Abstract
The use of particle ion beams in cancer radiotherapy has a long history. Today, beams of protons or heavy ions, predominantly carbon ions, can be accelerated to precisely calculated energies which can be accurately targeted to tumors. This particle therapy works by damaging the DNA of tissue cells, ultimately causing their death. Among the different types of DNA lesions, the formation of DNA double strand breaks is considered to be the most relevant of deleterious damages of ionizing radiation in cells. It is well-known that the extremely large localized energy deposition can lead to complex types of DNA double strand breaks. These effects can lead to cell death, mutations, genomic instability, or carcinogenesis. Complex double strand breaks can increase the probability of mis-rejoining by NHEJ. As a consequence differences in the repair kinetics following high and low LET irradiation qualities are attributed mainly to quantitative differences in their contributions of the fast and slow repair component. In general, there is a higher contribution of the slow component of DNA double strand repair after exposure to high LET radiation, which is thought to reflect the increased amount of complex DNA double strand breaks. These can be accurately measured by the γ-H2AX assay, because the number of phosphorylated H2AX foci correlates well with the number of double strand breaks induced by low or / and high LET radiation.
Keywords: DNA double strand breaks, Linear energy transfer, Radiation, γ-H2AX foci, malignant tumors, radiobiological efficacy, DSBs, LET, NHEJ, HDR
Current Genomics
Title:Differences in Phosphorylated Histone H2AX Foci Formation and Removal of Cells Exposed to Low and High Linear Energy Transfer Radiation
Volume: 13 Issue: 6
Author(s): Thomas Ernst Schmid, Olga. Zlobinskaya and Gabriele Multhoff
Affiliation:
Keywords: DNA double strand breaks, Linear energy transfer, Radiation, γ-H2AX foci, malignant tumors, radiobiological efficacy, DSBs, LET, NHEJ, HDR
Abstract: The use of particle ion beams in cancer radiotherapy has a long history. Today, beams of protons or heavy ions, predominantly carbon ions, can be accelerated to precisely calculated energies which can be accurately targeted to tumors. This particle therapy works by damaging the DNA of tissue cells, ultimately causing their death. Among the different types of DNA lesions, the formation of DNA double strand breaks is considered to be the most relevant of deleterious damages of ionizing radiation in cells. It is well-known that the extremely large localized energy deposition can lead to complex types of DNA double strand breaks. These effects can lead to cell death, mutations, genomic instability, or carcinogenesis. Complex double strand breaks can increase the probability of mis-rejoining by NHEJ. As a consequence differences in the repair kinetics following high and low LET irradiation qualities are attributed mainly to quantitative differences in their contributions of the fast and slow repair component. In general, there is a higher contribution of the slow component of DNA double strand repair after exposure to high LET radiation, which is thought to reflect the increased amount of complex DNA double strand breaks. These can be accurately measured by the γ-H2AX assay, because the number of phosphorylated H2AX foci correlates well with the number of double strand breaks induced by low or / and high LET radiation.
Export Options
About this article
Cite this article as:
Ernst Schmid Thomas, Zlobinskaya Olga. and Multhoff Gabriele, Differences in Phosphorylated Histone H2AX Foci Formation and Removal of Cells Exposed to Low and High Linear Energy Transfer Radiation, Current Genomics 2012; 13 (6) . https://dx.doi.org/10.2174/138920212802510501
DOI https://dx.doi.org/10.2174/138920212802510501 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Evolving Strategies for the Treatment of T-Cell Lymphoma: A Systematic Review and Recent Patents
Recent Patents on Anti-Cancer Drug Discovery Antiviral Medication in Sexually Transmitted Diseases. Part I: HSV, HPV
Mini-Reviews in Medicinal Chemistry Biologic Agents in the Treatment of Psoriasis
Recent Patents on Inflammation & Allergy Drug Discovery Multifuntional Nanoparticles: Preparation and Applications in Biomedicine and in Non-Invasive Bioimaging
Recent Patents on Nanotechnology Heparanase Patents: Dim Past and Bright Future
Recent Patents on Inflammation & Allergy Drug Discovery Plant Secondary Metabolites in Cancer Chemotherapy: Where are We?
Current Pharmaceutical Biotechnology Mast Cells in Allergic and Inflammatory Diseases
Current Pharmaceutical Design Management of Gestational Trophoblastic Diseases-An Update
Reviews on Recent Clinical Trials Augmentation Therapy with Alpha1-antitrypsin: Novel Perspectives
Cardiovascular & Hematological Disorders-Drug Targets The Role of microRNAs in the Diagnosis and Treatment of Malignant Pleural Mesothelioma - A Short Review
MicroRNA Targeting Aldose Reductase for the Treatment of Cancer
Current Cancer Drug Targets Xanthohumol: A Metabolite with Promising Anti-Neoplastic Potential
Anti-Cancer Agents in Medicinal Chemistry Nanoparticle-Delivered Quercetin for Cancer Therapy
Anti-Cancer Agents in Medicinal Chemistry Editorial
Reviews on Recent Clinical Trials Molecular Mechanisms of Tumor Invasion and Metastasis: An Integrated View
Current Molecular Medicine Natural Monoclonal Antibodies and Cancer
Recent Patents on Anti-Cancer Drug Discovery Enzyme / Abzyme Prodrug Activation Systems: Potential Use in Clinical Oncology
Current Pharmaceutical Design Positron Emission Tomography (PET) in the Evaluation of Response to Therapy in Non-Small Cell Lung Cancer
Current Cancer Therapy Reviews Nifedipine Blocks Ondansetron Electrophysiological Effects in Rabbit Purkinje Fibers and Decreases Early Afterdepolarization Incidence
Current Clinical Pharmacology Impact of Epigenetic Dietary Components on Cancer through Histone Modifications
Current Medicinal Chemistry