Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Xanthohumol: A Metabolite with Promising Anti-Neoplastic Potential

Author(s): Hardeep S. Tuli*, Vaishali Aggarwal, Gaurav Parashar, Diwakar Aggarwal, Nidarshana C. Parashar, Muobarak J. Tuorkey, Mehmet Varol, Katrin Sak, Manoj Kumar and Harpal S. Buttar

Volume 22, Issue 3, 2022

Published on: 23 February, 2021

Page: [418 - 432] Pages: 15

DOI: 10.2174/1871520621666210223095021

Price: $65

Abstract

The overwhelming global burden of cancer has posed numerous challenges and opportunities for developing anti-cancer therapies. Phytochemicals have emerged as promising synergistic compounds with potential anti-cancer effects to supplement chemo- and immune-therapeutic regimens. Anti cancer synergistic effects have been investigated in the interaction between phytocompounds derived from flavonoids such as quercetin, apigenin, kaempferol, hesperidin, emodin, etc., and conventional drugs. Xanthohumol is one of the prenylated phytoflavonoid that has demonstrated key anti-cancer activities in in vitro (anti proliferation of cancer cell lines) and in vivo (animal models of xenograft tumours) studies, and has been explored from different dimensions for targeting cancer subtypes. In the last decade, xanthohumol has been investigated how it induces the anti- cancer effects at cellular and molecular levels. The different signalling cascades and targets of xanthohumol are summarized in this review. Overall, this review summarizes the current advances made in the field of natural compounds with special reference to xanthohumol and its promising anti-cancer effects to inhibit tumour progression. The present review has also discussedthe potential of xanthohumol transitioning into a leadingcandidate from nano-therapy viewpoint along with the challenges which need to be addressed for extensive preclinical and clinical anti-cancer studies.

Keywords: Xanthohumol, apoptosis, cell cycle arrest, anti-angiogenesis, anti-metastasis, antiinflammation.

Graphical Abstract

[1]
Aggarwal, V.; Tuli, H.S.; Kaur, J.; Aggarwal, D.; Parashar, G.; Chaturvedi Parashar, N.; Kulkarni, S.; Kaur, G.; Sak, K.; Kumar, M.; Ahn, K.S. Garcinol exhibits anti-neoplastic effects by targeting diverse oncogenic factors in tumor cells. Biomedicines, 2020, 8(5), E103.
[http://dx.doi.org/10.3390/biomedicines8050103] [PMID: 32365899]
[2]
Aggarwal, V.; Tuli, H.S.; Tania, M.; Srivastava, S.; Ritzer, E.E.; Pandey, A.; Aggarwal, D.; Barwal, T.S.; Jain, A.; Kaur, G.; Sak, K.; Varol, M.; Bishayee, A. Molecular mechanisms of action of epigallocatechin gallate in cancer: recent trends and advancement. Semin. Cancer Biol., 2020, S1044-579X(20)30107-3.
[PMID: 32461153]
[3]
Aggarwal, V.; Tuli, H.S.; Thakral, F.; Singhal, P.; Aggarwal, D.; Srivastava, S.; Pandey, A.; Sak, K.; Varol, M.; Khan, M.A.; Sethi, G. Molecular mechanisms of action of hesperidin in cancer: recent trends and advancements. Exp. Biol. Med. (Maywood), 2020, 245(5), 486-497.
[http://dx.doi.org/10.1177/1535370220903671] [PMID: 32050794]
[4]
Cragg, G.M.; Pezzuto, J.M. Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Med. Princ. Pract., 2016, 25(Suppl. 2), 41-59.
[http://dx.doi.org/10.1159/000443404] [PMID: 26679767]
[5]
Tuli, H.S.; Aggarwal, V.; Kaur, J.; Aggarwal, D.; Parashar, G.; Parashar, N.C.; Tuorkey, M.; Kaur, G.; Savla, R.; Sak, K.; Kumar, M. Baicalein: a metabolite with promising antineoplastic activity. Life Sci., 2020, 259, 118183.
[http://dx.doi.org/10.1016/j.lfs.2020.118183] [PMID: 32781058]
[6]
Jiang, C.H.; Sun, T.L.; Xiang, D.X.; Wei, S.S.; Li, W.Q. Anticancer activity and mechanism of xanthohumol: a prenylated flavonoid from hops (Humulus lupulus L.). Front. Pharmacol., 2018, 9, 530.
[http://dx.doi.org/10.3389/fphar.2018.00530] [PMID: 29872398]
[7]
Yin, S.; Song, M.; Zhao, R.; Liu, X.; Kang, W.K.; Lee, J.M.; Kim, Y.E.; Zhang, C.; Shim, J.H.; Liu, K.; Dong, Z.; Lee, M.H. Xanthohumol inhibits the growth of keratin 18-overexpressed esophageal squamous cell carcinoma in vitro and in vivo. Front. Cell Dev. Biol., 2020, 8, 366.
[http://dx.doi.org/10.3389/fcell.2020.00366] [PMID: 32509787]
[8]
Wei, S.; Sun, T.; Du, J.; Zhang, B.; Xiang, D.; Li, W. Xanthohumol, a prenylated flavonoid from Hops, exerts anticancer effects against gastric cancer in vitro. Oncol. Rep., 2018, 40(6), 3213-3222.
[http://dx.doi.org/10.3892/or.2018.6723] [PMID: 30272303]
[9]
Scagliarini, A.; Mathey, A.; Aires, V.; Delmas, D. Xanthohumol, a prenylated flavonoid from hops, induces dna damages in colorectal cancer cells and sensitizes SW480 cells to the SN38 chemotherapeutic agent. Cells, 2020, 9(4), E932.
[http://dx.doi.org/10.3390/cells9040932] [PMID: 32290112]
[10]
Krajka-Kuźniak, V.; Cykowiak, M.; Szaefer, H.; Kleszcz, R.; Baer-Dubowska, W. Combination of xanthohumol and phenethyl isothiocyanate inhibits NF-κB and activates Nrf2 in pancreatic cancer cells. Toxicol. In Vitro, 2020, 65, 104799.
[http://dx.doi.org/10.1016/j.tiv.2020.104799] [PMID: 32070777]
[11]
Roehrer, S.; Stork, V.; Ludwig, C.; Minceva, M.; Behr, J. Analyzing bioactive effects of the minor hop compound xanthohumol C on human breast cancer cells using quantitative proteomics. PLoS One, 2019, 14(3), e0213469.
[http://dx.doi.org/10.1371/journal.pone.0213469] [PMID: 30875365]
[12]
Gieroba, B.; Arczewska, M.; Sławińska-Brych, A.; Rzeski, W.; Stepulak, A.; Gagoś, M. Prostate and breast cancer cells death induced by xanthohumol investigated with Fourier transform infrared spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 231, 118112.
[http://dx.doi.org/10.1016/j.saa.2020.118112] [PMID: 32014658]
[13]
Ho, K.H.; Kuo, T.C.; Lee, Y.T.; Chen, P.H.; Shih, C.M.; Cheng, C.H.; Liu, A.J.; Lee, C.C.; Chen, K.C. Xanthohumol regulates miR-4749-5p-inhibited RFC2 signaling in enhancing temozolomide cytotoxicity to glioblastoma. Life Sci., 2020, 254, 117807.
[http://dx.doi.org/10.1016/j.lfs.2020.117807] [PMID: 32422304]
[14]
Magalhães, P.J.; Carvalho, D.O.; Cruz, J.M.; Guido, L.F.; Barros, A.A. Fundamentals and health benefits of xanthohumol, a natural product derived from hops and beer. Nat. Prod. Commun., 2009, 4(5), 591-610.
[http://dx.doi.org/10.1177/1934578X0900400501] [PMID: 19445313]
[15]
Chen, Q.H.; Fu, M.L.; Chen, M.M.; Liu, J.; Liu, X.J.; He, G.Q.; Pu, S.C. Preparative isolation and purification of xanthohumol from hops (Humulus lupulus L.) by high-speed counter-current chromatography. Food Chem., 2012, 132(1), 619-623.
[http://dx.doi.org/10.1016/j.foodchem.2011.10.098] [PMID: 26434340]
[16]
Khupse, R.S.; Erhardt, P.W. Total synthesis of xanthohumol. J. Nat. Prod., 2007, 70(9), 1507-1509.
[http://dx.doi.org/10.1021/np070158y] [PMID: 17844997]
[17]
Miranda, C.L.; Johnson, L.A.; de Montgolfier, O.; Elias, V.D.; Ullrich, L.S.; Hay, J.J.; Paraiso, I.L.; Choi, J.; Reed, R.L.; Revel, J.S.; Kioussi, C.; Bobe, G.; Iwaniec, U.T.; Turner, R.T.; Katzenellenbogen, B.S.; Katzenellenbogen, J.A.; Blakemore, P.R.; Gombart, A.F.; Maier, C.S.; Raber, J.; Stevens, J.F. Non-estrogenic xanthohumol derivatives mitigate insulin resistance and cognitive impairment in high-fat diet-induced obese mice. Sci. Rep., 2018, 8(1), 613.
[http://dx.doi.org/10.1038/s41598-017-18992-6] [PMID: 29330372]
[18]
Carvalho, D.O.; Freitas, J.; Nogueira, P.; Henriques, S.N.; Carmo, A.M.; Castro, M.A.; Guido, L.F. Xanthohumol inhibits cell proliferation and induces apoptosis in human thyroid cells. Food Chem. Toxicol., 2018, 121, 450-457.
[http://dx.doi.org/10.1016/j.fct.2018.09.021] [PMID: 30240731]
[19]
Gallo, C.; Dallaglio, K.; Bassani, B.; Rossi, T.; Rossello, A.; Noonan, D.M.; D’Uva, G.; Bruno, A.; Albini, A. Hop derived flavonoid xanthohumol inhibits endothelial cell functions via AMPK activation. Oncotarget, 2016, 7(37), 59917-59931.
[http://dx.doi.org/10.18632/oncotarget.10990] [PMID: 27494895]
[20]
Liu, X.; An, L.J.; Li, Y.; Wang, Y.; Zhao, L.; Lv, X.; Guo, J.; Song, A.L. Xanthohumol chalcone acts as a powerful inhibitor of carcinogenesis in drug-resistant human colon carcinoma and these effects are mediated via G2/M phase cell cycle arrest, activation of apoptotic pathways, caspase activation and targeting Ras /MEK/ERK pathway. J. BUON, 2019, 24(6), 2442-2447.
[PMID: 31983118]
[21]
Sławińska-Brych, A.; Król, S.K.; Dmoszyńska-Graniczka, M.; Zdzisińska, B.; Stepulak, A.; Gagoś, M. Xanthohumol inhibits cell cycle progression and proliferation of larynx cancer cells in vitro. Chem. Biol. Interact., 2015, 240, 110-118.
[http://dx.doi.org/10.1016/j.cbi.2015.08.008] [PMID: 26297991]
[22]
Sławińska-Brych, A.; Zdzisińska, B.; Dmoszyńska-Graniczka, M.; Jeleniewicz, W.; Kurzepa, J.; Gagoś, M.; Stepulak, A. Xanthohumol inhibits the extracellular signal regulated kinase (ERK) signalling pathway and suppresses cell growth of lung adenocarcinoma cells. Toxicology, 2016, 357-358, 65-73.
[http://dx.doi.org/10.1016/j.tox.2016.06.008] [PMID: 27317025]
[23]
Sławińska-Brych, A.; Zdzisińska, B.; Czerwonka, A.; Mizerska-Kowalska, M.; Dmoszyńska-Graniczka, M.; Stepulak, A.; Gagoś, M. Xanthohumol exhibits anti-myeloma activity in vitro through inhibition of cell proliferation, induction of apoptosis via the ERK and JNK-dependent mechanism, and suppression of sIL-6R and VEGF production. Biochim. Biophys. Acta, Gen. Subj., 2019, 1863(11), 129408.
[http://dx.doi.org/10.1016/j.bbagen.2019.08.001] [PMID: 31386885]
[24]
Liu, W.; Li, W.; Liu, H.; Yu, X. Xanthohumol inhibits colorectal cancer cells via downregulation of Hexokinases II-mediated glycolysis. Int. J. Biol. Sci., 2019, 15(11), 2497-2508.
[http://dx.doi.org/10.7150/ijbs.37481] [PMID: 31595166]
[25]
Liu, X.; Song, M.; Wang, P.; Zhao, R.; Chen, H.; Zhang, M.; Shi, Y.; Liu, K.; Liu, F.; Yang, R.; Li, E.; Bode, A.M.; Dong, Z.; Lee, M.H. Targeted therapy of the AKT kinase inhibits esophageal squamous cell carcinoma growth in vitro and in vivo. Int. J. Cancer, 2019, 145(4), 1007-1019.
[http://dx.doi.org/10.1002/ijc.32285] [PMID: 30887517]
[26]
Engelsgjerd, S.; Kunnimalaiyaan, S.; Kandil, E.; Gamblin, T.C.; Kunnimalaiyaan, M. Xanthohumol increases death receptor 5 expression and enhances apoptosis with the TNF-related apoptosis-inducing ligand in neuroblastoma cell lines. PLoS One, 2019, 14(3), e0213776.
[http://dx.doi.org/10.1371/journal.pone.0213776] [PMID: 30870485]
[27]
Kłósek, M.; Mertas, A.; Król, W.; Jaworska, D.; Szymszal, J.; Szliszka, E. Tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in prostate cancer cells after treatment with xanthohumol-a natural compound present in Humulus lupulus L. Int. J. Mol. Sci., 2016, 17(6), E837.
[http://dx.doi.org/10.3390/ijms17060837] [PMID: 27338375]
[28]
Guo, D.; Zhang, B.; Liu, S.; Jin, M. Xanthohumol induces apoptosis via caspase activation, regulation of Bcl-2, and inhibition of PI3K/Akt/mTOR-kinase in human gastric cancer cells. Biomed. Pharmacother., 2018, 106, 1300-1306.
[http://dx.doi.org/10.1016/j.biopha.2018.06.166] [PMID: 30119200]
[29]
Lu, X.; Geng, J.; Zhang, J.; Miao, J.; Liu, M. Xanthohumol, a prenylated flavonoid from hops, induces caspase-dependent degradation of oncoprotein BCR-ABL in K562 cells. Antioxidants, 2019, 8(9), E402.
[http://dx.doi.org/10.3390/antiox8090402] [PMID: 31527518]
[30]
Zhang, B.; Chu, W.; Wei, P.; Liu, Y.; Wei, T. Xanthohumol induces generation of reactive oxygen species and triggers apoptosis through inhibition of mitochondrial electron transfer chain complex I. Free Radic. Biol. Med., 2015, 89, 486-497.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.09.021] [PMID: 26453927]
[31]
Zhao, X.; Jiang, K.; Liang, B.; Huang, X. Anticancer effect of xanthohumol induces growth inhibition and apoptosis of human liver cancer through NF-κB/p53-apoptosis signaling pathway. Oncol. Rep., 2016, 35(2), 669-675.
