576]
[77]
Li, J.; Wang, G.; Liu, J.; Zhou, L.; Dong, M.; Wang, R.; Li, X.; Li, X.; Lin, C.; Niu, Y. Puerarin attenuates amyloid-beta-induced cognitive impairment through suppression of apoptosis in rat hippocampus in vivo. Eur. J. Pharmacol., 2010, 649(1-3), 195-201.
[http://dx.doi.org/10.1016/j.ejphar.2010.09.045] [PMID: 20868658]
[78]
Masci, A.; Mattioli, R.; Costantino, P.; Baima, S.; Morelli, G.; Punzi, P.; Giordano, C.; Pinto, A.; Donini, L.M.; d’Erme, M.; Mosca, L. Neuroprotective effect of Brassica oleracea sprouts crude juice in a cellular model of Alzheimer’s disease. Oxid. Med. Cell. Longev., 2015.2015781938
[http://dx.doi.org/10.1155/2015/781938] [PMID: 26180595]
[79]
Yu, L.; Wang, S.; Chen, X.; Yang, H.; Li, X.; Xu, Y.; Zhu, X. Orientin alleviates cognitive deficits and oxidative stress in Aβ1-42-induced mouse model of Alzheimer’s disease. Life Sci., 2015, 121, 104-109.
[http://dx.doi.org/10.1016/j.lfs.2014.11.021] [PMID: 25497709]
[80]
Manczak, M.; Anekonda, T.S.; Henson, E.; Park, B.S.; Quinn, J.; Reddy, P.H. Mitochondria are a direct site of A beta accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum. Mol. Genet., 2006, 15(9), 1437-1449.
[http://dx.doi.org/10.1093/hmg/ddl066] [PMID: 16551656]
[81]
Zhang, H.; Liu, Y.; Lao, M.; Ma, Z.; Yi, X. Puerarin protects Alzheimer’s disease neuronal cybrids from oxidant-stress induced apoptosis by inhibiting pro-death signaling pathways. Exp. Gerontol., 2011, 46(1), 30-37.
[http://dx.doi.org/10.1016/j.exger.2010.09.013] [PMID: 20933077]
[82]
Onyango, I.G.; Tuttle, J.B.; Bennett, J.P. Jr Altered intracellular signaling and reduced viability of Alzheimer’s disease neuronal cybrids is reproduced by beta-amyloid peptide acting through receptor for advanced glycation end products (RAGE). Mol. Cell. Neurosci., 2005, 29(2), 333-343.
[http://dx.doi.org/10.1016/j.mcn.2005.02.012] [PMID: 15911356]
[83]
Liu, R.; Wu, C.X.; Zhou, D.; Yang, F.; Tian, S.; Zhang, L.; Zhang, T.T.; Du, G.H. Pinocembrin protects against β-amyloid-induced toxicity in neurons through inhibiting receptor for advanced glycation end products (RAGE)-independent signaling pathways and regulating mitochondrion-mediated apoptosis. BMC Med., 2012, 10, 105.
[http://dx.doi.org/10.1186/1741-7015-10-105] [PMID: 22989295]
[84]
Zhao, L.; Wang, J.L.; Wang, Y.R.; Fa, X.Z. Apigenin attenuates copper-mediated β-amyloid neurotoxicity through antioxidation, mitochondrion protection and MAPK signal inactivation in an AD cell model. Brain Res., 2013, 1492, 33-45.
[http://dx.doi.org/10.1016/j.brainres.2012.11.019] [PMID: 23178511]
[85]
Thummayot, S.; Tocharus, C.; Pinkaew, D.; Viwatpinyo, K.; Sringarm, K.; Tocharus, J. Neuroprotective effect of purple rice extract and its constituent against amyloid beta-induced neuronal cell death in SK-N-SH cells. Neurotoxicology, 2014, 45, 149-158.
[http://dx.doi.org/10.1016/j.neuro.2014.10.010] [PMID: 25451968]
[86]
Badshah, H.; Kim, T.H.; Kim, M.O. Protective effects of anthocyanins against amyloid beta-induced neurotoxicity in vivo and in vitro. Neurochem. Int., 2015, 80, 51-59.
[http://dx.doi.org/10.1016/j.neuint.2014.10.009] [PMID: 25451757]
[87]
Babri, S.; Mohaddes, G.; Feizi, I.; Mohammadnia, A.; Niapour, A.; Alihemmati, A.; Amani, M. Effect of troxerutin on synaptic plasticity of hippocampal dentate gyrus neurons in a β-amyloid model of Alzheimer׳s disease: an electrophysiological study. Eur. J. Pharmacol., 2014, 732, 19-25.
[http://dx.doi.org/10.1016/j.ejphar.2014.03.018] [PMID: 24681055]
[88]
Gu, X.H.; Xu, L.J.; Liu, Z.Q.; Wei, B.; Yang, Y.J.; Xu, G.G.; Yin, X.P.; Wang, W. The flavonoid baicalein rescues synaptic plasticity and memory deficits in a mouse model of Alzheimer’s disease. Behav. Brain Res., 2016, 311, 309-321.
[http://dx.doi.org/10.1016/j.bbr.2016.05.052] [PMID: 27233830]
[89]
Wei, L.; Lv, S.; Huang, Q.; Wei, J.; Zhang, S.; Huang, R.; Lu, Z.; Lin, X. Pratensein attenuates Aβ-induced cognitive deficits in rats: enhancement of synaptic plasticity and cholinergic function. Fitoterapia, 2015, 101, 208-217.
[http://dx.doi.org/10.1016/j.fitote.2015.01.017] [PMID: 25665942]
[90]
Kraus, B.; Wolff, H.; Heilmann, J.; Elstner, E.F. Influence of Hypericum perforatum extract and its single compounds on amyloid-beta mediated toxicity in microglial cells. Life Sci., 2007, 81(11), 884-894.
[http://dx.doi.org/10.1016/j.lfs.2007.07.020] [PMID: 17725929]
[91]
Eckert, G.P.; Wood, W.G.; Müller, W.E. Membrane disordering effects of beta-amyloid peptides. Subcell. Biochem., 2005, 38, 319-337.
[http://dx.doi.org/10.1007/0-387-23226-5_16] [PMID: 15709486]
[92]
Song, Y.; Kim, H.D.; Lee, M.K.; Kim, M.K.; Kang, S.N.; Ko, Y.G.; Won, C.K.; Kim, G.S.; Lee, S.S.; Bai, H.W.; Chung, B.Y.; Cho, J.H. Protective effect of centipedegrass against Aβ oligomerization and Aβ-mediated cell death in PC12 cells. Pharm. Biol., 2015, 53(9), 1260-1266.
[http://dx.doi.org/10.3109/13880209.2014.974062] [PMID: 25853960]
[93]
Richard, T.; Poupard, P.; Nassra, M.; Papastamoulis, Y.; Iglésias, M.L.; Krisa, S.; Waffo-Teguo, P.; Mérillon, J.M.; Monti, J.P. Protective effect of ε-viniferin on β-amyloid peptide aggregation investigated by electrospray ionization mass spectrometry. Bioorg. Med. Chem., 2011, 19(10), 3152-3155.
[http://dx.doi.org/10.1016/j.bmc.2011.04.001] [PMID: 21524590]
[94]
Copani, A.; Hoozemans, J.J.; Caraci, F.; Calafiore, M.; Van Haastert, E.S.; Veerhuis, R.; Rozemuller, A.J.; Aronica, E.; Sortino, M.A.; Nicoletti, F. DNA polymerase-beta is expressed early in neurons of Alzheimer’s disease brain and is loaded into DNA replication forks in neurons challenged with beta-amyloid. J. Neurosci., 2006, 26(43), 10949-10957.
[http://dx.doi.org/10.1523/JNEUROSCI.2793-06.2006] [PMID: 17065437]
[95]
Merlo, S.; Basile, L.; Giuffrida, M.L.; Sortino, M.A.; Guccione, S.; Copani, A. Identification of 5-methoxyflavone as a novel DNA polymerase-beta inhibitor and neuroprotective agent against beta-amyloid toxicity. J. Nat. Prod., 2015, 78(11), 2704-2711.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00621] [PMID: 26517378]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy