Abstract
Prion diseases are progressive neurodegenerative diseases that are associated with conformational changes that convert normal cellular prion protein (PrPC) into an abnormal pathogenic prion protein (PrPSc). It is widely recognized that prion diseases are forms of transmissible amyloidosis and are considered to be protein-misfolding diseases (conformational diseases), a category that also includes Alzheimer’s disease. Trace elements play crucial roles in the conformational change affecting PrPC, and increasing evidence suggests that PrPC is a metal-binding protein that is involved in the homeostasis of Cu, Zn, and Fe. In this article, we review the current understanding of links between trace elements and the conformational change to PrPSc, based on our studies using synthetic prion peptides, as well as other new findings. We also focus on PrPSc-induced disruption of Ca homeostasis as a molecular mechanism for neurodegeneration in prion diseases. Possible roles of carnosine (ß-alanyl histidine) as a candidate neuroprotective substance use in prion diseases are also discussed.
Keywords: Amyloid, combinaconformational disease, calcium homeostasis, synapse.
Current Pharmaceutical Biotechnology
Title:Involvement of Trace Elements in the Pathogenesis of Prion Diseases
Volume: 15 Issue: 11
Author(s): Dai Mizuno, Hironari Koyama, Susumu Ohkawara, Yutaka Sadakane and Masahiro Kawahara
Affiliation:
Keywords: Amyloid, combinaconformational disease, calcium homeostasis, synapse.
Abstract: Prion diseases are progressive neurodegenerative diseases that are associated with conformational changes that convert normal cellular prion protein (PrPC) into an abnormal pathogenic prion protein (PrPSc). It is widely recognized that prion diseases are forms of transmissible amyloidosis and are considered to be protein-misfolding diseases (conformational diseases), a category that also includes Alzheimer’s disease. Trace elements play crucial roles in the conformational change affecting PrPC, and increasing evidence suggests that PrPC is a metal-binding protein that is involved in the homeostasis of Cu, Zn, and Fe. In this article, we review the current understanding of links between trace elements and the conformational change to PrPSc, based on our studies using synthetic prion peptides, as well as other new findings. We also focus on PrPSc-induced disruption of Ca homeostasis as a molecular mechanism for neurodegeneration in prion diseases. Possible roles of carnosine (ß-alanyl histidine) as a candidate neuroprotective substance use in prion diseases are also discussed.
Export Options
About this article
Cite this article as:
Mizuno Dai, Koyama Hironari, Ohkawara Susumu, Sadakane Yutaka and Kawahara Masahiro, Involvement of Trace Elements in the Pathogenesis of Prion Diseases, Current Pharmaceutical Biotechnology 2014; 15 (11) . https://dx.doi.org/10.2174/1389201015666141103020625
DOI https://dx.doi.org/10.2174/1389201015666141103020625 |
Print ISSN 1389-2010 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4316 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Bone Metastases Radiopharmaceuticals: An Overview
Current Radiopharmaceuticals Cordycepin Suppresses Integrin/FAK Signaling and Epithelial-Mesenchymal Transition in Hepatocellular Carcinoma
Anti-Cancer Agents in Medicinal Chemistry Drug Transporters and Multiple Drug Resistance in the Most Common Pediatric Solid Tumors
Current Drug Metabolism New Indications for Established Drugs: Combined Tumor-Stroma-Targeted Cancer Therapy with PPARγ Agonists, COX-2 Inhibitors, mTOR Antagonists and Metronomic Chemotherapy
Current Cancer Drug Targets Recent Patents on Proteasome Inhibitors of Natural Origin
Recent Patents on Anti-Cancer Drug Discovery Tyrosol and Hydroxytyrosol Two Main Components of Olive Oil, Protect N2a Cells Against Amyloid-β-Induced Toxicity. Involvement of the NF-κB Signaling
Current Alzheimer Research Clinical Pharmacogenetics in Oncology: the Paradigm of Molecular Targeted Therapies
Current Pharmaceutical Design Synthesis and Antiproliferative Assay of Norcantharidin Derivatives in Cancer Cells
Medicinal Chemistry Nanomedicine: A New Frontier in Cancer Therapeutics
Current Drug Delivery ADP-Ribosyl Cyclase as a Therapeutic Target for Central Nervous System Diseases
Central Nervous System Agents in Medicinal Chemistry Therapeutic Nucleic Acids
Recent Patents on Regenerative Medicine Anabolic Androgenic Steroids and Intracellular Calcium Signaling: A Mini Review on Mechanisms and Physiological Implications
Mini-Reviews in Medicinal Chemistry Promises of Apoptosis-Inducing Peptides in Cancer Therapeutics
Current Pharmaceutical Biotechnology Improving the Stability of Aptamers by Chemical Modification
Current Medicinal Chemistry Suppression of Cancer Invasiveness by Dietary Compounds
Mini-Reviews in Medicinal Chemistry Preliminary Study on Major Phenolic Groups, Antioxidant and Cytotoxic Capacity of Tuckeroo (<i>Cupaniopsis Anacardioides</i>) Fruit Extracts
Current Nutraceuticals An Overview of Published Papers and Important Developments in the Past Three Years
Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry Puerarin: A Review on the Pharmacological Activity, Chemical Properties and Pharmacokinetics of Main Isoflavonoid
The Natural Products Journal Mechanisms of Melatonin in Alleviating Alzheimer’s Disease
Current Neuropharmacology Mitochondrial Dysfunction and Oxidative Stress in Insulin Resistance
Current Pharmaceutical Design