[http://dx.doi.org/10.3892/or.2015.4455] [PMID: 26718026]
[32]
Jiang, W.; Zhao, S.; Xu, L.; Lu, Y.; Lu, Z.; Chen, C.; Ni, J.; Wan, R.; Yang, L. The inhibitory effects of xanthohumol, a prenylated chalcone derived from hops, on cell growth and tumorigenesis in human pancreatic cancer. Biomed. Pharmacother., 2015, 73, 40-47.
[http://dx.doi.org/10.1016/j.biopha.2015.05.020] [PMID: 26211581]
[33]
Dokduang, H.; Yongvanit, P.; Namwat, N.; Pairojkul, C.; Sangkhamanon, S.; Yageta, M.S.; Murakami, Y.; Loilome, W. Xanthohumol inhibits STAT3 activation pathway leading to growth suppression and apoptosis induction in human cholangiocarcinoma cells. Oncol. Rep., 2016, 35(4), 2065-2072.
[http://dx.doi.org/10.3892/or.2016.4584] [PMID: 26794001]
[34]
Kunnimalaiyaan, S.; Sokolowski, K.M.; Balamurugan, M.; Gamblin, T.C.; Kunnimalaiyaan, M. Xanthohumol inhibits Notch signaling and induces apoptosis in hepatocellular carcinoma. PLoS One, 2015, 10(5), e0127464.
[http://dx.doi.org/10.1371/journal.pone.0127464] [PMID: 26011160]
[35]
Kunnimalaiyaan, S.; Trevino, J.; Tsai, S.; Gamblin, T.C.; Kunnimalaiyaan, M. Xanthohumol-mediated suppression of Notch1 signaling is associated with antitumor activity in human pancreatic cancer cells. Mol. Cancer Ther., 2015, 14(6), 1395-1403.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0915] [PMID: 25887885]
[36]
Sun, Z.; Zhou, C.; Liu, F.; Zhang, W.; Chen, J.; Pan, Y.; Ma, L.; Liu, Q.; Du, Y.; Yang, J.; Wang, Q. Inhibition of breast cancer cell survival by Xanthohumol via modulation of the Notch signaling pathway in vivo and in vitro. Oncol. Lett., 2018, 15(1), 908-916.
[PMID: 29422966]
[37]
Walden, D.; Kunnimalaiyaan, S.; Sokolowski, K.; Clark, T.G.; Kunnimalaiyaan, M. Antiproliferative and apoptotic effects of xanthohumol in cholangiocarcinoma. Oncotarget, 2017, 8(50), 88069-88078.
[http://dx.doi.org/10.18632/oncotarget.21422] [PMID: 29152142]
[38]
Chen, P.H.; Chang, C.K.; Shih, C.M.; Cheng, C.H.; Lin, C.W.; Lee, C.C.; Liu, A.J.; Ho, K.H.; Chen, K.C. The miR-204-3p-targeted IGFBP2 pathway is involved in xanthohumol-induced glioma cell apoptotic death. Neuropharmacology, 2016, 110(Pt A), 362-375..
[http://dx.doi.org/10.1016/j.neuropharm.2016.07.038]
[39]
Logan, I.E.; Miranda, C.L.; Lowry, M.B.; Maier, C.S.; Stevens, J.F.; Gombart, A.F. Antiproliferative and cytotoxic activity of xanthohumol and its non-estrogenic derivatives in colon and hepatocellular carcinoma cell lines. Int. J. Mol. Sci., 2019, 20(5), E1203.
[http://dx.doi.org/10.3390/ijms20051203] [PMID: 30857300]
[40]
Yong, W.K.; Abd Malek, S.N. Xanthohumol induces growth inhibition and apoptosis in ca ski human cervical cancer cells. Evid. Based Complement. Alternat. Med., 2015, 2015, 921306.
[http://dx.doi.org/10.1155/2015/921306] [PMID: 25949267]
[41]
Yong, W.K.; Ho, Y.F.; Malek, S.N. Xanthohumol induces apoptosis and S phase cell cycle arrest in A549 non-small cell lung cancer cells. Pharmacogn. Mag., 2015, 11(Suppl. 2), S275-S283.
[http://dx.doi.org/10.4103/0973-1296.166069] [PMID: 26664015]
[42]
Chen, L.; Endler, A.; Shibasaki, F. Hypoxia and angiogenesis: regulation of hypoxia-inducible factors via novel binding factors. Exp. Mol. Med., 2009, 41(12), 849-857.
[http://dx.doi.org/10.3858/emm.2009.41.12.103] [PMID: 19942820]
[43]
Aggarwal, V.; Das, A.; Bal, A.; Srinivasan, R.; Das, R.; Prakash, G.; Malhotra, P.; Varma, S. MYD88, CARD11, and CD79B oncogenic mutations are rare events in the Indian cohort of de novo nodal diffuse large b-cell lymphoma. Appl. Immunohistochem. Mol. Morphol., 2019, 27(4), 311-318.
[http://dx.doi.org/10.1097/PAI.0000000000000585] [PMID: 29734251]
[44]
Aggarwal, V.; Kashyap, D.; Sak, K.; Tuli, H.S.; Jain, A.; Chaudhary, A.; Garg, V.K.; Sethi, G.; Yerer, M.B. Molecular mechanisms of action of tocotrienols in cancer: recent trends and advancements. Int. J. Mol. Sci., 2019, 20(3), E656.
[http://dx.doi.org/10.3390/ijms20030656] [PMID: 30717416]
[45]
Aggarwal, V.; Priyanka, K.; Tuli, H.S. Emergence of circulating MicroRNAs in breast cancer as diagnostic and therapeutic efficacy biomarkers. Mol. Diagn. Ther., 2020, 24(2), 153-173.
[http://dx.doi.org/10.1007/s40291-020-00447-w] [PMID: 32067191]
[46]
Aggarwal, V.; Tuli, H.S.; Varol, A.; Thakral, F.; Yerer, M.B.; Sak, K.; Varol, M.; Jain, A.; Khan, M.A.; Sethi, G. Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomolecules, 2019, 9(11), E735.
[http://dx.doi.org/10.3390/biom9110735] [PMID: 31766246]
[47]
Kashyap, D.; Garg, V.K.; Tuli, H.S.; Yerer, M.B.; Sak, K.; Sharma, A.K.; Kumar, M.; Aggarwal, V.; Sandhu, S.S. Fisetin and quercetin: promising flavonoids with chemopreventive potential. Biomolecules, 2019, 9(5), E174.
[http://dx.doi.org/10.3390/biom9050174] [PMID: 31064104]
[48]
Kashyap, D.; Sharma, A.; Sak, K.; Tuli, H.S.; Buttar, H.S.; Bishayee, A. Fisetin: a bioactive phytochemical with potential for cancer prevention and pharmacotherapy. Life Sci., 2018, 194, 75-87.
[http://dx.doi.org/10.1016/j.lfs.2017.12.005] [PMID: 29225112]
[49]
Sharma, A.; Ghani, A.; Sak, K.; Tuli, H.S.; Sharma, A.K.; Setzer, W.N.; Sharma, S.; Das, A.K. Probing into therapeutic anti-cancer potential of apigenin: recent trends and future directions. Recent Pat. Inflamm. Allergy Drug Discov., 2019, 13(2), 124-133.
[http://dx.doi.org/10.2174/1872213X13666190816160240] [PMID: 31418666]
[50]
Tuli, H.S.; Tuorkey, M.J.; Thakral, F.; Sak, K.; Kumar, M.; Sharma, A.K.; Sharma, U.; Jain, A.; Aggarwal, V.; Bishayee, A. Molecular mechanisms of action of genistein in cancer: recent advances. Front. Pharmacol., 2019, 10, 1336.
[http://dx.doi.org/10.3389/fphar.2019.01336] [PMID: 31866857]
[51]
Brown, J.M. Vasculogenesis: a crucial player in the resistance of solid tumours to radiotherapy. Br. J. Radiol., 2014, 87(1035), 20130686.
[http://dx.doi.org/10.1259/bjr.20130686] [PMID: 24338942]
[52]
Zhang, J.; Jin, H.Y.; Wu, Y.; Zheng, Z.C.; Guo, S.; Wang, Y.; Yang, D.; Meng, X.Y.; Xu, X.; Zhao, Y. Hypoxia-induced LncRNA PCGEM1 promotes invasion and metastasis of gastric cancer through regulating SNAI1. Clin. Transl. Oncol., 2019, 21(9), 1142-1151.
[http://dx.doi.org/10.1007/s12094-019-02035-9] [PMID: 30690667]
[53]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[54]
Kim, C.; Yang, H.; Fukushima, Y.; Saw, P.E.; Lee, J.; Park, J.S.; Park, I.; Jung, J.; Kataoka, H.; Lee, D.; Heo, W.D.; Kim, I.; Jon, S.; Adams, R.H.; Nishikawa, S.; Uemura, A.; Koh, G.Y. Vascular RhoJ is an effective and selective target for tumor angiogenesis and vascular disruption. Cancer Cell, 2014, 25(1), 102-117.
[http://dx.doi.org/10.1016/j.ccr.2013.12.010] [PMID: 24434213]
[55]
Aguayo, A.; Kantarjian, H.; Manshouri, T.; Gidel, C.; Estey, E.; Thomas, D.; Koller, C.; Estrov, Z.; O’Brien, S.; Keating, M.; Freireich, E.; Albitar, M. Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood, 2000, 96(6), 2240-2245.
[http://dx.doi.org/10.1182/blood.V96.6.2240] [PMID: 10979972]
[56]
Dell’Eva, R.; Ambrosini, C.; Vannini, N.; Piaggio, G.; Albini, A.; Ferrari, N. AKT/NF-kappaB inhibitor xanthohumol targets cell growth and angiogenesis in hematologic malignancies. Cancer, 2007, 110(9), 2007-2011.
[http://dx.doi.org/10.1002/cncr.23017] [PMID: 17823911]
[57]
Ni, S.J.; Zhao, L.Q.; Wang, X.F.; Wu, Z.H.; Hua, R.X.; Wan, C.H.; Zhang, J.Y.; Zhang, X.W.; Huang, M.Z.; Gan, L.; Sun, H.L.; Dimri, G.P.; Guo, W.J. CBX7 regulates stem cell-like properties of gastric cancer cells via p16 and AKT-NF-κB-miR-21 pathways. J. Hematol. Oncol., 2018, 11(1), 17.
[http://dx.doi.org/10.1186/s13045-018-0562-z] [PMID: 29422082]
[58]
Yuan, Z.; Liang, X.; Zhan, Y.; Wang, Z.; Xu, J.; Qiu, Y.; Wang, J.; Cao, Y.; Le, V.M.; Ly, H.T.; Xu, J.; Li, W.; Yin, P.; Xu, K. Targeting CD133 reverses drug-resistance via the AKT/NF-κB/MDR1 pathway in colorectal cancer. Br. J. Cancer, 2020, 122(9), 1342-1353.
[http://dx.doi.org/10.1038/s41416-020-0783-0] [PMID: 32203206]
[59]
Weng, M.C.; Li, M.H.; Chung, J.G.; Liu, Y.C.; Wu, J.Y.; Hsu, F.T.; Wang, H.E. Apoptosis induction and AKT/NF-κB inactivation are associated with regroafenib-inhibited tumor progression in non-small cell lung cancer in vitro and in vivo. Biomed. Pharmacother., 2019, 116, 109032.
[http://dx.doi.org/10.1016/j.biopha.2019.109032] [PMID: 31163381]
[60]
Huang, S.; Pettaway, C.A.; Uehara, H.; Bucana, C.D.; Fidler, I.J. Blockade of NF-kappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene, 2001, 20(31), 4188-4197.
[http://dx.doi.org/10.1038/sj.onc.1204535] [PMID: 11464285]
[61]
Liu, Z.; Klominek, J. Regulation of matrix metalloprotease activity in malignant mesothelioma cell lines by growth factors. Thorax, 2003, 58(3), 198-203.
[http://dx.doi.org/10.1136/thorax.58.3.198] [PMID: 12612292]
[62]
Philips, N.; Samuel, M.; Arena, R.; Chen, Y.J.; Conte, J.; Natarajan, P.; Haas, G.; Gonzalez, S. Direct inhibition of elastase and matrixmetalloproteinases and stimulation of biosynthesis of fibrillar collagens, elastin, and fibrillins by xanthohumol. J. Cosmet. Sci., 2010, 61(2), 125-132.
[http://dx.doi.org/10.1111/j.1468-2494.2010.00609_4.x] [PMID: 20447364]
[63]
Mitra, S.K.; Hanson, D.A.; Schlaepfer, D.D. Focal adhesion kinase: in command and control of cell motility. Nat. Rev. Mol. Cell Biol., 2005, 6(1), 56-68.
[http://dx.doi.org/10.1038/nrm1549] [PMID: 15688067]
[64]
Sonoshita, M.; Itatani, Y.; Kakizaki, F.; Sakimura, K.; Terashima, T.; Katsuyama, Y.; Sakai, Y.; Taketo, M.M. Promotion of colorectal cancer invasion and metastasis through activation of NOTCH-DAB1-ABL-RHOGEF protein TRIO. Cancer Discov., 2015, 5(2), 198-211.
[http://dx.doi.org/10.1158/2159-8290.CD-14-0595] [PMID: 25432929]
[65]
Venè, R.; Benelli, R.; Minghelli, S.; Astigiano, S.; Tosetti, F.; Ferrari, N. Xanthohumol impairs human prostate cancer cell growth and invasion and diminishes the incidence and progression of advanced tumors in TRAMP mice. Mol. Med., 2012, 18, 1292-1302.
[http://dx.doi.org/10.2119/molmed.2012.00174] [PMID: 22952060]
[66]
Vanhoecke, B.W.; Delporte, F.; Van Braeckel, E.; Heyerick, A.; Depypere, H.T.; Nuytinck, M.; De Keukeleire, D.; Bracke, M.E. A safety study of oral tangeretin and xanthohumol administration to laboratory mice. In Vivo, 2005, 19(1), 103-107.
[PMID: 15796161]
[67]
Gerhauser, C.; Alt, A.; Heiss, E.; Gamal-Eldeen, A.; Klimo, K.; Knauft, J.; Neumann, I.; Scherf, H.R.; Frank, N.; Bartsch, H.; Becker, H. Cancer chemopreventive activity of Xanthohumol, a natural product derived from hop. Mol. Cancer Ther., 2002, 1(11), 959-969.
[PMID: 12481418]
[68]
Yuan, X.; Wu, H.; Xu, H.; Xiong, H.; Chu, Q.; Yu, S.; Wu, G.S.; Wu, K. Notch signaling: an emerging therapeutic target for cancer treatment. Cancer Lett., 2015, 369(1), 20-27.
[http://dx.doi.org/10.1016/j.canlet.2015.07.048] [PMID: 26341688]
[69]
Sonoshita, M.; Aoki, M.; Fuwa, H.; Aoki, K.; Hosogi, H.; Sakai, Y.; Hashida, H.; Takabayashi, A.; Sasaki, M.; Robine, S.; Itoh, K.; Yoshioka, K.; Kakizaki, F.; Kitamura, T.; Oshima, M.; Taketo, M.M. Suppression of colon cancer metastasis by Aes through inhibition of Notch signaling. Cancer Cell, 2011, 19(1), 125-137.
[http://dx.doi.org/10.1016/j.ccr.2010.11.008] [PMID: 21251616]
[70]
Spano, D.; Heck, C.; De Antonellis, P.; Christofori, G.; Zollo, M. Molecular networks that regulate cancer metastasis. Semin. Cancer Biol., 2012, 22(3), 234-249.
[http://dx.doi.org/10.1016/j.semcancer.2012.03.006] [PMID: 22484561]
[71]
Kuramoto, T.; Goto, H.; Mitsuhashi, A.; Tabata, S.; Ogawa, H.; Uehara, H.; Saijo, A.; Kakiuchi, S.; Maekawa, Y.; Yasutomo, K.; Hanibuchi, M.; Akiyama, S.; Sone, S.; Nishioka, Y. Dll4-Fc, an inhibitor of Dll4-notch signaling, suppresses liver metastasis of small cell lung cancer cells through the downregulation of the NF-κB activity. Mol. Cancer Ther., 2012, 11(12), 2578-2587.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0640] [PMID: 22989420]
[72]
Yamaguchi, H.; Hsu, J.L.; Hung, M.C. Regulation of ubiquitination-mediated protein degradation by survival kinases in cancer. Front. Oncol., 2012, 2, 15.
[http://dx.doi.org/10.3389/fonc.2012.00015] [PMID: 22649777]
[73]
Kazi, A.; Xiang, S.; Yang, H.; Delitto, D.; Trevino, J.; Jiang, R.H.Y.; Ayaz, M.; Lawrence, H.R.; Kennedy, P.; Sebti, S.M. GSK3 suppression upregulates β-catenin and c-Myc to abrogate KRas-dependent tumors. Nat. Commun., 2018, 9(1), 5154.
[http://dx.doi.org/10.1038/s41467-018-07644-6] [PMID: 30514931]
[74]
Diamond, E.; Amen, M.; Hu, Q.; Espinoza, H.M.; Amendt, B.A. Functional interactions between Dlx2 and lymphoid enhancer factor regulate Msx2. Nucleic Acids Res., 2006, 34(20), 5951-5965.
[http://dx.doi.org/10.1093/nar/gkl689] [PMID: 17068080]
[75]
Yost, C.; Torres, M.; Miller, J.R.; Huang, E.; Kimelman, D.; Moon, R.T. The axis-inducing activity, stability, and subcellular distribution of beta- catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev., 1996, 10(12), 1443-1454.
[http://dx.doi.org/10.1101/gad.10.12.1443] [PMID: 8666229]
[76]
Weiskirchen, R.; Mahli, A.; Weiskirchen, S.; Hellerbrand, C. The hop constituent xanthohumol exhibits hepatoprotective effects and inhibits the activation of hepatic stellate cells at different levels. Front. Physiol., 2015, 6, 140.
[http://dx.doi.org/10.3389/fphys.2015.00140] [PMID: 25999863]
[77]
Gao, X.; Deeb, D.; Liu, Y.; Gautam, S.; Dulchavsky, S.A.; Gautam, S.C. Immunomodulatory activity of xanthohumol: inhibition of T cell proliferation, cell-mediated cytotoxicity and Th1 cytokine production through suppression of NF-kappaB. Immunopharmacol. Immunotoxicol., 2009, 31(3), 477-484.
[http://dx.doi.org/10.1080/08923970902798132] [PMID: 19555200]
[78]
Iniguez, A.B.; Zhu, M.J. Hop bioactive compounds in prevention of nutrition-related noncommunicable diseases. Crit. Rev. Food Sci. Nutr., 2021, 61(11), 1900-1913.
[http://dx.doi.org/10.1080/10408398.2020.1767537] [PMID: 32462886]
[79]
Khayyal, M.T.; El-Hazek, R.M.; El-Sabbagh, W.A.; Frank, J.; Behnam, D.; Abdel-Tawab, M. Micellar solubilization enhances the anti-inflammatory effect of xanthohumol. Phytomedicine, 2020, 71, 153233.
[http://dx.doi.org/10.1016/j.phymed.2020.153233] [PMID: 32454348]
[80]
Rancán, L.; Paredes, S.D.; García, I.; Muñoz, P.; García, C.; López de Hontanar, G.; de la Fuente, M.; Vara, E.; Tresguerres, J.A.F. Protective effect of xanthohumol against age-related brain damage. J. Nutr. Biochem., 2017, 49, 133-140.
[http://dx.doi.org/10.1016/j.jnutbio.2017.07.011] [PMID: 28950154]
[81]
Cho, Y.C.; Kim, H.J.; Kim, Y.J.; Lee, K.Y.; Choi, H.J.; Lee, I.S.; Kang, B.Y. Differential anti-inflammatory pathway by xanthohumol in IFN-gamma and LPS-activated macrophages. Int. Immunopharmacol., 2008, 8(4), 567-573.
[http://dx.doi.org/10.1016/j.intimp.2007.12.017] [PMID: 18328448]
[82]
Lee, I.S.; Lim, J.; Gal, J.; Kang, J.C.; Kim, H.J.; Kang, B.Y.; Choi, H.J. Anti-inflammatory activity of xanthohumol involves heme oxygenase-1 induction via NRF2-ARE signaling in microglial BV2 cells. Neurochem. Int., 2011, 58(2), 153-160.
[http://dx.doi.org/10.1016/j.neuint.2010.11.008] [PMID: 21093515]
[83]
Peluso, M.R.; Miranda, C.L.; Hobbs, D.J.; Proteau, R.R.; Stevens, J.F. Xanthohumol and related prenylated flavonoids inhibit inflammatory cytokine production in LPS-activated THP-1 monocytes: structure-activity relationships and in silico binding to myeloid differentiation protein-2 (MD-2). Planta Med., 2010, 76(14), 1536-1543.
[http://dx.doi.org/10.1055/s-0029-1241013] [PMID: 20309792]
[84]
Zhao, F.; Nozawa, H.; Daikonnya, A.; Kondo, K.; Kitanaka, S. Inhibitors of nitric oxide production from hops (Humulus lupulus L.). Biol. Pharm. Bull., 2003, 26(1), 61-65.
[http://dx.doi.org/10.1248/bpb.26.61] [PMID: 12520174]
[85]
Jongthawin, J.; Techasen, A.; Loilome, W.; Yongvanit, P.; Namwat, N. Anti-inflammatory agents suppress the prostaglandin E2 production and migration ability of cholangiocarcinoma cell lines. Asian Pac. J. Cancer Prev., 2012, 13(Suppl.), 47-51.
[PMID: 23480764]
[86]
Stevens, J.F.; Page, J.E. Xanthohumol and related prenylflavonoids from hops and beer: to your good health! Phytochemistry, 2004, 65(10), 1317-1330.
[http://dx.doi.org/10.1016/j.phytochem.2004.04.025] [PMID: 15231405]
[87]
Dorn, C.; Kraus, B.; Motyl, M.; Weiss, T.S.; Gehrig, M.; Schölmerich, J.; Heilmann, J.; Hellerbrand, C. Xanthohumol, a chalcon derived from hops, inhibits hepatic inflammation and fibrosis. Mol. Nutr. Food Res., 2010, 54(Suppl. 2), S205-S213.
[http://dx.doi.org/10.1002/mnfr.200900314] [PMID: 20087858]
[88]
Lupinacci, E.; Meijerink, J.; Vincken, J.P.; Gabriele, B.; Gruppen, H.; Witkamp, R.F. Xanthohumol from hop (Humulus lupulus L.) is an efficient inhibitor of monocyte chemoattractant protein-1 and tumor necrosis factor-alpha release in LPS-stimulated RAW 264.7 mouse macrophages and U937 human monocytes. J. Agric. Food Chem., 2009, 57(16), 7274-7281.
[http://dx.doi.org/10.1021/jf901244k] [PMID: 19634869]
[89]
Albini, A.; Dell’Eva, R.; Vené, R.; Ferrari, N.; Buhler, D.R.; Noonan, D.M.; Fassina, G. Mechanisms of the antiangiogenic activity by the hop flavonoid xanthohumol: NF-kappaB and Akt as targets. FASEB J., 2006, 20(3), 527-529.
[http://dx.doi.org/10.1096/fj.05-5128fje] [PMID: 16403733]
[90]
Harikumar, K.B.; Kunnumakkara, A.B.; Ahn, K.S.; Anand, P.; Krishnan, S.; Guha, S.; Aggarwal, B.B. Modification of the cysteine residues in IkappaBalpha kinase and NF-kappaB (p65) by xanthohumol leads to suppression of NF-kappaB-regulated gene products and potentiation of apoptosis in leukemia cells. Blood, 2009, 113(9), 2003-2013.
[http://dx.doi.org/10.1182/blood-2008-04-151944] [PMID: 18952893]
[91]
Cho, Y.C.; You, S.K.; Kim, H.J.; Cho, C.W.; Lee, I.S.; Kang, B.Y. Xanthohumol inhibits IL-12 production and reduces chronic allergic contact dermatitis. Int. Immunopharmacol., 2010, 10(5), 556-561.
[http://dx.doi.org/10.1016/j.intimp.2010.02.002] [PMID: 20144742]
[92]
Colgate, E.C.; Miranda, C.L.; Stevens, J.F.; Bray, T.M.; Ho, E. Xanthohumol, a prenylflavonoid derived from hops induces apoptosis and inhibits NF-kappaB activation in prostate epithelial cells. Cancer Lett., 2007, 246(1-2), 201-209.
[http://dx.doi.org/10.1016/j.canlet.2006.02.015] [PMID: 16563612]
[93]
Dorn, C.; Heilmann, J.; Hellerbrand, C. Protective effect of xanthohumol on toxin-induced liver inflammation and fibrosis. Int. J. Clin. Exp. Pathol., 2012, 5(1), 29-36.
[http://dx.doi.org/10.1055/s-0031-1295738] [PMID: 22295144]
[94]
Hartkorn, A.; Hoffmann, F.; Ajamieh, H.; Vogel, S.; Heilmann, J.; Gerbes, A.L.; Vollmar, A.M.; Zahler, S. Antioxidant effects of xanthohumol and functional impact on hepatic ischemia-reperfusion injury. J. Nat. Prod., 2009, 72(10), 1741-1747.
[http://dx.doi.org/10.1021/np900230p] [PMID: 19757857]
[95]
Zhang, X.L.; Zhang, Y.D.; Wang, T.; Guo, H.Y.; Liu, Q.M.; Su, H.X. Evaluation on antioxidant effect of xanthohumol by different antioxidant capacity analytical methods. J. Chem., 2014, 2014, 249485.
[http://dx.doi.org/10.1155/2014/249485.]
[96]
Vogel, S.; Ohmayer, S.; Brunner, G.; Heilmann, J. Natural and non-natural prenylated chalcones: synthesis, cytotoxicity and anti-oxidative activity. Bioorg. Med. Chem., 2008, 16(8), 4286-4293.
[http://dx.doi.org/10.1016/j.bmc.2008.02.079] [PMID: 18343123]
[97]
Yamaguchi, N.; Satoh-Yamaguchi, K.; Ono, M. In vitro evaluation of antibacterial, anticollagenase, and antioxidant activities of hop components (Humulus lupulus) addressing acne vulgaris. Phytomedicine, 2009, 16(4), 369-376.
[http://dx.doi.org/10.1016/j.phymed.2008.12.021] [PMID: 19201179]
[98]
Anto, R.J.; Sukumaran, K.; Kuttan, G.; Rao, M.N.; Subbaraju, V.; Kuttan, R. Anticancer and antioxidant activity of synthetic chalcones and related compounds. Cancer Lett., 1995, 97(1), 33-37.
[http://dx.doi.org/10.1016/0304-3835(95)03945-S] [PMID: 7585475]
[99]
Miranda, C.L.; Stevens, J.F.; Ivanov, V.; McCall, M.; Frei, B.; Deinzer, M.L.; Buhler, D.R. Antioxidant and prooxidant actions of prenylated and nonprenylated chalcones and flavanones in vitro. J. Agric. Food Chem., 2000, 48(9), 3876-3884.
[http://dx.doi.org/10.1021/jf0002995] [PMID: 10995285]
[100]
Pompella, A.; Sies, H.; Wacker, R.; Brouns, F.; Grune, T.; Biesalski, H.K.; Frank, J. The use of total antioxidant capacity as surrogate marker for food quality and its effect on health is to be discouraged. Nutrition, 2014, 30(7-8), 791-793.
[http://dx.doi.org/10.1016/j.nut.2013.12.002] [PMID: 24984994]
[101]
Strathmann, J.; Klimo, K.; Sauer, S.W.; Okun, J.G.; Prehn, J.H.; Gerhäuser, C. Xanthohumol-induced transient superoxide anion radical formation triggers cancer cells into apoptosis via a mitochondria-mediated mechanism. FASEB J., 2010, 24(8), 2938-2950.
[http://dx.doi.org/10.1096/fj.10-155846] [PMID: 20335224]
[102]
Kirkwood, J.S.; Legette, L.L.; Miranda, C.L.; Jiang, Y.; Stevens, J.F. A metabolomics-driven elucidation of the anti-obesity mechanisms of xanthohumol. J. Biol. Chem., 2013, 288(26), 19000-19013.
[http://dx.doi.org/10.1074/jbc.M112.445452] [PMID: 23673658]
[103]
Lv, H.; Liu, Q.; Wen, Z.; Feng, H.; Deng, X.; Ci, X. Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3β-Nrf2 signal axis. Redox Biol., 2017, 12, 311-324.
[http://dx.doi.org/10.1016/j.redox.2017.03.001] [PMID: 28285192]
[104]
Luo, Y.; Eggler, A.L.; Liu, D.; Liu, G.; Mesecar, A.D.; van Breemen, R.B. Sites of alkylation of human Keap1 by natural chemoprevention agents. J. Am. Soc. Mass Spectrom., 2007, 18(12), 2226-2232.
[http://dx.doi.org/10.1016/j.jasms.2007.09.015] [PMID: 17980616]
[105]
Dietz, B.M.; Hagos, G.K.; Eskra, J.N.; Wijewickrama, G.T.; Anderson, J.R.; Nikolic, D.; Guo, J.; Wright, B.; Chen, S.N.; Pauli, G.F.; van Breemen, R.B.; Bolton, J.L. Differential regulation of detoxification enzymes in hepatic and mammary tissue by hops (Humulus lupulus) in vitro and in vivo. Mol. Nutr. Food Res., 2013, 57(6), 1055-1066.
[http://dx.doi.org/10.1002/mnfr.201200534] [PMID: 23512484]
[106]
Krajka-Kuźniak, V.; Paluszczak, J.; Baer-Dubowska, W. Xanthohumol induces phase II enzymes via Nrf2 in human hepatocytes in vitro. Toxicol. In Vitro, 2013, 27(1), 149-156.
[http://dx.doi.org/10.1016/j.tiv.2012.10.008] [PMID: 23085367]
[107]
Miranda, C.L.; Aponso, G.L.; Stevens, J.F.; Deinzer, M.L.; Buhler, D.R. Prenylated chalcones and flavanones as inducers of quinone reductase in mouse Hepa 1c1c7 cells. Cancer Lett., 2000, 149(1-2), 21-29.
[http://dx.doi.org/10.1016/S0304-3835(99)00328-6] [PMID: 10737704]
[108]
Yao, J.; Zhang, B.; Ge, C.; Peng, S.; Fang, J. Xanthohumol, a polyphenol chalcone present in hops, activating Nrf2 enzymes to confer protection against oxidative damage in PC12 cells. J. Agric. Food Chem., 2015, 63(5), 1521-1531.
[http://dx.doi.org/10.1021/jf505075n] [PMID: 25587858]
[109]
Monteghirfo, S.; Tosetti, F.; Ambrosini, C.; Stigliani, S.; Pozzi, S.; Frassoni, F.; Fassina, G.; Soverini, S.; Albini, A.; Ferrari, N. Antileukemia effects of xanthohumol in Bcr/Abl-transformed cells involve nuclear factor-kappaB and p53 modulation. Mol. Cancer Ther., 2008, 7(9), 2692-2702.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0132] [PMID: 18790751]
[110]
Yang, J.Y.; Della-Fera, M.A.; Rayalam, S.; Baile, C.A. Effect of xanthohumol and isoxanthohumol on 3T3-L1 cell apoptosis and adipogenesis. Apoptosis, 2007, 12(11), 1953-1963.
[http://dx.doi.org/10.1007/s10495-007-0130-4] [PMID: 17874298]
[111]
Amslinger, S.; Al-Rifai, N.; Winter, K.; Wörmann, K.; Scholz, R.; Baumeister, P.; Wild, M. Reactivity assessment of chalcones by a kinetic thiol assay. Org. Biomol. Chem., 2013, 11(4), 549-554.
[http://dx.doi.org/10.1039/C2OB27163J] [PMID: 23224077]
[112]
Arczewska, M.; Kamiński, D.M.; Gieroba, B.; Gagoś, M. Acid-base properties of xanthohumol: a computational and experimental investigation. J. Nat. Prod., 2017, 80(12), 3194-3202.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00530] [PMID: 29148787]
[113]
Tuli, H.S.; Kashyap, D.; Sharma, A.K.; Sandhu, S.S. Molecular aspects of melatonin (MLT)-mediated therapeutic effects. Life Sci., 2015, 135, 147-157.
[http://dx.doi.org/10.1016/j.lfs.2015.06.004] [PMID: 26135621]
[114]
Lee, Y.M.; Hsieh, K.H.; Lu, W.J.; Chou, H.C.; Chou, D.S.; Lien, L.M.; Sheu, J.R.; Lin, K.H. Xanthohumol, a prenylated flavonoid from hops (Humulus lupulus), prevents platelet activation in human platelets. Evid. Based Complement. Alternat. Med., 2012, 2012, 852362.
[http://dx.doi.org/10.1155/2012/852362] [PMID: 22611436]
[115]
Ambrož, M.; Lněničková, K.; Matoušková, P.; Skálová, L.; Boušová, I. Antiproliferative effects of hop-derived prenylflavonoids and their influence on the efficacy of oxaliplatine, 5-fluorouracil and irinotecan in human colorectal c cells. Nutrients, 2019, 11(4), E879.
[http://dx.doi.org/10.3390/nu11040879] [PMID: 31010128]
[116]
Zhang, X.; Han, L.; Sun, Q.; Xia, W.; Zhou, Q.; Zhang, Z.; Song, X. Controlled release of resveratrol and xanthohumol via coaxial electrospinning fibers. J. Biomater. Sci. Polym. Ed., 2020, 31(4), 456-471.
[http://dx.doi.org/10.1080/09205063.2019.1700600] [PMID: 31801405]
[117]
Kang, Y.; Park, M.A.; Heo, S.W.; Park, S.Y.; Kang, K.W.; Park, P.H.; Kim, J.A. The radio-sensitizing effect of xanthohumol is mediated by STAT3 and EGFR suppression in doxorubicin-resistant MCF-7 human breast cancer cells. Biochim. Biophys. Acta, 2013, 1830(3), 2638-2648.
[http://dx.doi.org/10.1016/j.bbagen.2012.12.005] [PMID: 23246576]
[118]
Suh, J.H.; Schrock, A.B.; Johnson, A.; Lipson, D.; Gay, L.M.; Ramkissoon, S.; Vergilio, J.A.; Elvin, J.A.; Shakir, A.; Ruehlman, P.; Reckamp, K.L.; Ou, S.I.; Ross, J.S.; Stephens, P.J.; Miller, V.A.; Ali, S.M. Hybrid capture-based comprehensive genomic profiling identified lung cancer patients with well-characterized sensitizing epidermal growth factor receptor point mutations that were not detected by standard of care testing. Oncologist, 2018, 23(7), 776-781.
[http://dx.doi.org/10.1634/theoncologist.2017-0493] [PMID: 29540602]
[119]
Zhang, C.X.; Lippard, S.J. New metal complexes as potential therapeutics. Curr. Opin. Chem. Biol., 2003, 7(4), 481-489.
[http://dx.doi.org/10.1016/S1367-5931(03)00081-4] [PMID: 12941423]
[120]
Gerhäuser, C. Broad spectrum anti-infective potential of xanthohumol from hop (Humulus lupulus L.) in comparison with activities of other hop constituents and xanthohumol metabolites. Mol. Nutr. Food Res., 2005, 49(9), 827-831.
[http://dx.doi.org/10.1002/mnfr.200500091] [PMID: 16092071]
[121]
Cassidy, C.E.; Setzer, W.N. Cancer-relevant biochemical targets of cytotoxic Lonchocarpus flavonoids: a molecular docking analysis. J. Mol. Model., 2010, 16(2), 311-326.
[http://dx.doi.org/10.1007/s00894-009-0547-5] [PMID: 19603203]
[122]
Liu, M.; Hansen, P.E.; Wang, G.; Qiu, L.; Dong, J.; Yin, H.; Qian, Z.; Yang, M.; Miao, J. Pharmacological profile of xanthohumol, a prenylated flavonoid from hops (Humulus lupulus). Molecules, 2015, 20(1), 754-779.
[http://dx.doi.org/10.3390/molecules20010754] [PMID: 25574819]
[123]
Enrico, C. Nanotechnology-Based Drug Delivery of Natural Compounds and Phytochemicals for the Treatment of Cancer and Other Diseases In: Studies in Natural Products Chemistry; Elsevier, 2019; Vol. 62, pp. 91-123.
[124]
Ye, H.; He, X.; Feng, X. Developing neobavaisoflavone nanoemulsion suppresses lung cancer progression by regulating tumor microenvironment. Biomed. Pharmacother., 2020, 129, 110369.
[http://dx.doi.org/10.1016/j.biopha.2020.110369] [PMID: 32563983]
[125]
León-González, A.J.; Acero, N.; Muñoz-Mingarro, D.; Navarro, I.; Martín- Cordero, C. Chalcones as promising lead compounds on cancer therapy. Curr. Med. Chem., 2015, 22(30), 3407-3425.
[http://dx.doi.org/10.2174/0929867322666150729114829] [PMID: 26219392]
[126]
Hussong, R.; Frank, N.; Knauft, J.; Ittrich, C.; Owen, R.; Becker, H.; Gerhäuser, C. A safety study of oral xanthohumol administration and its influence on fertility in Sprague Dawley rats. Mol. Nutr. Food Res., 2005, 49(9), 861-867.
[http://dx.doi.org/10.1002/mnfr.200500089] [PMID: 16092070]
[127]
van Breemen, R.B.; Yuan, Y.; Banuvar, S.; Shulman, L.P.; Qiu, X.; Alvarenga, R.F.; Chen, S.N.; Dietz, B.M.; Bolton, J.L.; Pauli, G.F.; Krause, E.; Viana, M.; Nikolic, D. Pharmacokinetics of prenylated hop phenols in women following oral administration of a standardized extract of hops. Mol. Nutr. Food Res., 2014, 58(10), 1962-1969.
[http://dx.doi.org/10.1002/mnfr.201400245] [PMID: 25045111]
[128]
Avula, B.; Ganzera, M.; Warnick, J.E.; Feltenstein, M.W.; Sufka, K.J.; Khan, I.A. High-performance liquid chromatographic determination of xanthohumol in rat plasma, urine, and fecal samples. J. Chromatogr. Sci., 2004, 42(7), 378-382.
[http://dx.doi.org/10.1093/chromsci/42.7.378] [PMID: 15355578]
[129]
Legette, L.; Ma, L.; Reed, R.L.; Miranda, C.L.; Christensen, J.M.; Rodriguez-Proteau, R.; Stevens, J.F. Pharmacokinetics of xanthohumol and metabolites in rats after oral and intravenous administration. Mol. Nutr. Food Res., 2012, 56(3), 466-474.
[http://dx.doi.org/10.1002/mnfr.201100554] [PMID: 22147307]
[130]
Yuan, J.; Peng, G.; Xiao, G.; Yang, Z.; Huang, J.; Liu, Q.; Yang, Z.; Liu, D. Xanthohumol suppresses glioblastoma via modulation of Hexokinase 2 -mediated glycolysis. J. Cancer, 2020, 11(14), 4047-4058.
[http://dx.doi.org/10.7150/jca.33045] [PMID: 32368287]
[131]
Li, M.; Gao, F.; Yu, X.; Zhao, Q.; Zhou, L.; Liu, W.; Li, W. Promotion of ubiquitination-dependent survivin destruction contributes to xanthohumol- mediated tumor suppression and overcomes radioresistance in human oral squamous cell carcinoma. J. Exp. Clin. Cancer Res., 2020, 39(1), 88.
[http://dx.doi.org/10.1186/s13046-020-01593-z] [PMID: 32410646]
[132]
Liu, Y.; Gao, X.; Deeb, D.; Arbab, A.S.; Dulchavsky, S.A.; Gautam, S.C. Anticancer agent xanthohumol inhibits IL-2 induced signaling pathways involved in T cell proliferation. J. Exp. Ther. Oncol., 2012, 10(1), 1-8.
[PMID: 22946339]
[133]
Liu, M.; Yin, H.; Qian, X.; Dong, J.; Qian, Z.; Miao, J. Xanthohumol, a prenylated chalcone from hops, inhibits the viability and stemness of doxorubicin-resistant MCF-7/ADR cells. Molecules, 2016, 22(1), E36.
[http://dx.doi.org/10.3390/molecules22010036] [PMID: 28036030]
[134]
Yoo, Y.B.; Park, K.S.; Kim, J.B.; Kang, H.J.; Yang, J.H.; Lee, E.K.; Kim, H.Y. Xanthohumol inhibits cellular proliferation in a breast cancer cell line (MDA-MB231) through an intrinsic mitochondrial-dependent pathway. Indian J. Cancer, 2014, 51(4), 518-523.
[http://dx.doi.org/10.4103/0019-509X.175328] [PMID: 26842182]
[135]
Monteiro, R.; Calhau, C.; Silva, A.O.; Pinheiro-Silva, S.; Guerreiro, S.; Gärtner, F.; Azevedo, I.; Soares, R. Xanthohumol inhibits inflammatory factor production and angiogenesis in breast cancer xenografts. J. Cell. Biochem., 2008, 104(5), 1699-1707.
[http://dx.doi.org/10.1002/jcb.21738] [PMID: 18348194]
[136]
Dorn, C.; Weiss, T.S.; Heilmann, J.; Hellerbrand, C. Xanthohumol, a prenylated chalcone derived from hops, inhibits proliferation, migration and interleukin-8 expression of hepatocellular carcinoma cells. Int. J. Oncol., 2010, 36(2), 435-441.
[PMID: 20043079]
[137]
Saito, K.; Matsuo, Y.; Imafuji, H.; Okubo, T.; Maeda, Y.; Sato, T.; Shamoto, T.; Tsuboi, K.; Morimoto, M.; Takahashi, H.; Ishiguro, H.; Takiguchi, S. Xanthohumol inhibits angiogenesis by suppressing nuclear factor-κB activation in pancreatic cancer. Cancer Sci., 2018, 109(1), 132-140.
[http://dx.doi.org/10.1111/cas.13441] [PMID: 29121426]
[138]
Wang, Y.; Chen, Y.; Wang, J.; Chen, J.; Aggarwal, B.B.; Pang, X.; Liu, M. Xanthohumol, a prenylated chalcone derived from hops, suppresses cancer cell invasion through inhibiting the expression of CXCR4 chemokine receptor. Curr. Mol. Med., 2012, 12(2), 153-162.
[http://dx.doi.org/10.2174/156652412798889072] [PMID: 22172099]
[139]
Sastre-Serra, J.; Ahmiane, Y.; Roca, P.; Oliver, J.; Pons, D.G. Xanthohumol, a hop-derived prenylflavonoid present in beer, impairs mitochondrial functionality of SW620 colon cancer cells. Int. J. Food Sci. Nutr., 2019, 70(4), 396-404.
[http://dx.doi.org/10.1080/09637486.2018.1540558] [PMID: 30458656]
[140]
Mi, X.; Wang, C.; Sun, C.; Chen, X.; Huo, X.; Zhang, Y.; Li, G.; Xu, B.; Zhang, J.; Xie, J.; Wang, Z.; Li, J. Xanthohumol induces paraptosis of leukemia cells through p38 mitogen activated protein kinase signaling pathway. Oncotarget, 2017, 8(19), 31297-31304.
[http://dx.doi.org/10.18632/oncotarget.16185] [PMID: 28415750]
[141]
Deeb, D.; Gao, X.; Jiang, H.; Arbab, A.S.; Dulchavsky, S.A.; Gautam, S.C. Growth inhibitory and apoptosis-inducing effects of xanthohumol, a prenylated chalone present in hops, in human prostate cancer cells. Anticancer Res., 2010, 30(9), 3333-3339.
[PMID: 20944105]
[142]
Yang, J.Y.; Della-Fera, M.A.; Rayalam, S.; Baile, C.A. Enhanced effects of xanthohumol plus honokiol on apoptosis in 3T3-L1 adipocytes. Obesity (Silver Spring), 2008, 16(6), 1232-1238.
[http://dx.doi.org/10.1038/oby.2008.66] [PMID: 18369342]
[143]
Zhang, W.; Pan, Y.; Gou, P.; Zhou, C.; Ma, L.; Liu, Q.; Du, Y.; Yang, J.; Wang, Q. Effect of xanthohumol on Th1/Th2 balance in a breast cancer mouse model. Oncol. Rep., 2018, 39(1), 280-288.
[PMID: 29138867]
[144]
Liu, H.; Zhang, L.; Li, G.; Gao, Z. Xanthohumol protects against Azoxymethane-induced colorectal cancer in Sprague-Dawley rats. Environ. Toxicol., 2020, 35(2), 136-144.
[http://dx.doi.org/10.1002/tox.22849] [PMID: 31714664]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy