Abstract
Relapse after current treatment is one of the main limitations to the complete cure of leukemia, and a concept that leukemia stem cell (LSC) is the major cause of relapse has been proposed. LSCs are derived from normal hematopoietic stem cells (HSCs), residing at the apex of leukemia cells and hiding in the bone marrow (BM) niche to evade chemotherapy. Novel therapy is strongly needed based on the unique features of LSCs to directly target these cells. MicroRNAs (miRNAs), a class of small non-coding RNAs, are now known to play important roles on cancer stem cell maintenance and differentiation. Because of the ability of miRNAs to inactivate either specific genes or entire gene families, strategies based on differential expression levels of miRNAs in LSCs as dominant activators or suppressors of gene activity have emerged as promising new candidate approaches for eradicating LSCs. In this review, we highlight new findings regarding the roles of miRNAs in LSC maintenance of quiescence repression, self-renewal, surface marker targeting, and the LSCBM niche interaction. We also discuss recent advances and future challenges to use LSC specific miRNAs as potential therapeutic molecules in eradicating LSCs.
Keywords: Clinical implications, hematopoietic stem cells, leukemia stem cells, miRNAs, regulators, therapeutic molecules.