Abstract
The repair of musculoskeletal tissues has posed a constant challenge for orthopaedic surgeons, and the occurrence of bone and cartilage injuries is expected to increase with the aging of the world population. To overcome the limitations of current treatments, tissue engineering enhanced through gene therapy is garnering significant interest as a promising new alternative. This paper reviews the essential factors involved in tissue engineering, including the appropriate cell source, inductive agents, scaffolds, and mechanical stimulation. Particular emphasis is placed on the use of muscle-derived stem cells that can be genetically engineered to deliver growth factors to the site of injury and initiate the formation of new bone and cartilage. These same gene-carrying cells may also serve as a source of progenitor cells for bone and cartilage formation, making muscle-based gene therapy and tissue engineering a potential treatment for cartilage and bone defects.
Keywords: tissue engineering, gene therapy, mdsc, bone, cartilage, bmps
Current Genomics
Title: Muscle-Based Gene Therapy and Tissue Engineering for Cartilage and Bone Healing
Volume: 5 Issue: 1
Author(s): K. Corsi, G. H. Li, H. Peng and J. Huard
Affiliation:
Keywords: tissue engineering, gene therapy, mdsc, bone, cartilage, bmps
Abstract: The repair of musculoskeletal tissues has posed a constant challenge for orthopaedic surgeons, and the occurrence of bone and cartilage injuries is expected to increase with the aging of the world population. To overcome the limitations of current treatments, tissue engineering enhanced through gene therapy is garnering significant interest as a promising new alternative. This paper reviews the essential factors involved in tissue engineering, including the appropriate cell source, inductive agents, scaffolds, and mechanical stimulation. Particular emphasis is placed on the use of muscle-derived stem cells that can be genetically engineered to deliver growth factors to the site of injury and initiate the formation of new bone and cartilage. These same gene-carrying cells may also serve as a source of progenitor cells for bone and cartilage formation, making muscle-based gene therapy and tissue engineering a potential treatment for cartilage and bone defects.
Export Options
About this article
Cite this article as:
Corsi K., Li H. G., Peng H. and Huard J., Muscle-Based Gene Therapy and Tissue Engineering for Cartilage and Bone Healing, Current Genomics 2004; 5 (1) . https://dx.doi.org/10.2174/1389202043490005
DOI https://dx.doi.org/10.2174/1389202043490005 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Cytotoxicity and Apoptosis Induced by a Plumbagin Derivative in Estrogen Positive MCF-7 Breast Cancer Cells
Anti-Cancer Agents in Medicinal Chemistry Efficient Expression and Purification of Recombinant Therapeutic Protein Candidates, Human Midkine and Pleiotrophin
Current Pharmaceutical Biotechnology Sex Hormones and their Analogues in Neuroimmune Biology
Immunology, Endocrine & Metabolic Agents in Medicinal Chemistry (Discontinued) The Potential of Flavonoids and Tannins from Medicinal Plants as Anticancer Agents
Anti-Cancer Agents in Medicinal Chemistry Oxidative Stress and Antioxidants in Carcinogenesis and Integrative Therapy of Cancer
Current Pharmaceutical Design Applied Proteomics in Companion Animal Medicine
Current Proteomics Recent Advances in Thymidine Kinase 2 (TK2) Inhibitors and New Perspectives for Potential Applications
Current Pharmaceutical Design A Ferrocene Derivative Reduces Cisplatin Resistance in Breast Cancer Cells through Suppression of MDR-1 Expression and Modulation of JAK2/STAT3 Signaling Pathway
Anti-Cancer Agents in Medicinal Chemistry Apoptotic Effects of N-(2-Hydroxyphenyl)-2-Propylpentanamide on U87-MG and U-2 OS Cells and Antiangiogenic Properties
Anti-Cancer Agents in Medicinal Chemistry Ellagic Acid Increases Osteocalcin and Alkaline Phosphatase After Tooth Extraction in Nicotinic-Treated Rats
Current Pharmaceutical Design Relative In Vitro Potentials of Parthenolide to Induce Apoptosis and Cell Cycle Arrest in Skin Cancer Cells
Current Drug Discovery Technologies Doxorubicin Action on Mitochondria: Relevance to Osteosarcoma Therapy?
Current Drug Targets Assessment of Bishosphonate Activity In Vitro
Current Pharmaceutical Design p42.3 in Gastric Carcinoma: A Novel Biomarker and Promising Therapeutic Target
Letters in Drug Design & Discovery Angiogenesis: A Target for Cancer Therapy
Current Pharmaceutical Design Emerging Role of Wnt/Beta-Catenin Signalling Pathways in Cancer Progression and Role of Small Molecule Tankyrase Inhibitors in Combating Multistage Cancers
Current Cancer Therapy Reviews Can we Target the Chemokine Network for Cancer Therapeutics?
Current Cancer Drug Targets RECKing MMP: Relevance of Reversion-inducing Cysteine-rich Protein with Kazal Motifs as a Prognostic Marker and Therapeutic Target for Cancer (A Review)
Anti-Cancer Agents in Medicinal Chemistry Plumbagin: A Potential Anti-cancer Compound
Mini-Reviews in Medicinal Chemistry Effects of Salinomycin on Cancer Stem Cell in Human Lung Adenocarcinoma A549 Cells
Medicinal Chemistry