Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Adoptive Immunotherapy for B-cell Malignancies Using CD19- Targeted Chimeric Antigen Receptor T-Cells: A Systematic Review of Efficacy and Safety

Author(s): Lu Hao, Tongtong Li, Lung-Ji Chang* and Xiaochuan Chen*

Volume 26, Issue 17, 2019

Page: [3068 - 3079] Pages: 12

DOI: 10.2174/0929867324666170801101842

Price: $65

Abstract

Background: Adoptive infusion of chimeric antigen receptor transduced T- cells (CAR-T) is a powerful tool of immunotherapy for hematological malignancies, as evidenced by recently published and unpublished clinical results.

Objective: In this report, we performed a meta-analysis to evaluate the efficacy and side effects of CAR-T on refractory and/or relapsed B-cell malignancies, including leukemia and lymphoma.

Methods: Clinical studies investigating efficacy and safety of CAR-T in acute and chronic lymphocytic leukemia and lymphoma were identified by searching PubMed and EMBASE. Outcomes of efficacy subjected to analysis were the rates of complete remission (CR) and partial remission (PR). The safety parameters were the prevalence of adverse effects including fever, hypotension, and acute renal failure. Meta analyses were performed using R software. Weighted hazard ratio (HR) with 95% confidence intervals was calculated for each outcome. Fixed or random-effects models were employed depending on the heterogeneity across the included studies.

Results: Nineteen published clinical studies with a total of 391 patients were included for the meta-analysis. The pooled rate of complete remission was 55% (95% CI 41%-69%); the pooled rate of partial remission was 25% (95% CI: 19%-33%). The prevalence of fever was 62% (95% CI: 41%-79%), the hypotension was 22% (95% CI: 15%-31%), and the acute renal failure was 24% (95% CI: 16%-34%). All adverse effects were manageable and no death was reported due to toxicity.

Conclusion: CD19-targeted CAR-T is an effective modality in treating refractory B-cell malignancies including leukemia and lymphoma. However, there is still a need to develop strategies to improve the safety in its clinical use.

Keywords: Chimeric antigen receptor, adoptive T cell therapy, B-cell malignancies, leukemia, lymphoma, safety.

[1]
Maus, M.V.; Grupp, S.A.; Porter, D.L.; June, C.H. Antibody-modified T cells: CARs take the front seat for hematologic malignancies. Blood, 2014, 123(17), 2625-2635.
[http://dx.doi.org/10.1182/blood-2013-11-492231] [PMID: 24578504]
[2]
Sadelain, M.; Rivière, I.; Brentjens, R. Targeting tumours with genetically enhanced T lymphocytes. Nat. Rev. Cancer, 2003, 3(1), 35-45.
[http://dx.doi.org/10.1038/nrc971] [PMID: 12509765]
[3]
Ho, W.Y.; Blattman, J.N.; Dossett, M.L.; Yee, C.; Greenberg, P.D. Adoptive immunotherapy: engineering T cell responses as biologic weapons for tumor mass destruction. Cancer Cell, 2003, 3(5), 431-437.
[http://dx.doi.org/10.1016/S1535-6108(03)00113-2] [PMID: 12781360]
[4]
Brenner, M.K.; Heslop, H.E. Adoptive T cell therapy of cancer. Curr. Opin. Immunol., 2010, 22(2), 251-257.
[http://dx.doi.org/10.1016/j.coi.2010.01.020] [PMID: 20171074]
[5]
Kochenderfer, J.N.; Feldman, S.A.; Zhao, Y.; Xu, H.; Black, M.A.; Morgan, R.A.; Wilson, W.H.; Rosenberg, S.A. Construction and preclinical evaluation of an anti-CD19 chimeric antigen receptor. J. Immunother., 2009, 32(7), 689-702.
[http://dx.doi.org/10.1097/CJI.0b013e3181ac6138] [PMID: 19561539]
[6]
Imai, C.; Mihara, K.; Andreansky, M.; Nicholson, I.C.; Pui, C.H.; Geiger, T.L.; Campana, D. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia, 2004, 18(4), 676-684.
[http://dx.doi.org/10.1038/sj.leu.2403302] [PMID: 14961035]
[7]
Kowolik, C.M.; Topp, M.S.; Gonzalez, S.; Pfeiffer, T.; Olivares, S.; Gonzalez, N.; Smith, D.D.; Forman, S.J.; Jensen, M.C.; Cooper, L.J. CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Res., 2006, 66(22), 10995-11004.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0160] [PMID: 17108138]
[8]
Maude, S.L.; Teachey, D.T.; Porter, D.L.; Grupp, S.A. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood, 2015, 125(26), 4017-4023.
[http://dx.doi.org/10.1182/blood-2014-12-580068] [PMID: 25999455]
[9]
Tasian, S.K.; Gardner, R.A. CD19-redirected chimeric antigen receptor-modified T cells: a promising immunotherapy for children and adults with B-cell acute lymphoblastic leukemia (ALL). Ther. Adv. Hematol., 2015, 6(5), 228-241.
[http://dx.doi.org/10.1177/2040620715588916] [PMID: 26425336]
[10]
Schubert, M.L.; Hückelhoven, A.; Hoffmann, J.M.; Schmitt, A.; Wuchter, P.; Sellner, L.; Hofmann, S.; Ho, A.D.; Dreger, P.; Schmitt, M. Chimeric antigen receptor (CAR) T cell therapy targeting CD19 positive leukemia and lymphoma in the context of stem cell transplantation. Hum. Gene Ther., 2016, 27(10), 758-771 Epub ahead of print.
[http://dx.doi.org/10.1089/hum.2016.097] [PMID: 27479233]
[11]
Di Stasi, A.; Tey, S.K.; Dotti, G.; Fujita, Y.; Kennedy-Nasser, A.; Martinez, C.; Straathof, K.; Liu, E.; Durett, A.G.; Grilley, B.; Liu, H.; Cruz, C.R.; Savoldo, B.; Gee, A.P.; Schindler, J.; Krance, R.A.; Heslop, H.E.; Spencer, D.M.; Rooney, C.M.; Brenner, M.K. Inducible apoptosis as a safety switch for adoptive cell therapy. N. Engl. J. Med., 2011, 365(18), 1673-1683.
[http://dx.doi.org/10.1056/NEJMoa1106152] [PMID: 22047558]
[12]
Sadelain, M. Chimeric antigen receptors: driving immunology towards synthetic biology. Curr. Opin. Immunol., 2016, 41, 68-76.
[http://dx.doi.org/10.1016/j.coi.2016.06.004] [PMID: 27372731]
[13]
Dong, L.J.; Chang, L.J.; Gao, Z.Y.; Lu, D-P.; Zhang, J-P.; Wang, J-B.; Zhang, L-P.; Chen, Y-H.; Zheng, H-Y.; Liu, T.; Niu, T.; Huang, H.; Liu, R.; Wang, H-X.; Gao, L.; Yang, T-H.; Lai, X. Chimeric antigen receptor 4SCAR19-modified T Cells in acute lymphoid leukemia: a phase II multi-center clinical trial in China. Blood, 2015, 126(23), 3774.
[14]
Chang, L.J.; Dong, L.J.; Zhu, J. 4SCAR19 chimeric antigen receptor-modified T Cells as a breakthrough therapy for highly chemotherapy-resistant late-stage B cell lymphoma patients with bulky tumor mass. Blood, 2015, 126(23), 264.
[15]
Scheuermann, R.H.; Racila, E. CD19 antigen in leukemia and lymphoma diagnosis and immunotherapy. Leuk. Lymphoma, 1995, 18(5-6), 385-397.
[http://dx.doi.org/10.3109/10428199509059636] [PMID: 8528044]
[16]
Tedder, T.F.; Zhou, L.J.; Engel, P. The CD19/CD21 signal transduction complex of B lymphocytes. Immunol. Today, 1994, 15(9), 437-442.
[http://dx.doi.org/10.1016/0167-5699(94)90274-7] [PMID: 7524521]
[17]
Brentjens, R.J.; Latouche, J.B.; Santos, E.; Marti, F.; Gong, M.C.; Lyddane, C.; King, P.D.; Larson, S.; Weiss, M.; Rivière, I.; Sadelain, M. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat. Med., 2003, 9(3), 279-286.
[http://dx.doi.org/10.1038/nm827] [PMID: 12579196]
[18]
Rossig, C.; Bär, A.; Pscherer, S.; Altvater, B.; Pule, M.; Rooney, C.M.; Brenner, M.K.; Jürgens, H.; Vormoor, J. Target antigen expression on a professional antigen-presenting cell induces superior proliferative antitumor T-cell responses via chimeric T-cell receptors. J. Immunother., 2006, 29(1), 21-31.
[http://dx.doi.org/10.1097/01.cji.0000175492.28723.d6] [PMID: 16365597]
[19]
Cheadle, E.J.; Hawkins, R.E.; Batha, H.; O’Neill, A.L.; Dovedi, S.J.; Gilham, D.E. Natural expression of the CD19 antigen impacts the long-term engraftment but not antitumor activity of CD19-specific engineered T cells. J. Immunol., 2010, 184(4), 1885-1896.
[http://dx.doi.org/10.4049/jimmunol.0901440] [PMID: 20089697]
[20]
Kochenderfer, J.N.; Yu, Z.; Frasheri, D.; Restifo, N.P.; Rosenberg, S.A. Adoptive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells. Blood, 2010, 116(19), 3875-3886.
[http://dx.doi.org/10.1182/blood-2010-01-265041] [PMID: 20631379]
[21]
Kochenderfer, J.N.; Wilson, W.H.; Janik, J.E.; Dudley, M.E.; Stetler-Stevenson, M.; Feldman, S.A.; Maric, I.; Raffeld, M.; Nathan, D.A.; Lanier, B.J.; Morgan, R.A.; Rosenberg, S.A. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood, 2010, 116(20), 4099-4102.
[http://dx.doi.org/10.1182/blood-2010-04-281931] [PMID: 20668228]
[22]
Porter, D.L.; Levine, B.L.; Kalos, M.; Bagg, A.; June, C.H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med., 2011, 365(8), 725-733.
[http://dx.doi.org/10.1056/NEJMoa1103849] [PMID: 21830940]
[23]
Kalos, M.; Levine, B.L.; Porter, D.L.; Katz, S.; Grupp, S.A.; Bagg, A.; June, C.H. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med., 2011, 3(95), 95ra73.
[http://dx.doi.org/10.1126/scitranslmed.3002842] [PMID: 21832238]
[24]
Brentjens, R.J.; Rivière, I.; Park, J.H.; Davila, M.L.; Wang, X.; Stefanski, J.; Taylor, C.; Yeh, R.; Bartido, S.; Borquez-Ojeda, O.; Olszewska, M.; Bernal, Y.; Pegram, H.; Przybylowski, M.; Hollyman, D.; Usachenko, Y.; Pirraglia, D.; Hosey, J.; Santos, E.; Halton, E.; Maslak, P.; Scheinberg, D.; Jurcic, J.; Heaney, M.; Heller, G.; Frattini, M.; Sadelain, M. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood, 2011, 118(18), 4817-4828.
[http://dx.doi.org/10.1182/blood-2011-04-348540] [PMID: 21849486]
[25]
Grupp, S.A.; Kalos, M.; Barrett, D.; Aplenc, R.; Porter, D.L.; Rheingold, S.R.; Teachey, D.T.; Chew, A.; Hauck, B.; Wright, J.F.; Milone, M.C.; Levine, B.L.; June, C.H. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med., 2013, 368(16), 1509-1518.
[http://dx.doi.org/10.1056/NEJMoa1215134] [PMID: 23527958]
[26]
Zhang, T.; Cao, L.; Xie, J.; Shi, N.; Zhang, Z.; Luo, Z.; Yue, D.; Zhang, Z.; Wang, L.; Han, W.; Xu, Z.; Chen, H.; Zhang, Y. Efficiency of CD19 chimeric antigen receptor-modified T cells for treatment of B cell malignancies in phase I clinical trials: a meta-analysis. Oncotarget, 2015, 6(32), 33961-33971.
[http://dx.doi.org/10.18632/oncotarget.5582] [PMID: 26376680]
[27]
Ramos, C.A.; Savoldo, B.; Dotti, G. CD19-CAR trials. Cancer J., 2014, 20(2), 112-118.
[http://dx.doi.org/10.1097/PPO.0000000000000031] [PMID: 24667955]
[28]
Brentjens, R.; Yeh, R.; Bernal, Y.; Riviere, I.; Sadelain, M. Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: case report of an unforeseen adverse event in a phase I clinical trial. Mol. Ther., 2010, 18(4), 666-668.
[http://dx.doi.org/10.1038/mt.2010.31] [PMID: 20357779]
[29]
Jadad, A.R.; Moore, R.A.; Carroll, D.; Jenkinson, C.; Reynolds, D.J.; Gavaghan, D.J.; McQuay, H.J. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control. Clin. Trials, 1996, 17(1), 1-12.
[http://dx.doi.org/10.1016/0197-2456(95)00134-4] [PMID: 8721797]
[30]
Zhou, B.; Chen, X.; Shi, J.P.; Fu, L.Y.; Wang, H.L.; Wu, X.M. Meta-analysis of rates and software implementation. Chin. J. Evid. Based Med., 2014, 14(8), 1009-1016.
[31]
Begg, C.B.; Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics, 1994, 50(4), 1088-1101.
[http://dx.doi.org/10.2307/2533446] [PMID: 7786990]
[32]
Kochenderfer, J.N.; Dudley, M.E.; Feldman, S.A.; Wilson, W.H.; Spaner, D.E.; Maric, I.; Stetler-Stevenson, M.; Phan, G.Q.; Hughes, M.S.; Sherry, R.M.; Yang, J.C.; Kammula, U.S.; Devillier, L.; Carpenter, R.; Nathan, D.A.; Morgan, R.A.; Laurencot, C.; Rosenberg, S.A. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood, 2012, 119(12), 2709-2720.
[http://dx.doi.org/10.1182/blood-2011-10-384388] [PMID: 22160384]
[33]
Brentjens, R.J.; Davila, M.L.; Riviere, I.; Park, J.; Wang, X.; Cowell, L.G.; Bartido, S.; Stefanski, J.; Taylor, C.; Olszewska, M.; Borquez-Ojeda, O.; Qu, J.; Wasielewska, T.; He, Q.; Bernal, Y.; Rijo, I.V.; Hedvat, C.; Kobos, R.; Curran, K.; Steinherz, P.; Jurcic, J.; Rosenblat, T.; Maslak, P.; Frattini, M.; Sadelain, M. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl. Med., 2013, 5(177), 177ra38.
[http://dx.doi.org/10.1126/scitranslmed.3005930] [PMID: 23515080]
[34]
Kochenderfer, J.N.; Dudley, M.E.; Kassim, S.H.; Somerville, R.P.; Carpenter, R.O.; Stetler-Stevenson, M.; Yang, J.C.; Phan, G.Q.; Hughes, M.S.; Sherry, R.M.; Raffeld, M.; Feldman, S.; Lu, L.; Li, Y.F.; Ngo, L.T.; Goy, A.; Feldman, T.; Spaner, D.E.; Wang, M.L.; Chen, C.C.; Kranick, S.M.; Nath, A.; Nathan, D.A.; Morton, K.E.; Toomey, M.A.; Rosenberg, S.A. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J. Clin. Oncol., 2015, 33(6), 540-549.
[http://dx.doi.org/10.1200/JCO.2014.56.2025] [PMID: 25154820]
[35]
Lee, D.W.; Kochenderfer, J.N.; Stetler-Stevenson, M.; Cui, Y.K.; Delbrook, C.; Feldman, S.A.; Fry, T.J.; Orentas, R.; Sabatino, M.; Shah, N.N.; Steinberg, S.M.; Stroncek, D.; Tschernia, N.; Yuan, C.; Zhang, H.; Zhang, L.; Rosenberg, S.A.; Wayne, A.S.; Mackall, C.L. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet, 2015, 385(9967), 517-528.
[http://dx.doi.org/10.1016/S0140-6736(14)61403-3] [PMID: 25319501]
[36]
Maude, S.L.; Frey, N.; Shaw, P.A.; Aplenc, R.; Barrett, D.M.; Bunin, N.J.; Chew, A.; Gonzalez, V.E.; Zheng, Z.; Lacey, S.F.; Mahnke, Y.D.; Melenhorst, J.J.; Rheingold, S.R.; Shen, A.; Teachey, D.T.; Levine, B.L.; June, C.H.; Porter, D.L.; Grupp, S.A. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med., 2014, 371(16), 1507-1517.
[http://dx.doi.org/10.1056/NEJMoa1407222] [PMID: 25317870]
[37]
Cruz, C.R.; Micklethwaite, K.P.; Savoldo, B.; Ramos, C.A.; Lam, S.; Ku, S.; Diouf, O.; Liu, E.; Barrett, A.J.; Ito, S.; Shpall, E.J.; Krance, R.A.; Kamble, R.T.; Carrum, G.; Hosing, C.M.; Gee, A.P.; Mei, Z.; Grilley, B.J.; Heslop, H.E.; Rooney, C.M.; Brenner, M.K.; Bollard, C.M.; Dotti, G. Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study. Blood, 2013, 122(17), 2965-2973.
[http://dx.doi.org/10.1182/blood-2013-06-506741] [PMID: 24030379]
[38]
Kalos, M.; Levine, B.L.; Porter, D.L.; Katz, S.; Grupp, S.A.; Bagg, A.; June, C.H. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med., 2011, 3(95), 95ra73.
[http://dx.doi.org/10.1126/scitranslmed.3002842] [PMID: 21832238]
[39]
Brudno, J.N.; Somerville, R.P.; Shi, V.; Rose, J.J.; Halverson, D.C.; Fowler, D.H.; Gea-Banacloche, J.C.; Pavletic, S.Z.; Hickstein, D.D.; Lu, T.L.; Feldman, S.A.; Iwamoto, A.T.; Kurlander, R.; Maric, I.; Goy, A.; Hansen, B.G.; Wilder, J.S.; Blacklock-Schuver, B.; Hakim, F.T.; Rosenberg, S.A.; Gress, R.E.; Kochenderfer, J.N.; Allogeneic, T. Allogeneic T cells that express an anti-CD19 chimeric antigen receptor induce remissions of B-Cell malignancies that progress after allogeneic hematopoietic stem-cell transplantation without causing graft-versus-host disease. J. Clin. Oncol., 2016, 34(10), 1112-1121.
[http://dx.doi.org/10.1200/JCO.2015.64.5929] [PMID: 26811520]
[40]
Chang, L.J.; Dong, L.J.; Liu, Y.C. Safety and efficacy evaluation of 4SCAR19 chimeric anti-gen receptor-modified T cells targeting B cell acute lym-phoblastic leukemia - three-year follow-up of a multicen-ter phase I/II study. ASH 58th Annual Meeting, 2016.
[41]
Hollyman, D.; Stefanski, J.; Przybylowski, M.; Bartido, S.; Borquez-Ojeda, O.; Taylor, C.; Yeh, R.; Capacio, V.; Olszewska, M.; Hosey, J.; Sadelain, M.; Brentjens, R.J.; Rivière, I. Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy. J. Immunother., 2009, 32(2), 169-180.
[http://dx.doi.org/10.1097/CJI.0b013e318194a6e8] [PMID: 19238016]
[42]
Tumaini, B.; Lee, D.W.; Lin, T.; Castiello, L.; Stroncek, D.F.; Mackall, C.; Wayne, A.; Sabatino, M. Simplified process for the production of anti-CD19-CAR-engineered T cells. Cytotherapy, 2013, 15(11), 1406-1415.
[http://dx.doi.org/10.1016/j.jcyt.2013.06.003] [PMID: 23992830]
[43]
Heslop, H.E.; Slobod, K.S.; Pule, M.A.; Hale, G.A.; Rousseau, A.; Smith, C.A.; Bollard, C.M.; Liu, H.; Wu, M.F.; Rochester, R.J.; Amrolia, P.J.; Hurwitz, J.L.; Brenner, M.K.; Rooney, C.M. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood, 2010, 115(5), 925-935.
[http://dx.doi.org/10.1182/blood-2009-08-239186] [PMID: 19880495]
[44]
Biasco, L.; Ambrosi, A.; Pellin, D.; Bartholomae, C.; Brigida, I.; Roncarolo, M.G.; Di Serio, C.; von Kalle, C.; Schmidt, M.; Aiuti, A. Integration profile of retroviral vector in gene therapy treated patients is cell-specific according to gene expression and chromatin conformation of target cell. EMBO Mol. Med., 2011, 3(2), 89-101.
[http://dx.doi.org/10.1002/emmm.201000108] [PMID: 21243617]
[45]
Scholler, J.; Brady, T.L.; Binder-Scholl, G.; Hwang, W.T.; Plesa, G.; Hege, K.M.; Vogel, A.N.; Kalos, M.; Riley, J.L.; Deeks, S.G.; Mitsuyasu, R.T.; Bernstein, W.B.; Aronson, N.E.; Levine, B.L.; Bushman, F.D.; June, C.H. Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Sci. Transl. Med., 2012, 4(132), 132ra53.
[http://dx.doi.org/10.1126/scitranslmed.3003761] [PMID: 22553251]
[46]
Zhang, F.; Thornhill, S.I.; Howe, S.J.; Ulaganathan, M.; Schambach, A.; Sinclair, J.; Kinnon, C.; Gaspar, H.B.; Antoniou, M.; Thrasher, A.J. Lentiviral vectors containing an enhancer-less ubiquitously acting chromatin opening element (UCOE) provide highly reproducible and stable transgene expression in hematopoietic cells. Blood, 2007, 110(5), 1448-1457.
[http://dx.doi.org/10.1182/blood-2006-12-060814] [PMID: 17456723]
[47]
Roddie, C.; Peggs, K.S. Donor lymphocyte infusion following allogeneic hematopoietic stem cell transplantation. Expert Opin. Biol. Ther., 2011, 11(4), 473-487.
[http://dx.doi.org/10.1517/14712598.2011.554811] [PMID: 21269237]
[48]
Straathof, K.C.; Pulè, M.A.; Yotnda, P.; Dotti, G.; Vanin, E.F.; Brenner, M.K.; Heslop, H.E.; Spencer, D.M.; Rooney, C.M. An inducible caspase 9 safety switch for T-cell therapy. Blood, 2005, 105(11), 4247-4254.
[http://dx.doi.org/10.1182/blood-2004-11-4564] [PMID: 15728125]
[49]
Wang, W.; Wang, Y. Equipping CAR-modified T cells with a brake to prevent chronic adverse effects. Curr. Gene Ther., 2012, 12(6), 493-495.
[http://dx.doi.org/10.2174/156652312803519751] [PMID: 22974421]
[50]
Saha, B.; Jyothi Prasanna, S.; Chandrasekar, B.; Nandi, D. Gene modulation and immunoregulatory roles of interferon gamma. Cytokine, 2010, 50(1), 1-14.
[http://dx.doi.org/10.1016/j.cyto.2009.11.021] [PMID: 20036577]
[51]
Olejniczak, K.; Kasprzak, A. Biological properties of interleukin 2 and its role in pathogenesis of selected diseases--a review. Med. Sci. Monit., 2008, 14(10), RA179-RA189.
[PMID: 18830208]
[52]
Porter, D.L.; Hwang, W.T.; Frey, N.V.; Lacey, S.F.; Shaw, P.A.; Loren, A.W.; Bagg, A.; Marcucci, K.T.; Shen, A.; Gonzalez, V.; Ambrose, D.; Grupp, S.A.; Chew, A.; Zheng, Z.; Milone, M.C.; Levine, B.L.; Melenhorst, J.J.; June, C.H. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci. Transl. Med., 2015, 7(303), 303ra139.
[http://dx.doi.org/10.1126/scitranslmed.aac5415] [PMID: 26333935]
[53]
Topp, M.S.; Gökbuget, N.; Zugmaier, G.; Klappers, P.; Stelljes, M.; Neumann, S.; Viardot, A.; Marks, R.; Diedrich, H.; Faul, C.; Reichle, A.; Horst, H.A.; Brüggemann, M.; Wessiepe, D.; Holland, C.; Alekar, S.; Mergen, N.; Einsele, H.; Hoelzer, D.; Bargou, R.C. Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia. J. Clin. Oncol., 2014, 32(36), 4134-4140.
[http://dx.doi.org/10.1200/JCO.2014.56.3247] [PMID: 25385737]
[54]
Davila, M.L.; Riviere, I.; Wang, X.; Bartido, S.; Park, J.; Curran, K.; Chung, S.S.; Stefanski, J.; Borquez-Ojeda, O.; Olszewska, M.; Qu, J.; Wasielewska, T.; He, Q.; Fink, M.; Shinglot, H.; Youssif, M.; Satter, M.; Wang, Y.; Hosey, J.; Quintanilla, H.; Halton, E.; Bernal, Y.; Bouhassira, D.C.; Arcila, M.E.; Gonen, M.; Roboz, G.J.; Maslak, P.; Douer, D.; Frattini, M.G.; Giralt, S.; Sadelain, M.; Brentjens, R. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med., 2014, 6(224), 224ra25.
[http://dx.doi.org/10.1126/scitranslmed.3008226] [PMID: 24553386]
[55]
Dai, H.; Wang, Y.; Lu, X.; Han, W. Chimeric antigen receptors modified T-Cells for cancer therapy. J. Natl. Cancer Inst., 2016, 108(7), djv439.
[http://dx.doi.org/10.1093/jnci/djv439] [PMID: 26819347]
[56]
Jensen, M.C.; Popplewell, L.; Cooper, L.J.; DiGiusto, D.; Kalos, M.; Ostberg, J.R.; Forman, S.J. Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biol. Blood Marrow Transplant., 2010, 16(9), 1245-1256.
[http://dx.doi.org/10.1016/j.bbmt.2010.03.014] [PMID: 20304086]
[57]
Reichert, J.M.; Rosensweig, C.J.; Faden, L.B.; Dewitz, M.C. Monoclonal antibody successes in the clinic. Nat. Biotechnol., 2005, 23(9), 1073-1078.
[http://dx.doi.org/10.1038/nbt0905-1073] [PMID: 16151394]
[58]
Wu, Y.; Jiang, S.; Ying, T. From therapeutic antibodies to chimeric antigen receptors (CARs): making better CARs based on antigen-binding domain. Expert Opin. Biol. Ther., 2016, 16(12), 1469-1478. Epub ahead of print
[http://dx.doi.org/10.1080/14712598.2016.1235148] [PMID: 27618260]
[59]
Topp, M.S.; Gökbuget, N.; Zugmaier, G.; Klappers, P.; Stelljes, M.; Neumann, S.; Viardot, A.; Marks, R.; Diedrich, H.; Faul, C.; Reichle, A.; Horst, H.A.; Brüggemann, M.; Wessiepe, D.; Holland, C.; Alekar, S.; Mergen, N.; Einsele, H.; Hoelzer, D.; Bargou, R.C. Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia. J. Clin. Oncol., 2014, 32(36), 4134-4140.
[http://dx.doi.org/10.1200/JCO.2014.56.3247] [PMID: 25385737]
[60]
Topp, M.S.; Gökbuget, N.; Zugmaier, G.; Degenhard, E.; Goebeler, M.E.; Klinger, M.; Neumann, S.A.; Horst, H.A.; Raff, T.; Viardot, A.; Stelljes, M.; Schaich, M.; Köhne-Volland, R.; Brüggemann, M.; Ottmann, O.G.; Burmeister, T.; Baeuerle, P.A.; Nagorsen, D.; Schmidt, M.; Einsele, H.; Riethmüller, G.; Kneba, M.; Hoelzer, D.; Kufer, P.; Bargou, R.C. Long-term follow-up of hematologic relapse-free survival in a phase 2 study of blinatumomab in patients with MRD in B-lineage ALL. Blood, 2012, 120(26), 5185-5187.
[http://dx.doi.org/10.1182/blood-2012-07-441030] [PMID: 23024237]
[61]
Maude, S.L.; Frey, N.; Shaw, P.A.; Aplenc, R.; Barrett, D.M.; Bunin, N.J.; Chew, A.; Gonzalez, V.E.; Zheng, Z.; Lacey, S.F.; Mahnke, Y.D.; Melenhorst, J.J.; Rheingold, S.R.; Shen, A.; Teachey, D.T.; Levine, B.L.; June, C.H.; Porter, D.L.; Grupp, S.A. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med., 2014, 371(16), 1507-1517.
[http://dx.doi.org/10.1056/NEJMoa1407222] [PMID: 25317870]
[62]
Gill, S.; Maus, M.V.; Porter, D.L. Chimeric antigen receptor T cell therapy: 25years in the making. Blood Rev., 2016, 30(3), 157-167.
[http://dx.doi.org/10.1016/j.blre.2015.10.003] [PMID: 26574053]
[63]
Borowitz, M.J.; Pullen, D.J.; Winick, N.; Martin, P.L.; Bowman, W.P.; Camitta, B. Comparison of diagnostic and relapse flow cytometry phenotypes in childhood acute lymphoblastic leukemia: implications for residual disease detection: a report from the children’s oncology group. Cytometry B Clin. Cytom., 2005, 68(1), 18-24.
[http://dx.doi.org/10.1002/cyto.b.20071] [PMID: 16184615]
[64]
Sotillo, E.; Barrett, D.M.; Black, K.L.; Bagashev, A.; Oldridge, D.; Wu, G.; Sussman, R.; Lanauze, C.; Ruella, M.; Gazzara, M.R.; Martinez, N.M.; Harrington, C.T.; Chung, E.Y.; Perazzelli, J.; Hofmann, T.J.; Maude, S.L.; Raman, P.; Barrera, A.; Gill, S.; Lacey, S.F.; Melenhorst, J.J.; Allman, D.; Jacoby, E.; Fry, T.; Mackall, C.; Barash, Y.; Lynch, K.W.; Maris, J.M.; Grupp, S.A.; Thomas-Tikhonenko, A. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov., 2015, 5(12), 1282-1295.
[http://dx.doi.org/10.1158/2159-8290.CD-15-1020] [PMID: 26516065]
[65]
Duffner, U.; Abdel-Mageed, A.; Younge, J.; Tornga, C.; Scott, K.; Staddon, J.; Elliott, K.; Stumph, J.; Kidd, P. The possible perils of targeted therapy. Leukemia, 2016, 30(7), 1619-1621.
[http://dx.doi.org/10.1038/leu.2016.18] [PMID: 26859079]
[66]
Gardner, R.; Wu, D.; Cherian, S.; Fang, M.; Hanafi, L.A.; Finney, O.; Smithers, H.; Jensen, M.C.; Riddell, S.R.; Maloney, D.G.; Turtle, C.J. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood, 2016, 127(20), 2406-2410.
[http://dx.doi.org/10.1182/blood-2015-08-665547] [PMID: 26907630]
[67]
Braig, F.; Brandt, A.; Goebeler, M.; Tony, H.P.; Kurze, A.K.; Nollau, P.; Bumm, T.; Böttcher, S.; Bargou, R.C.; Binder, M. Resistance to anti-CD19/CD3 BiTE in acute lymphoblastic leukemia may be mediated by disrupted CD19 membrane trafficking. Blood, 2017, 129(1), 100-104.
[http://dx.doi.org/10.1182/blood-2016-05-718395] [PMID: 27784674]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy