Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Research Article

Anti-inflammatory, Antioxidant, Lung and Liver Protective Activity of Galaxaura oblongata as Antagonistic Efficacy against LPS using Hematological Parameters and Immunohistochemistry as Biomarkers

Author(s): Asmaa Nabil-Adam* and Mohamed Attia Shreadah

Volume 20, Issue 2, 2022

Published on: 12 January, 2021

Page: [148 - 165] Pages: 18

DOI: 10.2174/1871525719666210112154800

Price: $65

Abstract

Background: This study aimed to investigate the potential bioactivity and the ameliorative role of Galaxaura oblongata (G. oblongata) against LPS-induced toxicity using hematological parameters.

Objective: The objective of this study is to examine its protective effect using the immunohistochemistry of the liver and lungs as biomarkers in male BALB/C albino mice.

Materials and Methods: The current study was carried out using different in-vitro and in-vivo assays, such as phytochemicals, antioxidants and anti-inflammatory for in-vitro where the hematological and immunohistochemistry for lung and liver were investigated in vivo.

Results: No previous studies were performed to investigate the in vivo and in vitro effects of the G. oblongata extracts as antioxidant and anti-inflammatory due to their rareness compared to other red algae. LPS treated mice revealed a significant decrease in the total number of WBCs, RBCs, platelets, and HGB%, MPV, MCV and MCHC compared to the control group. In contrast, the HCT and MCHC were increased in the induction group, which was treated with LPS compared to the control group. Furthermore, the immunohistochemistry results of the present study revealed the protective effect of G. oblongata compared to the induction group. G. oblongata can be used as protective marine natural products against the toxicity induced by LPS.

Conclusion: It exhibited a significant ameliorative role against the alterations in the hematological parameters and immunohistochemistry of the liver and lungs, and reduced as well as coordinated the acute inflammations caused by TNF.

Keywords: G. oblongata, LPS toxicity, hematological parameters, immunohistochemistry, TNF, anti-inflammatory.

Graphical Abstract

[1]
Duff, G.C.; Galyean, M.L. Board-invited review: Recent advances in management of highly stressed, newly received feedlot cattle. J. Anim. Sci., 2007, 85(3), 823-840.[http://dx.doi.org/10.2527/jas.2006-501] [PMID: 17085724]
[2]
Thorgersen, E.B.; Hellerud, B.C.; Nielsen, E.W.; Barratt-Due, A.; Fure, H.; Lindstad, J.K.; Pharo, A.; Fosse, E.; Tønnessen, T.I.; Johansen, H.T.; Castellheim, A.; Mollnes, T.E. CD14 inhibition efficiently attenuates early inflammatory and hemostatic responses in Escherichia coli sepsis in pigs. FASEB J., 2010, 24(3), 712-722.[http://dx.doi.org/10.1096/fj.09-140798] [PMID: 19841036]
[3]
Wagner, A.; Grillitsch, K.; Leitner, E.; Daum, G. Mobilization of steryl esters from lipid particles of the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta, 2009, 1791(2), 118-124.[http://dx.doi.org/10.1016/j.bbalip.2008.11.004] [PMID: 19111628]
[4]
Karrow, N.A.; You, Q.; McNicoll, C.; Hay, J. Activation of the ovine hypothalamic-pituitary-adrenal axis and febrile response by interleukin-6: a comparative study with bacterial lipopolysaccharide endotoxin. Can. J. Vet. Res., 2010, 74(1), 30-33.[PMID: 20357955]
[5]
Wang, Y. Cui, H.; Niu, F.; Liu, S.; Li, Y.; Zhang, L.; Du, H.; Zhao, Z.; Niu, C. Effect of resveratrol on blood rheological properties in LPS-challenged mice. Front. Physiol., 2018, 9(1), 202.[http://dx.doi.org/10.3389/ fphys.2018.01202] [PMID: 30210364]
[6]
Paul, A.; Edwards, J.; Pepper, C.; Mackay, S. Inhibitory-κB kinase (IKK) α and nuclear factor-κB (NFκB)-inducing kinase (NIK) as anti-cancer drug targets. Cells, 2018, 7(10), 176.[http://dx.doi.org/10.3390/cells7100176] [PMID: 30347849]
[7]
Chen, L; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 2018, 9(6), 7204-7218.[http://dx.doi.org/10.18632/oncotarget.23208]
[8]
Muniandy, K.; Gothai, S.; Badran, K.M.H.; Kumar, S.S.; Esa, N.M.; Arulselvan, P. Suppression of proinflammatory cytokines and mediators in LPS-induced RAW 264.7 macrophages by stem extract of alternanthera sessilis via the inhibition of the NF-κB pathway. J. Immunol. Res., 2018, 2018, 3430684.
[9]
Steven,. S.; Frenis, K.; Oelze, M.; Kalinovic, S.; Kuntic, M.; Jimenez, M.T.B.; Vujacic-Mirski, K.; Helmstädter, J.; Kröller-Schön, S.; Münzel, T.; Daiber, A. Vascular inflammation and oxidative stress: Major triggers for cardiovascular disease. Oxid. Med. Cell. Longev., 2019, 2019, 7092151.
[10]
Hegazy, M.E.; Mohamed, T.A.; Elshamy, A.I.; Hassanien, A.A.; Abdel-Azim, N.S.; Shreadah, M.A.; Abdelgawad, I.I.; Elkady, E.M.; Paré, P.W. A new steroid from the Red Sea soft coral Lobophytum lobophytum. Nat. Prod. Res., 2016, 30(3), 340-344.[http://dx.doi.org/10.1080/14786419.2015.1046871] [PMID: 26134487]
[11]
Hegazy, M.E.; Gamal-Eldeen, A.M.; Mohamed, T.A.; Alhammady, M.A.; Hassanien, A.A.; Shreadah, M.A.; Abdelgawad, I.I.; Elkady, E.M.; Paré, P.W. New cytotoxic constituents from the Red Sea soft coral Nephthea sp. Nat. Prod. Res., 2016, 30(11), 1266-1272.[http://dx.doi.org/10.1080/14786419.2015.1055266] [PMID: 26165402]
[12]
Shreadah, M.A.; Abdel-El Moneam, N.M.; Al-Assar, S.A.; Nabil-Adam, A. The Ameliorative Role of a Marine Sponge Extract against Mixture of Persistent Organic Pollutants induced Changes in Hematological Parameters in Mice. Expert Opin. Environ. Biol., 2017, 6(2), 2.[http://dx.doi.org/10.4172/2325-9655.1000143]
[13]
Shreadah, M.A.; El Moneam, N.M.A.; Al-Assar, S.A.; Nabil-Adam, A. Phytochemical and pharmacological screening of Sargassium vulgare from Suez Canal, Egypt. Food Sci. Biotechnol., 2018, 27(4), 963-979.[http://dx.doi.org/10.1007/s10068-018-0323-3] [PMID: 30263825]
[14]
Shreadah, M.A.; Abd El Moneam, N.M.; Yacout, G.A.; Aboul-Ela, H.M. Bacteria from marine sponges: A source of biologically active compounds. BJSTR, 2018, 10(5), 1-20.[http://dx.doi.org/10.26717/BJSTR.2018.10.002025]
[15]
Shreadah, M.A.; Abd El Moneam, N.M.; Yacout, G.A.; Aboul-Ela, H.M. Isolation, phylogenetic analysis of the microbial community associated with the red sea sponge ircinia echinata and biological evaluation of their secondary metabolites. BJSTR, 2018, 12(2), 1-19.[http://dx.doi.org/10.26717/BJSTR.2018.12.002218] [PMID: 30370423]
[16]
Shreadah, M.A.; Abd El Moneam, N.M.; Yacout, G.A.; Aboul-Ela, H.M. Sponge associated bacteria: Isolation, phylogenetic analysis and biotechnological potential. BJSTR, 2019, 15(2), 1-17.[http://dx.doi.org/10.26717/BJSTR.2019.15.002682]
[17]
Abdel Monein, N.M.; Yacout, G.A.; Aboul-Ela, H.M.; Shreadah, M.A. Hepatoprotective activity of chitosan nanocarriers loaded with the ethyl acetate extract of Astenotrophomonas sp. bacteria associated with the red sea sponge Amphimedon ochracea in CCl4 induced hepatotoxicity in mice. Adv. Biosci. Biotechnol., 2017, 8(1), 27-50.[http://dx.doi.org/10.4236/abb.2017.81003]
[18]
Abdel Monein, N.M.; Al-Assar, S.A.; Shreadah, M.A.; Nabil-Adam, A. Isolation, identification and molecular screening of psudomance Sp metabolic pathways NRPs and PKS associated with the red sea sponge, hyrtios aff. erectus, Egypt. J PURE APPL MICROBIO, 2017, 11(3), 1299-1311.[http://dx.doi.org/10.22207/JPAM.11.3.10]
[19]
Abdel Monein, N.M.; Shreadah, M.A.; Al-Assar, S.A.; Nabil-Adam, A. Protective role of antioxidants capacity of Hyrtios aff. Erectus sponge extract against mixture of persistent organic pollutants (POPs)-induced hepatic toxicity in mice liver: biomarkers and ultra-structural study. Environ. Sci. Pollut. Res., 2017, 24(27), 22601-22072.
[20]
Abd El Moneam, N.M.; Al-Assar, S.A.; Shreadah, M.A.; Nabiel-Adam, A. The hepatoprotective effect of Hyrtios aff. erectus sponge isolated from the Red sea extract against the toxicity of Persistent organic pollutants (POPs) from Sediments of Lake Mariout. Biotechnol. Biotechnol. Equ., 2018, 32(3), 734-743.
[21]
Rozas, E.; Freitas, J.C. Anti-inflammatory activity of the apolar extract from the seaweed Galaxaura marginata (Rhodophyta, Nemaliales). J. Venom. Anim. Toxins Incl. Trop. Dis., 2007, 13(2), 544-548.[http://dx.doi.org/10.1590/S1678-91992007000200011]
[22]
Shriadah, M.A.; Okbah, M.A.; El-Deek, M.S. Trace metals in the water columns of the Red Sea and the Gulf of Aqaba, Egypt. Water Air Soil Pollut., 2004, 153, 115-124.[http://dx.doi.org/10.1023/B:WATE.0000019938.57041.21]
[23]
Fahmy, M.A.; Shriadah, M.A. AbulSoud, A.; Abdel Rahman, S.M.; and Shindy, M. Hydrography and chemical characteristics of the coastal water along the gulf of suez. Egyptian J. Aquatic Res., 2005, 31, 1-14.
[24]
Fahmy, M.A.; Abdel Fattah, L.M.; Abdel-Halim, A.M.; Abdel Nabi, M.A.; Abo-El-Khair, E.M.; Ahdy, H.; Hemeilly, A.; El- Soud, A.; Shreadah, M.A. Evaluations of the coastal water quality of the Egyptian red sea during 2011-2013. J. Environ. Prot. Sci., 2016, 7(12), 1810-1834.[http://dx.doi.org/10.4236/jep.2016.712145]
[25]
Abdel-Halim, A.M.; Aboel-Khair, E.M.; Fahmy, M.A.; Shreadah, M.A. Environmental assessment on the aqaba gulf coastal waters, Egypt. Egyptian J Aquatic Res., 2007, 33(1), 1-14.
[26]
Abdel-Halim, A.M.; Abdel Nabi, M.A.; Abdel Fattah, L.M.; Fahmy, M.A.; Abo-El-Khair, E.M. khaled, A,M; Abu El-Soud, A.; and Shreadah, M.A. (2016). Environmental studies on the Aqaba Gulf coastal waters during 2011-2013. J. Environ. Prot. Sci., 2016, 7, 1411-1437.[http://dx.doi.org/10.4236/jep.2016.710121]
[27]
Abo-el-Khair, E.M.; Abdel Halim, A.M.; Shriadah, M.A.; Fahmy, M.A. Environmental conditions of the suez gulf and the red sea coastal waters, Egypt. Proceedings of the 8th International Conference on the Mediterranean Coastal Environment. MEDCOAST 2007. E. Ozhan (Editor). 13 – 17 November 2007. Alexandria. Egypt., 2007, pp. 517-526.
[28]
Abo-El-Khair, E.M.; Abdel Fattah, L.M.; Abdel-Halim, A.M.; Abdel Nabi, M.A.; Fahmy, M.A.; Ahdy, H.H.; Hemeilly, A.; Abu El- Soud, A.; Shreadah, M.A. Assessment of the hydrochemical characteristics for the coastal waters of the Suez Gulf during 2011-2013. J. Environ. Prot. Sci., 2016, 7, 1497-1521.[http://dx.doi.org/10.4236/jep.2016.711126]
[29]
Shreadah, M.A.; Masoud, M.S.; Said, T.O.; El Zokm, G.M. Application of IR, X-Ray, TGA and DTA to determine the mineral composition of the Sediments and study of reaction kinetics along the Egyptian Red Sea Coasts. Egyptian J Aquatic Res., 2008, 34(2), 83-95.
[30]
Shreadah, M.A.; Said, T.O.; Abd El Ghani, S.A.; Ahmed, A.M. Alkyllead and Alkyltin species in different fishes collected from the Suez Gulf, Egypt. Egyptian J. Aquatic Res., 2008, 34(4), pp. 64-73.
[31]
Shreadah, M.A.; Said, T.O.; El Zokm, G.M.; Masoud, M.S. Physico-chemical characterititics of the surficial sediments along the Egyptian Red Sea coasts. Egyptian J. Aquatic Res., 2008, 34(4), 16-34.
[32]
Shreadah, M.A.; Said, T.O.; Abdel Ghani, S.A.; Ahmed, A.M. Distribution of different organotin and organolead compounds in sediment of Suez Gulf. J. Environ. Prot. Sci., 2011, 2(5), 545-554.[http://dx.doi.org/10.4236/jep.2011.25063]
[33]
Gurguess, S.M.; Shreadah, M.A.; Fahmy, M.A.; Aboul El Kheir, E.M.; Abdel Halim, A. Assessment of water quality in the red sea using in situ measurements and remote sensing data. Egyptian J Aquatic Res., 2009, 35(2), 1-13.
[34]
Masoud, M.S.; Said, T.O. El- Zokm, G.M.; and Shreadah, M.A. Speciation of Fe, Mn and Zn in surficial sediments from the egyptian red sea coasts. Chem. Spec. Bioavail., 2010, 22(4), 257-269.[http://dx.doi.org/10.3184/095422910X12894975123773]
[35]
Masoud, M.S.; Said, T.O.; El-Zokm, G.M.; Shreadah, M.A. Assesment of heavy metals contamination in surface sediments of the egyptian red sea coasts. Aust. J. Basic Appl. Sci., 2012, 6, 44-58.
[36]
Balaji, D.; Thamilvanan, S.; Vinayagam, C.; Balakumar, B.S. Anticancer, antioxidant activity and GC-MS analysis of selectedalgal members of Chlorophyceae. Int. J. Pharm. Sci., 2017, 8(8)[http://dx.doi.org/10.13040/IJPSR.0975-8232.8(8).3302-14]
[37]
Xu, Y.; Chen, J.; Yu, X.; Tao, W.; Jiang, F.; Yin, Z.; Liu, C. Protective effects of chlorogenic acid on acute hepatotoxicity induced by lipopolysaccharide in mice. Inflamm. Res., 2010, 59(10), 871-877.[http://dx.doi.org/10.1007/s00011-010-0199-z] [PMID: 20405164]
[38]
Yang, B.; Zhang, W.D.; Xia, Y.M.; Zhang, Z.P.; Li, L.; Zhang, L.; Wang, W.C.; Wang, Z.D.; Li, X.P. Protective effects of oxycodone on lipopolysaccharide-induced acute lung injury in rats. Chin. J. Prev. Med., 2016, 96(31), 2498-501.
[39]
Zöllner, N.; Kirsch, K. Colorimetric method for determination of total lipids. J. Exp. Med., 1962, 135, 545-550.[http://dx.doi.org/10.1007/BF02045455]
[40]
Gornall, A.G.; Bardawill, C.J.; David, M.M. Determination of serum proteins by means of the biuret reaction. J. Biol. Chem., 1949, 177(2), 751-766.[PMID: 18110453]
[41]
Taga, M.S.; Miller, E.E.; Pratt, D.E. Chia seeds as a source of natural lipid antioxidants. J. Am. Oil Chem. Soc., 1984, 61(5), 928-931.[http://dx.doi.org/10.1007/BF02542169]
[42]
Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem., 1999, 64(4), 555-559.[http://dx.doi.org/10.1016/S0308-8146(98)00102-2]
[43]
Sun, B.; Richardo-Da-Silvia, J.M.; Spranger, I. Critical factors of vanillin assay for catechins and proanthocyanidins. J. Agric. Food Chem., 1998, 46(10), 4267-4274.[http://dx.doi.org/10.1021/jf980366j]
[44]
Agrawal, N.; Minj, D.K.; Rani, K. Estimation of total carbohydrate present in dry fruits. IOSR-JESTFT, 2015, 1(6), 24-27.www.iosrjournals.org
[45]
Nabil-Adam, A.; Shreadah, M.A.; Abd El Moneam, N.M.; El-Assar, S.A. Pesudomance sp. bacteria associated with marine sponge as a promising and sustainable source of bioactive molecules. Curr. Pharm. Biotechnol., 2019, 20(11), 964-984.[http://dx.doi.org/10.2174/1389201020666190619092502] [PMID: 31258072]
[46]
Amarowicz, R.; Naczk, M.; Zadernowski, R.; Shahidi, F. Antioxidant activity of condensed tannins of beach pea, Canola hulls, evening primrose, and faba bean. J. Food Lipids, 2000, 7, 195-205.[http://dx.doi.org/10.1111/j.1745-4522.2000.tb00171.x]
[47]
Chakraborty, K.; Lipton, A.P.; Paul Raj, R.; Vijayan, K.K. Antibacterial labdane diterpenoids of Ulva fasciata Delile from southwestern coast of the Indian Peninsula. Food Chem., 2010, 119, 1399-1408.[http://dx.doi.org/10.1016/j.foodchem.2009.09.019]
[48]
Buschmann, A.H.; Camus, C.; Infante, J.; Neori, A.; Israel, A.; Hernández-González, M.C.; Pereda, S.V. Gomez- Pinchetti, J.L.; Golberg, A.; Tadmor-Shalev, N.; Critchley, A.T. Seaweed production: overview of the global state of exploitation, farming and emerging research activity. Eur. J. Phycol., 2017, 52(4), 391-406.[http://dx.doi.org/10.1080/09670262.2017.1365175]
[49]
Pari, L.; Murugavel, P. Role of diallyl tetrasulfide in ameliorating the cadmium induced biochemical changes in mice. Environ. Toxicol. Pharmacol., 2005, 20(3), 493-500.[http://dx.doi.org/10.1016/j.etap.2005.05.009] [http://dx.doi.org/21783631]
[50]
Wang, K.; Li, D.; Sun, L. High levels of EGFR expression in tumor stroma are associated with aggressive clinical features in epithelial ovarian cancer. OncoTargets Ther., 2016, 9, 377-386.[http://dx.doi.org/10.2147/OTT.S96309] [PMID: 26855586]
[51]
Metsalu, T.; Vilo, J. ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res., 2015, 43(W1), W566-570.[http://dx.doi.org/10.1093/nar/gkv468] [PMID: 25969447]
[52]
Shankhadarwar, S. D. Phytochemical analysis of red alga Acanthophora spicifera (Vahl) collected from Mumbai, India. J. chem. pharm., 2015, 7(12), 441-444.
[53]
Stabili, L.; Acquaviva, M.I.; Angilè, F.; Cavallo, R.A.; Cecere, E.; Del Coco, L.; Fanizzi, F.P.; Gerardi, C.; Narracci, M.; Petrocelli, A. Screening of Chaetomorpha linum lipidic extract as a new potential source of bioactive compounds. Mar. Drugs, 2019, 17(6), 313.[http://dx.doi.org/10.3390/md17060313] [PMID: 31142027]
[54]
Al-Saif, S.S.; Abdel-Raouf, N.; El-Wazanani, H.A.; Aref, I.A. Antibacterial substances from marine algae isolated from Jeddah coast of Red sea, Saudi Arabia. Saudi J. Biol. Sci., 2014, 21(1), 57-64.[http://dx.doi.org/10.1016/j.sjbs.2013.06.001] [PMID: 24596500]
[55]
Kassila, J.; Nhhala, H.; Givernaud, T.; Mansouri, E.; Yazami, O.; Abrehouch, A.; Mesfioui, A.; Idhalla, M. Opportunities for the development of seaweed farming as a supplementary income for small-scale fishermen in Nador lagoon: Experimental cultivations of G. oblongata gracilis (Stackhouse). Med. Fish. Aquaculture, 2019, 2(1), 12-26.
[56]
Kumar, R.V.; Murugesan, S.; Shettu, N. Antidiabetic potential of marine Red Alga Champia Parvula (C. Agardh) by inhibiting key metabolic enzymes. World J. Pharm. Res, 2017, 6(10), 1466-1474.[http://dx.doi.org/10.20959/wjpr201710-9471]
[57]
Ramdani, M.; Elasri, O.; Saidi, N.; Elkhiati, N.; Taybi, F.A.; Mostareh, M.; Zaraali, O.; Haloui, B.; Ramdani, M. Evaluation of antioxidant activity and total phenol content of G. oblongata bursa-pastoris harvested in Nador lagoon for an enhanced economic valorization. Chem. Biol. Technol. Agric., 2017, 4(28), 3186.[http://dx.doi.org/10.1186/s40538-017-0110-z]
[58]
Szefel, J.; Kruszewski, W.J.; Sobczak, E. Factors influencing the eicosanoids synthesis in vivo. Biomed Res. Int., 2015.
[59]
Luo, Y.; Wang, J.; Liu, B.; Wang, Z.; Yuan, Y.; Yue, T. Effect of yeast cell morphology, cell wall physical structure and chemical composition on patulin adsorption. PLoS One, 2015, 10(8), 0136045.[http://dx.doi.org/10.1371/journal.pone.0136045]
[60]
Barbalace, M.C.; Malaguti, M.; Giusti, L.; Lucacchini, A; Hrelia, S.; Angeloni, C. Anti-inflammatory activities of marine algae in neurodegenerative diseases. Int. J. Mol. Sci., 2019, 20(12), 3061.[http://dx.doi.org/10.3390/ijms20123061] [PMID: 31234555]
[61]
Admassu, H.; Gasmalla, M.A.A.; Yang, R.; Zhao, W. Bioactive peptides derived from seaweed protein and their health benefits: Antihypertensive, antioxidant, and antidiabetic properties. J. Food Sci., 2018, 83(1), 6-16.[http://dx.doi.org/10.1111/1750-3841.14011] [PMID: 29227526]
[62]
Bleakley, S.; Hayes, M. Algal proteins: Extraction, application, and challenges concerning production. Foods, 2017, 6(5), 33.[http://dx.doi.org/10.3390/foods6050033] [PMID: 28445408]
[63]
Mena, P.; Cirlini, M.; Tassotti, M.; Herrlinger, K.A.; Dall’Asta, C.; Del Rio, D. Phytochemical profiling of flavonoids, phenolicacids, terpenoids, and volatile fraction of a rosemary (Rosmarinus officinalis L.) extract. Molecules, 2016, 21(11), 1576.
[64]
Capillo, G.; Savoca, S.; Costa, R.; Sanfilippo, M.; Rizzo, C.; Lo Giudice, A.; Albergamo, A.; Rando, R.; Bartolomeo, G.; Spanò, N.; Faggio, C. New insights into the culture method and antibacterial potential of Gracilaria gracilis. Mar. Drugs, 2018, 16(12), 492.[http://dx.doi.org/10.3390/md16120492] [PMID: 30544601]
[65]
Cushnie, T.P.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents, 2005, 26(5), 343-356.[http://dx.doi.org/10.1016/j.ijantimicag.2005.09.002] [PMID: 16323269]
[66]
Pereira, l. Seaweeds as source of bioactive substances and skin care therapy-cosmeceuticals, algotheraphy, and thalassotherapy. Cosmetics, 2018, 5(4), 68.[http://dx.doi.org/10.3390/cosmetics5040068]
[67]
Cherry, P.; Yadav, S.; Strain, C.R.; Allsopp, P.J.; McSorley, E.M.; Ross, R.P.; Stanton, C. Prebiotics from seaweeds: An ocean of opportunity. Mar Drugs, 2019, 17(6), 327.
[68]
Gröber, U.; Schmidt, J.; Kisters, K. Magnesium in prevention and therapy. Nutrients, 2015, 7(9), 8199-8226.[http://dx.doi.org/10.3390/nu7095388] [PMID: 26404370]
[69]
Baker, E.H. Ion channels and the control of blood pressure. Br. J. Clin. Pharmacol., 2000, 49(3), 185-198.[http://dx.doi.org/10.1046/j.1365-2125.2000.00159.x] [PMID: 10718773]
[70]
Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. Exp Suppl, 2012, 101, 133-164.[http://dx.doi.org/10.1007/978-3-7643-8340-4_6] [PMID: 22945569]
[71]
Ezeh, A.; Oyebode, O.; Satterthwaite, D.; Chen, Y.F.; Ndugwa, R.; Sartori, J.; Mberu, B.; Melendez-Torres, G.J.; Haregu, T.; Watson, S.I.; Caiaffa, W.; Capon, A.; Lilford, R.J. The history, geography, and sociology of slums and the health problems of people who live in slums. Lancet, 2017, 389(10068), 547-558.[http://dx.doi.org/10.1016/S0140-6736(16)31650-6] [PMID: 27760703]
[72]
Solé, C.; Solà, E.; Morales-Ruiz, M.; Fernàndez, G.; Huelin, P.; Graupera, I.; Moreira, R.; de Prada, G.; Ariza, X.; Pose, E.; Fabrellas, N.; Kalko, S.G.; Jiménez, W.; Ginès, P. Characterization of inflammatory response in acute-on-chronic liver failure and relationship with prognosis. Sci. Rep., 2016, 6, 32341.[http://dx.doi.org/10.1038/srep32341] [PMID: 27578545]
[73]
Hawes, A.S.; Fischer, E.; Marano, M.A.; Van Zee, K.J.; Rock, C.S.; Lowry, S.F.; Calvano, S.E.; Moldawer, L.L. Comparison of peripheral blood leukocyte kinetics after live Escherichia coli, endotoxin, or interleukin-1 alpha administration. Studies using a novel interleukin-1 receptor antagonist. Ann. Surg., 1993, 218(1), 79-90.[http://dx.doi.org/10.1097/00000658-199307000-00013] [PMID: 8328833]
[74]
Opdahl, H.; Mollnes, T.E.; Naess, O. Effects of high dose E. coli lipopolysaccharide on rabbit lung function, and of subsequent addition of chemotactic granulocyte activators to their isolated, blood-perfused lungs. Acta Anaesthesiol. Scand., 1993, 37(4), 334-342.[http://dx.doi.org/10.1111/j.1399-6576.1993.tb03725.x] [PMID: 8322560]
[75]
Pearson, J.M.; Schultze, A.E.; Jean, P.A.; Roth, R.A. Platelet participation in liver injury from gram-negative bacterial lipopolysaccharide in the rat. Shock, 1995, 4(3), 178-186.[http://dx.doi.org/10.1097/00024382-199509000-00005] [PMID: 8574752]
[76]
Kanayama, N.; She, L.; Maehara, K.; Kajiwara, Y.; Terao, T. Induction of HELLP syndrome-like biochemical parameters by stimulation of the celiac ganglion in rats. J. Hypertens., 1996, 14(4), 453-459.[http://dx.doi.org/10.1097/00004872-199604000-00007] [PMID: 8761894]
[77]
Pham, D.; Jeng, A.Y.; Escher, E.; Sirois, P.; Battistini, B. Effects of a selective neutral endopeptidase and a nonselective neutral endopeptidase/endothelin-converting enzyme inhibitor on lipopolysaccharide-induced endotoxaemia in anaesthetized Sprague-Dawley rats. J. Cardiovasc. Pharmacol., 2000, 36(5)(Suppl. 1), S362-S366.[http://dx.doi.org/10.1097/00005344-200036051-00105] [PMID: 11078421]
[78]
Kosumi, T.; Usui, N.; Kubota, A.; Hoki, H.; Yamauchi, K.; Nogami, T.; Ohyanagi, H.; Yonekura, T.; Hirooka, S.; Kakinoki, S.; Kaetu, I. Application of a drug delivery system in a novel rat model of chronic hyperendotoxemia. Pediatr. Surg. Int., 2001, 17(4), 321-325.[http://dx.doi.org/10.1007/s003830100603] [PMID: 11409171]
[79]
Virzì, G.M.; Clementi, A.; Brocca, A.; Ronco, C. Endotoxin effects on cardiac and renal functions and cardiorenal syndromes. Blood Purif., 2017, 44(4), 314-326.[http://dx.doi.org/10.1159/000480424] [PMID: 29161706]
[80]
Metcalfe, J.; McCutcheon, I.E.; Francisco, D.L.; Metzenberg, A.B.; Welch, J.E. Oxygen availability and growth of the chick embryo. Respir. Physiol., 1981, 46(2), 81-88.[http://dx.doi.org/10.1016/0034-5687(81)90091-8] [PMID: 7335987]
[81]
Lebedeva, E.; Bagaev, A.; Pichugin, A.; Chulkina, M.; Lysenko, A.; Tutykhina, I.; Shmarov, M.; Logunov, D.; Naroditsky, B.; Ataullakhanov, R. The differences in immunoadjuvant mechanisms of TLR3 and TLR4 agonists on the level of antigen-presenting cells during immunization with recombinant adenovirus vector. BMC Immunol., 2018, 19(1), 26.[http://dx.doi.org/10.1186/s12865-018-0264-x] [PMID: 30055563]
[82]
Park, I.; Kim, M.; Choe, K.; Song, E.; Seo, H.; Hwang, Y.; Ahn, J.; Lee, S.H.; Lee, J.H.; Jo, Y.H.; Kim, K.; Koh, G.Y.; Kim, P. Neutrophils disturb pulmonary microcirculation in sepsis-induced acute lung injury. Eur. Respir. J., 2019, 53(3), 1800786.[http://dx.doi.org/10.1183/13993003.00786-2018] [PMID: 30635296]
[83]
Grieshaber-Bouyer, R.; Nigrovic, P.A. Neutrophil heterogeneity as therapeutic opportunity in immune-mediated disease. Front. Immunol., 2019, 10, 346.[http://dx.doi.org/10.3389/fimmu.2019.00346] [PMID: 30886615]
[84]
Rahimi, K.; Füchtbauer, A.C.; Fathi, F.; Mowla, S.J.; Füchtbauer, E.M. Isolation of cancer stem cells by selection for miR-302 expressing cells. PeerJ, 2019, 7, e6635.[http://dx.doi.org/10.7717/peerj.6635] [PMID: 30941272]
[85]
Salvesen, Ø.; Reiten, M.R.; Espenes, A.; Bakkebø, M.K.; Tranulis, M.A.; Ersdal, C. LPS-induced systemic inflammation reveals an immunomodulatory role for the prion protein at the blood-brain interface. J. Neuroinflammation, 2017, 14(1), 106.[http://dx.doi.org/10.1186/s12974-017-0879-5] [PMID: 28532450]
[86]
Takahashi, A.; Flanigan, M.E.; McEwen, B.S.; Russo, S.J. Aggression, social stress, and the immune system in humans and animal models. Front. Behav. Neurosci, 2018, 12, 56.
[87]
Bi, X.; Vitali, C.; Cuchel, M. ABCA1 and inflammation: From animal models to humans. Arterioscler. Thromb. Vasc. Biol., 2015, 35(7), 1551-1553.[http://dx.doi.org/10.1161/ATVBAHA.115.305547] [PMID: 26109737]
[88]
Langeroudi, A. G; Hirsch, C.M.; Estabragh, A.S.; Meinardi, S.; Blake, D.R.; Barbour, A.G. Elevated carbon monoxide to carbon dioxide ratio in the exhaled breath of mice treated with a single dose of lipopolysaccharide. Open Forum Infect. Dis., 2014, 1(2)[http://dx.doi.org/10.1093/ofid/ofu085]
[89]
Mbarki, S.; Dhibi, S.; Bouzenna, H.; Elfeki, A.; Hfaiedh, N. Effects of MgCl2 supplementation on blood parameters and kidney injury of mice exposed to CCl4. Open Life Sci., 2016, 11, 250-258.[http://dx.doi.org/10.1515/biol-2016-0035]
[90]
Brauckmann, S.; Effenberger-Neidnicht, K.; de Groot, H.; Nagel, M.; Mayer, C.; Peters, J.; Hartmann, M. Lipopolysaccharide-induced hemolysis: Evidence for direct membrane interactions. Sci. Rep., 2016, 6, 35508.[http://dx.doi.org/10.1038/srep35508] [PMID: 27759044]
[91]
Dong, A.; Sunkara, M.; Panchatcharam, M.; Salous, A.; Selim, S.; Morris, A.J.; Smyth, S.S. Synergistic effect of anemia and red blood cells transfusion on inflammation and lung injury. Adv Hematol, 2012, 924042.[http://dx.doi.org/10.1155/2012/924042]
[92]
Wahby, M.M.; Yacout, G.; Kandeel, K.; Awad, D. LPS-induced oxidative inflammation and hyperlipidemia in male mice: The protective role of Origanum majorana extract. BENI-SEUF UNIV. J. Appl. Sci. (Faisalabad), 2015, 291-298.[http://dx.doi.org/10.1016/j.bjbas.2015.11.004]
[93]
Xiang, B.; Zhang, G.; Guo, L.; Li, X.A.; Morris, A.J.; Daugherty, A.; Whiteheart, S.W.; Smyth, S.S.; Li, Z. Platelets protect from septic shock by inhibiting macrophage-dependent inflammation via the cyclooxygenase 1 signalling pathway. Nat. Commun., 2013, 4, 2657.[http://dx.doi.org/10.1038/ncomms3657] [PMID: 24150174]
[94]
Kurokawa, T.; Ohkohchi, N. Platelets in liver disease, cancer and regeneration. World J. Gastroenterol., 2017, 23(18), 3228-3239.[http://dx.doi.org/10.3748/wjg.v23.i18.3228] [PMID: 28566882]
[95]
Tilak, K.S.; Veeraiah, K.; Bhaskara Thathaji, P.; Butchiram, M.S. Toxicity studies of butachlor to the freshwater fish Channa punctata (Bloch). J. Environ. Biol., 2007, 28(2)( Suppl.), 485-487.[PMID: 17929770]
[96]
Adeyemo, O.K. Haematological profile of clarias gariepinus (Burchell, 1822) exposed to lead. Turk. J. Fish. Aquat. Sci., 2007, 7, 163-169.
[97]
Vinodhini, R.; Narayanan, M. The impact of toxic heavy metals on the hematological parameters in common carp (Cyprinus Carpio L.). Iran. J. Environ. Health. Sci. Eng., 2009, 6(1), 23-28.
[98]
Kashinath, R.T. Hypolipidemic effect of disulphide in mice fed with high lipids diets and/or ethanol. Ph.D Thesis University of Bangalore, 1990, 221-225.
[99]
Schalm, O.W.; Jain, N.C.; Crol, E.J. Veterinary Hematology, 3rd ed; Lea and Febigar: Philadelphia, 1975, pp. 498-512.
[100]
Hoeney, M. Introduction to Clinical Immunology. Butterworth, London; Chapman and Hall, Ltd.: London, 1985, pp. 49-188.
[101]
Adisa, O.A.; Ajayi, O.A.; Awujo, N.C.; Thomas, B.N. Haemotolobiochemic changes in albino mice infected with trypanosome brucci brucei. Nig. Q. J. Hosp. Med., 1999, 9(3), 238-240.[http://dx.doi.org/10.4314/nqjhm.v9i3.12388]
[102]
Ezekiel, J.S.; Onyeyili, P.A. Subacute toxicity of ethanol root extract from cissampelos mucronata A. rich in mice. Int. J. Environ. Sci. Technol., 2007, 4, 231-240.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy