Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Research Article

Cardioprotective Effects and in-silico Antioxidant Mechanism of L-Ergothioneine in Experimental Type-2 Diabetic Rats

Author(s): Ayobami Dare *, Ahmed A Elrashedy, Mahendra L. Channa and Anand Nadar

Volume 20, Issue 2, 2022

Published on: 09 August, 2021

Page: [133 - 147] Pages: 15

DOI: 10.2174/1871525719666210809122541

Price: $65

Abstract

Background: Diabetic cardiotoxicity is commonly associated with oxidative injury, inflammation, and endothelial dysfunction. L-ergothioneine (L-egt), a diet-derived amino acid, has been reported to decrease mortality and risk of cardiovascular injury, provides cytoprotection to tissues exposed to oxidative damage, and prevents diabetes-induced perturbation.

Objective: This study investigated the cardioprotective effects of L-egt on diabetes-induced cardiovascular injuries and its probable mechanism of action.

Methods: Twenty-four male Sprague-Dawley rats were divided into non-diabetic (n = 6) and diabetic groups (n = 18). Six weeks after the induction of diabetes, the diabetic rats were divided into three groups (n = 6) and administered distilled water, L-egt (35mg/kg), and losartan (20mg/kg) by oral gavage for six weeks. Blood glucose and mean arterial pressure (MAP) were recorded pre-and post-treatment, while biochemical, ELISA, and RT-qPCR analyses were conducted to determine inflammatory, injury-related and antioxidant biomarkers in cardiac tissue after euthanasia. Also, an in-silico study, including docking and molecular dynamic simulations of L-egt toward the Keap1- Nrf2 protein complex, was done to provide a basis for the molecular antioxidant mechanism of Legt.

Results: Administration of L-egt to diabetic animals reduced serum triglyceride, water intake, MAP, biomarkers of cardiac injury (CK-MB, CRP), lipid peroxidation, and inflammation. Also, Legt increased body weight, antioxidant enzymes, upregulated Nrf2, HO-1, NQO1 expression, and decreased Keap1 expression. The in-silico study showed that L-egt inhibits the Keap1-Nrf2 complex by binding to the active site of Nrf2 protein, thereby preventing its degradation.

Conclusion: L-egt protects against diabetes-induced cardiovascular injury via the upregulation of the Keap1-Nrf2 pathway and its downstream cytoprotective antioxidants.

Keywords: Cardio-protection, diabetes, L-ergothioneine, molecular docking, molecular dynamics, cardiovascular disease (CVD).

Graphical Abstract

[1]
Faselis, C.; Katsimardou, A.; Imprialos, K.; Deligkaris, P.; Kallistratos, M.; Dimitriadis, K. Microvascular complications of type 2 diabetes mellitus. Curr. Vasc. Pharmacol., 2020, 18(2), 117-124.
[http://dx.doi.org/10.2174/1570161117666190502103733] [PMID: 31057114]
[2]
Viigimaa, M.; Sachinidis, A.; Toumpourleka, M.; Koutsampasopoulos, K.; Alliksoo, S.; Titma, T. Macrovascular complications of type 2 diabetes mellitus. Curr. Vasc. Pharmacol., 2020, 18(2), 110-116.
[http://dx.doi.org/10.2174/1570161117666190405165151] [PMID: 30961498]
[3]
Jia, G.; Hill, M.A.; Sowers, J.R. Diabetic Cardiomyopathy. Circ. Res., 2018, 122(4), 624-638.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.311586] [PMID: 29449364]
[4]
Mc Namara, K.; Alzubaidi, H.; Jackson, J.K. Cardiovascular disease as a leading cause of death: how are pharmacists getting involved? Integr. Pharm. Res. Pract., 2019, 8, 1-11.
[http://dx.doi.org/10.2147/IPRP.S133088] [PMID: 30788283]
[5]
Einarson, T.R.; Acs, A.; Ludwig, C.; Panton, U.H. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007-2017. Cardiovasc. Diabetol., 2018, 17(1), 83.
[http://dx.doi.org/10.1186/s12933-018-0728-6] [PMID: 29884191]
[6]
Schmidt, A.M. Diabetes mellitus and cardiovascular disease. Arterioscler. Thromb. Vasc. Biol., 2019, 39(4), 558-568.
[http://dx.doi.org/10.1161/ATVBAHA.119.310961] [PMID: 30786741]
[7]
Aronson, D.; Edelman, E.R. Coronary artery disease and diabetes mellitus. Cardiol. Clin., 2014, 32(3), 439-455.
[http://dx.doi.org/10.1016/j.ccl.2014.04.001] [PMID: 25091969]
[8]
Rodriguez-Araujo, G.; Nakagami, H. Pathophysiology of cardiovascular disease in diabetes mellitus. Cardiovasc. Endocrinol. Metab., 2018, 7(1), 4-9.
[http://dx.doi.org/10.1097/XCE.0000000000000141] [PMID: 31646271]
[9]
Yan, B.; Ren, J.; Zhang, Q.; Gao, R.; Zhao, F.; Wu, J.; Yang, J. Antioxidative effects of natural products on diabetic cardiomyopathy. J. Diabetes Res., 2017, 2017, 2070178.
[http://dx.doi.org/10.1155/2017/2070178] [PMID: 29181412]
[10]
Hill, M.F. Emerging role for antioxidant therapy in protection against diabetic cardiac complications: experimental and clinical evidence for utilization of classic and new antioxidants. Curr. Cardiol. Rev., 2008, 4(4), 259-268.
[http://dx.doi.org/10.2174/157340308786349453] [PMID: 20066133]
[11]
Adelusi, T.I.; Du, L.; Hao, M.; Zhou, X.; Xuan, Q.; Apu, C.; Sun, Y.; Lu, Q.; Yin, X. Keap1/Nrf2/ARE signaling unfolds therapeutic targets for redox imbalanced-mediated diseases and diabetic nephropathy. Biomed. Pharmacother., 2020, 123, 109732.
[http://dx.doi.org/10.1016/j.biopha.2019.109732] [PMID: 31945695]
[12]
Jiang, Z.; Fu, L.; Xu, Y.; Hu, X.; Yang, H.; Zhang, Y.; Luo, H.; Gan, S.; Tao, L.; Liang, G.; Shen, X. Cyclovirobuxine D protects against diabetic cardiomyopathy by activating Nrf2-mediated antioxidant responses. Sci. Rep., 2020, 10(1), 6427.
[http://dx.doi.org/10.1038/s41598-020-63498-3] [PMID: 32286474]
[13]
Ying, Y.; Jin, J.; Ye, L.; Sun, P.; Wang, H.; Wang, X. Phloretin prevents diabetic cardiomyopathy by dissociating keap1/nrf2 complex and inhibiting oxidative stress. Front. Endocrinol. (Lausanne), 2018, 9(774), 774.
[http://dx.doi.org/10.3389/fendo.2018.00774] [PMID: 30619098]
[14]
David, J.A.; Rifkin, W.J.; Rabbani, P.S.; Ceradini, D.J. The Nrf2/Keap1/ARE pathway and oxidative stress as a therapeutic target in type II diabetes mellitus. J. Diabetes Res., 2017, 2017, 4826724.
[http://dx.doi.org/10.1155/2017/4826724] [PMID: 28913364]
[15]
Li, B.; Liu, S.; Miao, L.; Cai, L. Prevention of diabetic complications by activation of Nrf2: diabetic cardiomyopathy and nephropathy. Exp. Diabetes Res., 2012, 2012, 216512.
[http://dx.doi.org/10.1155/2012/216512] [PMID: 22645602]
[16]
Tkachev, V.O.; Menshchikova, E.B.; Zenkov, N.K. Mechanism of the Nrf2/Keap1/ARE signaling system. Biochemistry (Mosc.), 2011, 76(4), 407-422.
[http://dx.doi.org/10.1134/S0006297911040031] [PMID: 21585316]
[17]
Turck, D.; Bresson, J-L.; Burlingame, B.; Dean, T.; Fairweather- Tait, S.; Heinonen, M.; Hirsch-Ernst, K.I.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; Neuhäuser-Berthold, M.; Nowicka, G.; Pentieva, K.; Sanz, Y.; Siani, A.; Sjödin, A.; Stern, M.; Tomé, D.; Vinceti, M.; Willatts, P.; Engel, K.H.; Marchelli, R.; Pöting, A.; Poulsen, M.; Schlatter, J.R.; Ackerl, R.; van Loveren, H. Statement on the safety of synthetic l-ergothioneine as a novel food - supplementary dietary exposure and safety assessment for infants and young children, pregnant and breastfeeding women. EFSA J., 2017, 15(11), e05060.
[PMID: 32625352]
[18]
Ey, J.; Schömig, E.; Taubert, D. Dietary sources and antioxidant effects of ergothioneine. J. Agric. Food Chem., 2007, 55(16), 6466-6474.
[http://dx.doi.org/10.1021/jf071328f] [PMID: 17616140]
[19]
Williamson, R.D.; McCarthy, F.P.; Manna, S.; Groarke, E.; Kell, D.B.; Kenny, L.C.; McCarthy, C.M. L-(+)-Ergothioneine significantly improves the clinical characteristics of preeclampsia in the reduced uterine perfusion pressure rat model. Hypertension, 2020, 75(2), 561-568.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.119.13929] [PMID: 31865793]
[20]
Feng, L.; Cheah, I.K.; Ng, M.M.; Li, J.; Chan, S.M.; Lim, S.L.; Mahendran, R.; Kua, E.H.; Halliwell, B. The association between mushroom consumption and mild cognitive impairment: a community-based cross-sectional study in singapore. J. Alzheimers Dis., 2019, 68(1), 197-203.
[http://dx.doi.org/10.3233/JAD-180959] [PMID: 30775990]
[21]
Guijarro, M.V.; Indart, A.; Aruoma, O.I.; viana, M.; Bonet, B. Effects of ergothioneine on diabetic embryopathy in pregnant rats. Food Chem. Toxicol., 2002, 40(12), 1751-1755.
[http://dx.doi.org/10.1016/S0278-6915(02)00177-1] [PMID: 12419688]
[22]
D’Onofrio, N.; Servillo, L.; Giovane, A.; Casale, R.; Vitiello, M.; Marfella, R.; Paolisso, G.; Balestrieri, M.L. Ergothioneine oxidation in the protection against high-glucose induced endothelial senescence: Involvement of SIRT1 and SIRT6. Free Radic. Biol. Med., 2016, 96, 211-222.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.04.013] [PMID: 27101740]
[23]
Martin, K.R. The bioactive agent ergothioneine, a key component of dietary mushrooms, inhibits monocyte binding to endothelial cells characteristic of early cardiovascular disease. J. Med. Food, 2010, 13(6), 1340-1346.
[http://dx.doi.org/10.1089/jmf.2009.0194] [PMID: 21091247]
[24]
Sakrak, O.; Kerem, M.; Bedirli, A.; Pasaoglu, H.; Akyurek, N.; Ofluoglu, E.; Gültekin, F.A. Ergothioneine modulates proinflammatory cytokines and heat shock protein 70 in mesenteric ischemia and reperfusion injury. J. Surg. Res., 2008, 144(1), 36-42.
[http://dx.doi.org/10.1016/j.jss.2007.04.020] [PMID: 17603080]
[25]
Gokce, G.; Arun, M.Z. Ergothioneine produces relaxation in isolated rat aorta by inactivating superoxide anion. Eur. Rev. Med. Pharmacol. Sci., 2014, 18(21), 3339-3345.
[PMID: 25487948]
[26]
Li, R.W.; Yang, C.; Sit, A.S.; Kwan, Y.W.; Lee, S.M.; Hoi, M.P.; Chan, S.W.; Hausman, M.; Vanhoutte, P.M.; Leung, G.P. Uptake and protective effects of ergothioneine in human endothelial cells. J. Pharmacol. Exp. Ther., 2014, 350(3), 691-700.
[http://dx.doi.org/10.1124/jpet.114.214049] [PMID: 25022513]
[27]
Smith, E.; Ottosson, F.; Hellstrand, S.; Ericson, U.; Orho-Melander, M.; Fernandez, C.; Melander, O. Ergothioneine is associated with reduced mortality and decreased risk of cardiovascular disease. Heart, 2020, 106(9), 691-697.
[http://dx.doi.org/10.1136/heartjnl-2019-315485] [PMID: 31672783]
[28]
Wilson, R.D.; Islam, M.S. Fructose-fed streptozotocin-injected rat: an alternative model for type 2 diabetes. Pharmacol. Rep., 2012, 64(1), 129-139.
[http://dx.doi.org/10.1016/S1734-1140(12)70739-9] [PMID: 22580529]
[29]
Srinivasan, K.; Viswanad, B.; Asrat, L.; Kaul, C.L.; Ramarao, P. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol. Res., 2005, 52(4), 313-320.
[http://dx.doi.org/10.1016/j.phrs.2005.05.004] [PMID: 15979893]
[30]
Tang, R.M.Y.; Cheah, I.K-M.; Yew, T.S.K.; Halliwell, B. Distribution and accumulation of dietary ergothioneine and its metabolites in mouse tissues. Sci. Rep., 2018, 8(1), 1601.
[http://dx.doi.org/10.1038/s41598-018-20021-z] [PMID: 29371632]
[31]
Koszegi, S.; Molnar, A.; Lenart, L.; Hodrea, J.; Balogh, D.B.; Lakat, T.; Szkibinszkij, E.; Hosszu, A.; Sparding, N.; Genovese, F.; Wagner, L.; Vannay, A.; Szabo, A.J.; Fekete, A. RAAS inhibitors directly reduce diabetes-induced renal fibrosis via growth factor inhibition. J. Physiol., 2019, 597(1), 193-209.
[http://dx.doi.org/10.1113/JP277002] [PMID: 30324679]
[32]
Lodovici, M.; Bigagli, E.; Tarantini, F.; Di Serio, C.; Raimondi, L. Losartan reduces oxidative damage to renal DNA and conserves plasma antioxidant capacity in diabetic rats. Exp. Biol. Med. (Maywood), 2015, 240(11), 1500-1504.
[http://dx.doi.org/10.1177/1535370215570826] [PMID: 25710927]
[33]
Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys., 1959, 82(1), 70-77.
[http://dx.doi.org/10.1016/0003-9861(59)90090-6] [PMID: 13650640]
[34]
Marklund, S. Pyrogallol auto-oxidation. In: Greenwald R, editor. Handbook of methods for oxygen radical research. Boca Raton, FL: CRC Press; 198. pp. 243-7.
[35]
Aebi, H. Catalase in vitro. Methods Enzymol., 1984, 105, 121-126.
[http://dx.doi.org/10.1016/S0076-6879(84)05016-3] [PMID: 6727660]
[36]
Madlala, HP; Van Heerden, FR; Mubagwa, K; Musabayane, CT Changes in renal function and oxidative status associated with the hypotensive effects of oleanolic acid and related synthetic derivatives in experimental animals. PloS one, 2015, 10(6), e0128192.
[http://dx.doi.org/10.1371/journal.pone.0128192]
[37]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[38]
Jnoff, E.; Albrecht, C.; Barker, J.J.; Barker, O.; Beaumont, E.; Bromidge, S.; Brookfield, F.; Brooks, M.; Bubert, C.; Ceska, T.; Corden, V.; Dawson, G.; Duclos, S.; Fryatt, T.; Genicot, C.; Jigorel, E.; Kwong, J.; Maghames, R.; Mushi, I.; Pike, R.; Sands, Z.A.; Smith, M.A.; Stimson, C.C.; Courade, J.P. Binding mode and structure-activity relationships around direct inhibitors of the Nrf2-Keap1 complex. ChemMedChem, 2014, 9(4), 699-705.
[http://dx.doi.org/10.1002/cmdc.201300525] [PMID: 24504667]
[39]
Webb, B.; Sali, A. Protein structure modeling with MODELLER. Methods Mol. Biol., 2014, 1137, 1-15.
[http://dx.doi.org/10.1007/978-1-4939-0366-5_1] [PMID: 24573470]
[40]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[41]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[42]
Mittal, R.R.; Harris, L.; McKinnon, R.A.; Sorich, M.J. Partial charge calculation method affects CoMFA QSAR prediction accuracy. J. Chem. Inf. Model., 2009, 49(3), 704-709.
[http://dx.doi.org/10.1021/ci800390m] [PMID: 19239274]
[43]
Sanner, M.F. The Python interpreter as a framework for integrating scientific computing software-components. Scripps. Res. Inst., 2008, 26(1), 1-12.
[44]
Hospital, A.; Goñi, J.R.; Orozco, M.; Gelpí, J.L. Molecular dynamics simulations: advances and applications. Adv. Appl. Bioinform. Chem., 2015, 8, 37-47.
[PMID: 26604800]
[45]
Lee, T-S.; Cerutti, D.S.; Mermelstein, D.; Lin, C.; LeGrand, S.; Giese, T.J.; Roitberg, A.; Case, D.A.; Walker, R.C.; York, D.M. GPU-accelerated molecular dynamics and free energy methods in Amber18: performance enhancements and new features. J. Chem. Inf. Model., 2018, 58(10), 2043-2050.
[http://dx.doi.org/10.1021/acs.jcim.8b00462] [PMID: 30199633]
[46]
Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model., 2006, 25(2), 247-260.
[http://dx.doi.org/10.1016/j.jmgm.2005.12.005] [PMID: 16458552]
[47]
Berendsen, H.J. Postma Jv, van Gunsteren WF, DiNola A, Haak J. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 1984, 81(8), 3684-3690.
[http://dx.doi.org/10.1063/1.448118]
[48]
Roe, D.R.; Cheatham, T.E., III PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput., 2013, 9(7), 3084-3095.
[http://dx.doi.org/10.1021/ct400341p] [PMID: 26583988]
[49]
Seifert, E. OriginPro 9.1: scientific data analysis and graphing software-software review. J. Chem. Inf. Model., 2014, 54(5), 1552.
[http://dx.doi.org/10.1021/ci500161d] [PMID: 24702057]
[50]
Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov., 2015, 10(5), 449-461.
[http://dx.doi.org/10.1517/17460441.2015.1032936] [PMID: 25835573]
[51]
Drissi, M.; Benhalima, N.; Megrouss, Y.; Rachida, R.; Chouaih, A.; Hamzaoui, F. Theoretical and experimental electrostatic potential around the m-nitrophenol molecule. Molecules, 2015, 20(3), 4042-4054.
[http://dx.doi.org/10.3390/molecules20034042] [PMID: 25741898]
[52]
Hayes, JM; Archontis, G. SA calculations of protein-ligand binding free energies. Molecular Dynamics-Studies of Synthetic and Biological Macromolecules. Wang L. Ed.; IntechOpen. Carbondale. 2012; pp. 8285. ,
[53]
Hou, T.; Wang, J.; Li, Y.; Wang, W. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J. Chem. Inf. Model., 2011, 51(1), 69-82.
[http://dx.doi.org/10.1021/ci100275a] [PMID: 21117705]
[54]
Sitkoff, D.; Sharp, K.A.; Honig, B. Accurate calculation of hydration free energies using macroscopic solvent models. J. Phys. Chem., 1994, 98(7), 1978-1988.
[http://dx.doi.org/10.1021/j100058a043]
[55]
Machaba, K.E.; Mhlongo, N.N.; Soliman, M.E.S. Induced mutation proves a potential target for TB therapy: A molecular dynamics study on LprG. Cell Biochem. Biophys., 2018, 76(3), 345-356.
[http://dx.doi.org/10.1007/s12013-018-0852-7] [PMID: 30073572]
[56]
Melville, D.B.; Horner, W.H.; Lubschez, R. Tissue ergothioneine. J. Biol. Chem., 1954, 206(1), 221-228.
[http://dx.doi.org/10.1016/S0021-9258(18)71313-6] [PMID: 13130544]
[57]
Cheah, I.K.; Tang, R.; Ye, P.; Yew, T.S.; Lim, K.H.; Halliwell, B. Liver ergothioneine accumulation in a guinea pig model of non-alcoholic fatty liver disease. A possible mechanism of defence? Free Radic. Res., 2016, 50(1), 14-25.
[http://dx.doi.org/10.3109/10715762.2015.1099642] [PMID: 26634964]
[58]
Halliwell, B.; Cheah, I.K.; Drum, C.L. Ergothioneine, an adaptive antioxidant for the protection of injured tissues? A hypothesis. Biochem. Biophys. Res. Commun., 2016, 470(2), 245-250.
[http://dx.doi.org/10.1016/j.bbrc.2015.12.124] [PMID: 26772879]
[59]
Wang, L.; Li, J.; Li, D. Losartan reduces myocardial interstitial fibrosis in diabetic cardiomyopathy rats by inhibiting JAK/STAT signaling pathway. Int. J. Clin. Exp. Pathol., 2015, 8(1), 466-473.
[PMID: 25755735]
[60]
Chua, S.; Sheu, J.J.; Chang, L.T.; Lee, F.Y.; Wu, C.J.; Sun, C.K.; Yip, H.K. Comparison of losartan and carvedilol on attenuating inflammatory and oxidative response and preserving energy transcription factors and left ventricular function in dilated cardiomyopathy rats. Int. Heart J., 2008, 49(5), 605-619.
[http://dx.doi.org/10.1536/ihj.49.605] [PMID: 18971572]
[61]
Roongpisuthipong, C.; Kantawan, R.; Roongpisuthipong, W. Reduction of adipose tissue and body weight: effect of water soluble calcium hydroxycitrate in Garcinia atroviridis on the short term treatment of obese women in Thailand. Asia Pac. J. Clin. Nutr., 2007, 16(1), 25-29.
[PMID: 17215177]
[62]
Matthaei, S.; Stumvoll, M.; Kellerer, M.; Häring, H.U. Pathophysiology and pharmacological treatment of insulin resistance. Endocr. Rev., 2000, 21(6), 585-618.
[http://dx.doi.org/10.1210/er.21.6.585] [PMID: 11133066]
[63]
Pasquel, F.J.; Umpierrez, G.E. Hyperosmolar hyperglycemic state: a historic review of the clinical presentation, diagnosis, and treatment. Diabetes Care, 2014, 37(11), 3124-3131.
[http://dx.doi.org/10.2337/dc14-0984] [PMID: 25342831]
[64]
Zografou, I.; Strachan, M.; McKnight, J. Delay in starting insulin after failure of other treatments in patients with type 2 diabetes mellitus. Hippokratia, 2014, 18(4), 306-309.
[PMID: 26052195]
[65]
Zaidun, N.H.; Sahema, Z.C.T.; Mardiana, A.A.; Santhana, R.L.; Latiff, A.A.; Syed Ahmad Fuad, S.B. Effects of naringenin on vascular changes in prolonged hyperglycaemia in fructose-STZ diabetic rat model. Drug Discov. Ther., 2019, 13(4), 212-221.
[http://dx.doi.org/10.5582/ddt.2019.01034] [PMID: 31534073]
[66]
Sniderman, A.D.; Couture, P.; Martin, S.S.; DeGraaf, J.; Lawler, P.R.; Cromwell, W.C.; Wilkins, J.T.; Thanassoulis, G. Hypertriglyceridemia and cardiovascular risk: A cautionary note about metabolic confounding. J. Lipid Res., 2018, 59(7), 1266-1275.
[http://dx.doi.org/10.1194/jlr.R082271] [PMID: 29769239]
[67]
Lê, K.A.; Faeh, D.; Stettler, R.; Ith, M.; Kreis, R.; Vermathen, P.; Boesch, C.; Ravussin, E.; Tappy, L. A 4-wk high-fructose diet alters lipid metabolism without affecting insulin sensitivity or ectopic lipids in healthy humans. Am. J. Clin. Nutr., 2006, 84(6), 1374-1379.
[http://dx.doi.org/10.1093/ajcn/84.6.1374] [PMID: 17158419]
[68]
Huang, D.W.; Chang, W.C.; Yang, H.J.; Wu, J.S.; Shen, S.C. Gallic acid alleviates hypertriglyceridemia and fat accumulation via modulating glycolysis and lipolysis pathways in perirenal adipose tissues of rats fed a high-fructose diet. Int. J. Mol. Sci., 2018, 19(1), E254.
[http://dx.doi.org/10.3390/ijms19010254] [PMID: 29342975]
[69]
Softic, S.; Cohen, D.E.; Kahn, C.R. Role of Dietary Fructose and Hepatic De Novo Lipogenesis in Fatty Liver Disease. Dig. Dis. Sci., 2016, 61(5), 1282-1293.
[http://dx.doi.org/10.1007/s10620-016-4054-0] [PMID: 26856717]
[70]
Gökçe, G.; Arun, M.Z.; Ertuna, E. Ergothioneine prevents endothelial dysfunction induced by mercury chloride. Exp. Ther. Med., 2018, 15(6), 4697-4702.
[PMID: 29805489]
[71]
Shah, R; Emin, M; Thoma, T; Sampogna, R; Berger, JS; Jelic, S Direct evidence of endothelial inflammation and reduced nitric oxide bioavailability after sleep restriction in women. Arterioscl Throm Vasc Biol, 2017, 136((suppl_1))
[72]
Bayorh, M.A.; Ganafa, A.A.; Eatman, D.; Walton, M.; Feuerstein, G.Z. Simvastatin and losartan enhance nitric oxide and reduce oxidative stress in salt-induced hypertension. Am. J. Hypertens., 2005, 18(11), 1496-1502.
[http://dx.doi.org/10.1016/j.amjhyper.2005.05.022] [PMID: 16280288]
[73]
Sosa-Canache, B.; Hernández-Hernández, R.; Armas-Padilla, M.C.; Armas-Hernández, M.J.; Cammarata-Segura, R.; Pacheco, B.; Guerrero, J.; Israili, Z.H.; Valasco, M. Effect of losartan therapy on endothelial function in hypertensive patients. Am. J. Ther., 2007, 14(2), 166-171.
[http://dx.doi.org/10.1097/01.pap.0000249919.44604.e1] [PMID: 17414585]
[74]
Soinio, M.; Marniemi, J.; Laakso, M.; Lehto, S.; Rönnemaa, T. High-sensitivity C-reactive protein and coronary heart disease mortality in patients with type 2 diabetes: a 7-year follow-up study. Diabetes Care, 2006, 29(2), 329-333.
[http://dx.doi.org/10.2337/diacare.29.02.06.dc05-1700] [PMID: 16443882]
[75]
Anwar, A.; Akbar Khan, H.; Hafeez, S.; Firdous, K. A comparative study of Creatine Kinase-MB and Troponin levels among diabetic and non diabetic patients with Acute MI. P J M H S., 2016, 10(1), 296-298.
[76]
Paul, B.D.; Snyder, S.H. The unusual amino acid L-ergothioneine is a physiologic cytoprotectant. Cell Death Differ., 2010, 17(7), 1134-1140.
[http://dx.doi.org/10.1038/cdd.2009.163] [PMID: 19911007]
[77]
Colognato, R.; Laurenza, I.; Fontana, I.; Coppedé, F.; Siciliano, G.; Coecke, S.; Aruoma, O.I.; Benzi, L.; Migliore, L. Modulation of hydrogen peroxide-induced DNA damage, MAPKs activation and cell death in PC12 by ergothioneine. Clin. Nutr., 2006, 25(1), 135-145.
[http://dx.doi.org/10.1016/j.clnu.2005.10.005] [PMID: 16314005]
[78]
Jang, J.H.; Aruoma, O.I.; Jen, L.S.; Chung, H.Y.; Surh, Y.J. Ergothioneine rescues PC12 cells from beta-amyloid-induced apoptotic death. Free Radic. Biol. Med., 2004, 36(3), 288-299.
[http://dx.doi.org/10.1016/j.freeradbiomed.2003.11.005] [PMID: 15036348]
[79]
Hamburg, R.J.; Friedman, D.L.; Perryman, M.B. Metabolic and diagnostic significance of creatine kinase isoenzymes. Trends Cardiovasc. Med., 1991, 1(5), 195-200.
[http://dx.doi.org/10.1016/1050-1738(91)90037-F] [PMID: 21239310]
[80]
Yaribeygi, H.; Atkin, S.L.; Sahebkar, A. A review of the molecular mechanisms of hyperglycemia-induced free radical generation leading to oxidative stress. J. Cell. Physiol., 2019, 234(2), 1300-1312.
[http://dx.doi.org/10.1002/jcp.27164] [PMID: 30146696]
[81]
Hurrle, S.; Hsu, W.H. The etiology of oxidative stress in insulin resistance. Biomed. J., 2017, 40(5), 257-262.
[http://dx.doi.org/10.1016/j.bj.2017.06.007] [PMID: 29179880]
[82]
Fiorentino, T.V.; Prioletta, A.; Zuo, P.; Folli, F. Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Curr. Pharm. Des., 2013, 19(32), 5695-5703.
[http://dx.doi.org/10.2174/1381612811319320005] [PMID: 23448484]
[83]
Halliwell, B.; Cheah, I.K.; Tang, R.M.Y. Ergothioneine - a diet-derived antioxidant with therapeutic potential. FEBS Lett., 2018, 592(20), 3357-3366.
[http://dx.doi.org/10.1002/1873-3468.13123] [PMID: 29851075]
[84]
Servillo, L.; DʼOnofrio, N.; Balestrieri, M.L. Ergothioneine antioxidant function: From chemistry to cardiovascular therapeutic potential. J. Cardiovasc. Pharmacol., 2017, 69(4), 183-191.
[http://dx.doi.org/10.1097/FJC.0000000000000464] [PMID: 28375902]
[85]
Borodina, I.; Kenny, L.C.; McCarthy, C.M.; Paramasivan, K.; Pretorius, E.; Roberts, T.J.; van der Hoek, S.A.; Kell, D.B. The biology of ergothioneine, an antioxidant nutraceutical. Nutr. Res. Rev., 2020, 33(2), 190-217.
[http://dx.doi.org/10.1017/S0954422419000301] [PMID: 32051057]
[86]
Lamhonwah, A.M.; Tein, I. Novel localization of OCTN1, an organic cation/carnitine transporter, to mammalian mitochondria. Biochem. Biophys. Res. Commun., 2006, 345(4), 1315-1325.
[http://dx.doi.org/10.1016/j.bbrc.2006.05.026] [PMID: 16729965]
[87]
Kawano, H.; Otani, M.; Takeyama, K.; Kawai, Y.; Mayumi, T.; Hama, T. Studies on ergothioneine. VI. Distribution and fluctuations of ergothioneine in rats. Chem. Pharm. Bull. (Tokyo), 1982, 30(5), 1760-1765.
[http://dx.doi.org/10.1248/cpb.30.1760] [PMID: 7116510]
[88]
Khattab, M.; Ahmad, M.; Al-Shabanah, O.A.; Raza, M. Effects of losartan on blood pressure, oxidative stress, and nitrate/nitrite levels in the nitric oxide deficient hypertensive rats. Receptors Channels, 2004, 10(5-6), 147-157.
[http://dx.doi.org/10.3109/10606820490936141] [PMID: 15989079]
[89]
Hseu, Y.C.; Lo, H.W.; Korivi, M.; Tsai, Y.C.; Tang, M.J.; Yang, H.L. Dermato-protective properties of ergothioneine through induction of Nrf2/ARE-mediated antioxidant genes in UVA-irradiated Human keratinocytes. Free Radic. Biol. Med., 2015, 86, 102-117.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.05.026] [PMID: 26021820]
[90]
Hseu, Y-C.; Vudhya Gowrisankar, Y.; Chen, X-Z.; Yang, Y-C.; Yang, H-L. The antiaging activity of ergothioneine in uva-irradiated human dermal fibroblasts via the inhibition of the AP-1 pathway and the activation of Nrf2-mediated antioxidant genes. Oxid. Med. Cell. Longev., 2020, 2020, 2576823.
[http://dx.doi.org/10.1155/2020/2576823] [PMID: 32104530]
[91]
Chen, J.; Zhang, Z.; Cai, L. Diabetic cardiomyopathy and its prevention by nrf2: current status. Diabetes Metab. J., 2014, 38(5), 337-345.
[http://dx.doi.org/10.4093/dmj.2014.38.5.337] [PMID: 25349820]
[92]
Frati, G.; Schirone, L.; Chimenti, I.; Yee, D.; Biondi-Zoccai, G.; Volpe, M.; Sciarretta, S. An overview of the inflammatory signalling mechanisms in the myocardium underlying the development of diabetic cardiomyopathy. Cardiovasc. Res., 2017, 113(4), 378-388.
[http://dx.doi.org/10.1093/cvr/cvx011] [PMID: 28395009]
[93]
Haffner, S.M. Pre-diabetes, insulin resistance, inflammation and CVD risk. Diabetes Res. Clin. Pract., 2003, 61(Suppl. 1), S9-S18.
[http://dx.doi.org/10.1016/S0168-8227(03)00122-0] [PMID: 12880690]
[94]
Asahi, T.; Wu, X.; Shimoda, H.; Hisaka, S.; Harada, E.; Kanno, T.; Nakamura, Y.; Kato, Y.; Osawa, T. A mushroom-derived amino acid, ergothioneine, is a potential inhibitor of inflammation-related DNA halogenation. Biosci. Biotechnol. Biochem., 2016, 80(2), 313-317.
[http://dx.doi.org/10.1080/09168451.2015.1083396] [PMID: 26338495]
[95]
Repine, JE; Elkins, ND Effect of ergothioneine on acute lung injury and inflammation in cytokine insufflated rats. Prev Med, 2012, 54, 79-82.
[http://dx.doi.org/10.1016/j.ypmed.2011.12.006]
[96]
Song, T-Y.; Yang, N-C.; Chen, C-L.; Thi, T.L.V. Protective effects and possible mechanisms of ergothioneine and hispidin against methylglyoxal-induced injuries in rat pheochromocytoma Cells. Oxid. Med. Cell. Longev., 2017, 2017, 4824371.
[http://dx.doi.org/10.1155/2017/4824371] [PMID: 29181125]
[97]
Salama, S.A.; Omar, H.A. Modulating nf-κb, mapk, and pi3k/akt signaling by ergothioneine attenuates iron overload-induced hepatocellular injury in rats. J. Biochem. Mol. Toxicol., 2021, 35(5), e22729.
[http://dx.doi.org/10.1002/jbt.22729] [PMID: 33580994]
[98]
Guo, Z.X.; Qiu, M.C. Losartan downregulates the expression of transforming growth factor beta type I and type II receptors in kidney of diabetic rat. Zhonghua Nei Ke Za Zhi, 2003, 42(6), 403-408.
[PMID: 12895325]
[99]
Wang, G.; Song, X.; Zhao, L.; Li, Z.; Liu, B. Resveratrol prevents diabetic cardiomyopathy by increasing nrf2 expression and transcriptional activity. BioMed Res. Int., 2018, 2018, 2150218.
[http://dx.doi.org/10.1155/2018/2150218] [PMID: 29721501]
[100]
Trzhtsinskaya, B.V.; Abramova, N.D. Imidazole-2-thiones: Synthesis, structure, properties. Sulfur Reports., 1991, 10(4), 389-421.
[http://dx.doi.org/10.1080/01961779108048760]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy