Abstract
Heart valves have long been considered exclusively passive structures that open and close in response to changes in transvalvular pressure during the cardiac cycle. Although this is partly true, recent evidence suggests that valves are far more sophisticated structures. Microscopic examination of heart valves reveals a complex network of endothelial cells, interstitial cells, an extracellular matrix and a rich network of intrinsic nerves. The distribution of these nerve networks varies between the four valves, but is remarkably conserved between species. The present review will focus mainly on aortic valve innervation for several reasons: it is most commonly involved in disease processes, it lies in a unique hemodynamic environment and is exposed to extreme mechanical forces. These nerves are likely to play a significant role in the modulation of aortic valve structure and function and its adaptation to different hemodynamic and humoral conditions. The objectives of this review are first to describe the anatomy of aortic valve innervation, then detail the functional significance of innervation to the valve and finally make the case for the clinical relevance of understanding the neural control of aortic valves and its potential pharmacologic implications.
Keywords: Aortic valve, nerves, mechanical properties, calcification
Current Vascular Pharmacology
Title: Neuronal Regulation of Aortic Valve Cusps
Volume: 7 Issue: 1
Author(s): Ismail El-Hamamsy, Magdi H. Yacoub and Adrian H. Chester
Affiliation:
Keywords: Aortic valve, nerves, mechanical properties, calcification
Abstract: Heart valves have long been considered exclusively passive structures that open and close in response to changes in transvalvular pressure during the cardiac cycle. Although this is partly true, recent evidence suggests that valves are far more sophisticated structures. Microscopic examination of heart valves reveals a complex network of endothelial cells, interstitial cells, an extracellular matrix and a rich network of intrinsic nerves. The distribution of these nerve networks varies between the four valves, but is remarkably conserved between species. The present review will focus mainly on aortic valve innervation for several reasons: it is most commonly involved in disease processes, it lies in a unique hemodynamic environment and is exposed to extreme mechanical forces. These nerves are likely to play a significant role in the modulation of aortic valve structure and function and its adaptation to different hemodynamic and humoral conditions. The objectives of this review are first to describe the anatomy of aortic valve innervation, then detail the functional significance of innervation to the valve and finally make the case for the clinical relevance of understanding the neural control of aortic valves and its potential pharmacologic implications.
Export Options
About this article
Cite this article as:
El-Hamamsy Ismail, Yacoub H. Magdi and Chester H. Adrian, Neuronal Regulation of Aortic Valve Cusps, Current Vascular Pharmacology 2009; 7 (1) . https://dx.doi.org/10.2174/157016109787354088
DOI https://dx.doi.org/10.2174/157016109787354088 |
Print ISSN 1570-1611 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-6212 |
Call for Papers in Thematic Issues
TREATMENT OF CARDIOVASCULAR DISEASE IN CHRONIC AND END STAGE KIDNEY DISEASE
Cardiovascular disease still remains the leading cause of death in Chronic and End Stage Kidney Disease, accounting for more than half of all deaths in dialysis patients. During the past decade, research has been focused on novel therapeutic agents that might delay or even reverse cardiovascular disease and vascular calcification, ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Clinical Molecular Imaging with PET Agents Other than 18F-FDG
Current Pharmaceutical Biotechnology Subject Index to Volume 10
Current Pharmaceutical Design Adhesion Molecules in Lung Cancer: Implications in the Pathogenesis and Management
Current Pharmaceutical Design Blockade of Insulin-Like Growth Factor Type-1 Receptor with Cixutumumab (IMC-A12): A Novel Approach to Treatment for Multiple Cancers
Current Drug Targets The Current Role of PET/CT in Radiotherapy Planning
Current Radiopharmaceuticals Chromogranin A and the Endothelial Barrier Function
Current Medicinal Chemistry Action Mechanism of Antihistamines and the New Antihistamines
Current Medicinal Chemistry - Anti-Inflammatory & Anti-Allergy Agents Peptides for Tumour Therapy and Diagnosis: Current Status and Future Directions
Current Medicinal Chemistry [177Lu]-DOTA0-Tyr3-Octreotate: A Potential Targeted Radiotherapeutic for the Treatment of Medulloblastoma
Current Radiopharmaceuticals Intestinal Transport as a Potential Determinant of Drug Bioavailability
Current Clinical Pharmacology Stress Related Neuroendocrine Influences in Ovarian Cancer
Current Cancer Therapy Reviews Management of Food-Induced Anaphylaxis: Unsolved Challenges
Current Clinical Pharmacology Inflammatory Process in Parkinsons Disease: Role for Cytokines
Current Pharmaceutical Design Promising Protective Effects of Chrysin in Cardiometabolic Diseases
Current Drug Targets Membrane Transporters as Determinants of the Pharmacology of Platinum Anticancer Drugs
Current Cancer Drug Targets Single-Photon Emission Computed Tomography Tracers for Predicting and Monitoring Cancer Therapy
Current Pharmaceutical Biotechnology Autoimmune Fibrotic Adverse Reactions in One-Year Treatment with Cabergoline for Women with Prolactinoma
Endocrine, Metabolic & Immune Disorders - Drug Targets Ghrelin as a Potential Anti-Obesity Target
Current Pharmaceutical Design Emerging Opportunities and Concerns for Drug Discovery at Serotonin 5-5-HT2B Receptors
Current Topics in Medicinal Chemistry Anti-VEGF Anticancer Drugs: Mind the Hypertension
Recent Advances in Cardiovascular Drug Discovery (Discontinued)