Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

The Potential Role of Non-coding RNAs in Regulating Ferroptosis in Cancer: Mechanisms and Application Prospects

Author(s): Ming-Yuan Cao, Zhen-Dong Zhang, Xin-Rui Hou and Xiao-Ping Wang*

Volume 24, Issue 16, 2024

Published on: 15 July, 2024

Page: [1182 - 1196] Pages: 15

DOI: 10.2174/0118715206322163240710112404

Price: $65

Abstract

Cancer is the second leading cause of death globally. Despite some successes, conventional cancer treatments are insufficient to address the growing problem of drug resistance in tumors and to achieve efficient treatment outcomes. Therefore, there is an urgent need to explore new therapeutic options. Ferroptosis, a type of iron- and reactive oxygen species-dependent regulated cell death, has been closely associated with cancer development and progression. Non-coding RNAs (ncRNAs) are a class of RNAs that do not code for proteins, and studies have demonstrated their involvement in the regulation of ferroptosis in cancer. This review aims to explore the molecular regulatory mechanisms of ncRNAs involved in ferroptosis in cancer and to emphasize the feasibility of ferroptosis and ncRNAs as novel therapeutic strategies for cancer. We conducted a systematic and extensive literature review using PubMed, Google Scholar, Web of Science, and various other sources to identify relevant studies on ferroptosis, ncRNAs, and cancer. A deeper understanding of ferroptosis and ncRNAs could facilitate the development of new cancer treatment strategies.

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Nave, O.P.; Hareli, S.; Elbaz, M.; Hayim Iluz, I.; Bunimovich-Mendrazitsky, S. BCG and IL − 2 model for bladder cancer treatment with fast and slow dynamics based on SPVF method—stability analysis. Math. Biosci. Eng., 2019, 16(5), 5346-5379.
[http://dx.doi.org/10.3934/mbe.2019267] [PMID: 31499716]
[3]
Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; Morrison, B., III; Stockwell, B.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5), 1060-1072.
[http://dx.doi.org/10.1016/j.cell.2012.03.042] [PMID: 22632970]
[4]
Yan, H.; Zou, T.; Tuo, Q.; Xu, S.; Li, H.; Belaidi, A.A.; Lei, P. Ferroptosis: mechanisms and links with diseases. Signal Transduct. Target. Ther., 2021, 6(1), 49.
[http://dx.doi.org/10.1038/s41392-020-00428-9] [PMID: 33536413]
[5]
Liu, X.; Chen, C.; Han, D.; Zhou, W.; Cui, Y.; Tang, X.; Xiao, C.; Wang, Y.; Gao, Y. SLC7A11/GPX4 inactivation-mediated ferroptosis contributes to the pathogenesis of triptolide-induced cardiotoxicity. Oxid. Med. Cell. Longev., 2022, 2022, 1-16.
[http://dx.doi.org/10.1155/2022/3192607] [PMID: 35757509]
[6]
Tang, D.; Chen, X.; Kang, R.; Kroemer, G. Ferroptosis: Molecular mechanisms and health implications. Cell Res., 2021, 31(2), 107-125.
[http://dx.doi.org/10.1038/s41422-020-00441-1] [PMID: 33268902]
[7]
Balihodzic, A.; Prinz, F.; Dengler, M.A.; Calin, G.A.; Jost, P.J.; Pichler, M. Non-coding RNAs and ferroptosis: Potential implications for cancer therapy. Cell Death Differ., 2022, 29(6), 1094-1106.
[http://dx.doi.org/10.1038/s41418-022-00998-x] [PMID: 35422492]
[8]
Kim, T.; Reitmair, A. Non-coding RNAs: Functional aspects and diagnostic utility in oncology. Int. J. Mol. Sci., 2013, 14(3), 4934-4968.
[http://dx.doi.org/10.3390/ijms14034934] [PMID: 23455466]
[9]
Zuo, Y.B.; Zhang, Y.F.; Zhang, R.; Tian, J.W.; Lv, X.B.; Li, R.; Li, S.P.; Cheng, M.D.; Shan, J.; Zhao, Z.; Xin, H. Ferroptosis in cancer progression: Role of noncoding RNAs. Int. J. Biol. Sci., 2022, 18(5), 1829-1843.
[http://dx.doi.org/10.7150/ijbs.66917] [PMID: 35342359]
[10]
Stockwell, B.R. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell, 2022, 185(14), 2401-2421.
[http://dx.doi.org/10.1016/j.cell.2022.06.003] [PMID: 35803244]
[11]
Altamura, S.; Marques, O.; Colucci, S.; Mertens, C.; Alikhanyan, K.; Muckenthaler, M.U. Regulation of iron homeostasis: Lessons from mouse models. Mol. Aspects Med., 2020, 75, 100872.
[http://dx.doi.org/10.1016/j.mam.2020.100872] [PMID: 32792212]
[12]
Zhao, L.; Zhou, X.; Xie, F.; Zhang, L.; Yan, H.; Huang, J.; Zhang, C.; Zhou, F.; Chen, J.; Zhang, L. Ferroptosis in cancer and cancer immunotherapy. Cancer Commun. (Lond.), 2022, 42(2), 88-116.
[http://dx.doi.org/10.1002/cac2.12250] [PMID: 35133083]
[13]
Li, J.; Cao, F.; Yin, H.; Huang, Z.; Lin, Z.; Mao, N.; Sun, B.; Wang, G. Ferroptosis: Past, present and future. Cell Death Dis., 2020, 11(2), 88.
[http://dx.doi.org/10.1038/s41419-020-2298-2] [PMID: 32015325]
[14]
Ryu, M.S.; Zhang, D.; Protchenko, O.; Shakoury-Elizeh, M.; Philpott, C.C. PCBP1 and NCOA4 regulate erythroid iron storage and heme biosynthesis. J. Clin. Invest., 2017, 127(5), 1786-1797.
[http://dx.doi.org/10.1172/JCI90519] [PMID: 28375153]
[15]
Li, K.; Chen, B.; Xu, A.; Shen, J.; Li, K.; Hao, K.; Hao, R.; Yang, W.; Jiang, W.; Zheng, Y.; Ge, F.; Wang, Z. TRIM7 modulates NCOA4-mediated ferritinophagy and ferroptosis in glioblastoma cells. Redox Biol., 2022, 56, 102451.
[http://dx.doi.org/10.1016/j.redox.2022.102451] [PMID: 36067704]
[16]
Camaschella, C.; Nai, A.; Silvestri, L. Iron metabolism and iron disorders revisited in the hepcidin era. Haematologica, 2020, 105(2), 260-272.
[http://dx.doi.org/10.3324/haematol.2019.232124] [PMID: 31949017]
[17]
Feng, H.; Schorpp, K.; Jin, J.; Yozwiak, C.E.; Hoffstrom, B.G.; Decker, A.M.; Rajbhandari, P.; Stokes, M.E.; Bender, H.G.; Csuka, J.M.; Upadhyayula, P.S.; Canoll, P.; Uchida, K.; Soni, R.K.; Hadian, K.; Stockwell, B.R. Transferrin receptor Is a specific ferroptosis marker. Cell Rep., 2020, 30(10), 3411-3423.e7.
[http://dx.doi.org/10.1016/j.celrep.2020.02.049] [PMID: 32160546]
[18]
Zhu, G.; Murshed, A.; Li, H.; Ma, J.; Zhen, N.; Ding, M.; Zhu, J.; Mao, S.; Tang, X.; Liu, L.; Sun, F.; Jin, L.; Pan, Q. O-GlcNAcylation enhances sensitivity to RSL3-induced ferroptosis via the YAP/TFRC pathway in liver cancer. Cell Death Discov., 2021, 7(1), 83.
[http://dx.doi.org/10.1038/s41420-021-00468-2] [PMID: 33863873]
[19]
Liu, J.; Ren, Z.; Yang, L.; Zhu, L. li, Y.; Bie, C.; Liu, H.; Ji, Y.; Chen, D.; Zhu, M.; Kuang, W. The NSUN5-FTH1/FTL pathway mediates ferroptosis in bone marrow-derived mesenchymal stem cells. Cell Death Discov., 2022, 8(1), 99.
[http://dx.doi.org/10.1038/s41420-022-00902-z] [PMID: 35249107]
[20]
Qin, X.; Zhang, J.; Wang, B.; Xu, G.; Yang, X.; Zou, Z.; Yu, C. Ferritinophagy is involved in the zinc oxide nanoparticles-induced ferroptosis of vascular endothelial cells. Autophagy, 2021, 17(12), 4266-4285.
[http://dx.doi.org/10.1080/15548627.2021.1911016] [PMID: 33843441]
[21]
Tang, Z.; Jiang, W.; Mao, M.; Zhao, J.; Chen, J.; Cheng, N. Deubiquitinase USP35 modulates ferroptosis in lung cancer via targeting ferroportin. Clin. Transl. Med., 2021, 11(4), e390.
[http://dx.doi.org/10.1002/ctm2.390] [PMID: 33931967]
[22]
Jiang, X.; Stockwell, B.R.; Conrad, M. Ferroptosis: mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol., 2021, 22(4), 266-282.
[http://dx.doi.org/10.1038/s41580-020-00324-8] [PMID: 33495651]
[23]
Manz, D.H.; Blanchette, N.L.; Paul, B.T.; Torti, F.M.; Torti, S.V. Iron and cancer: Recent insights. Ann. N. Y. Acad. Sci., 2016, 1368(1), 149-161.
[http://dx.doi.org/10.1111/nyas.13008] [PMID: 26890363]
[24]
Huang, Y.; Du, J.; Li, D.; He, W.; Liu, Z.; Liu, L.; Yang, X.; Cheng, X.; Chen, R.; Yang, Y. LASS2 suppresses metastasis in multiple cancers by regulating the ferroptosis signalling pathway through interaction with TFRC. Cancer Cell Int., 2024, 24(1), 87.
[http://dx.doi.org/10.1186/s12935-024-03275-8] [PMID: 38419028]
[25]
Zhao, L.; Miao, H.; Quan, M.; Wang, S.; Zhang, Y.; Zhou, H.; Zhang, X.; Lin, Z.; Piao, J. β-Lapachone induces ferroptosis of colorectal cancer cells via NCOA4-mediated ferritinophagy by activating JNK pathway. Chem. Biol. Interact., 2024, 389, 110866.
[http://dx.doi.org/10.1016/j.cbi.2024.110866] [PMID: 38218311]
[26]
Huang, Q.T.; Hu, Q.Q.; Wen, Z.F.; Li, Y.L. Iron oxide nanoparticles inhibit tumor growth by ferroptosis in diffuse large B-cell lymphoma. Am. J. Cancer Res., 2023, 13(2), 498-508.
[PMID: 36895978]
[27]
Kagan, V.E.; Mao, G.; Qu, F.; Angeli, J.P.F.; Doll, S.; Croix, C.S.; Dar, H.H.; Liu, B.; Tyurin, V.A.; Ritov, V.B.; Kapralov, A.A.; Amoscato, A.A.; Jiang, J.; Anthonymuthu, T.; Mohammadyani, D.; Yang, Q.; Proneth, B.; Klein-Seetharaman, J.; Watkins, S.; Bahar, I.; Greenberger, J.; Mallampalli, R.K.; Stockwell, B.R.; Tyurina, Y.Y.; Conrad, M.; Bayır, H. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol., 2017, 13(1), 81-90.
[http://dx.doi.org/10.1038/nchembio.2238] [PMID: 27842066]
[28]
Zheng, J.; Conrad, M. The Metabolic Underpinnings of Ferroptosis. Cell Metab., 2020, 32(6), 920-937.
[http://dx.doi.org/10.1016/j.cmet.2020.10.011] [PMID: 33217331]
[29]
Jiang, M.; Qiao, M.; Zhao, C.; Deng, J.; Li, X.; Zhou, C. Targeting ferroptosis for cancer therapy: Exploring novel strategies from its mechanisms and role in cancers. Transl. Lung Cancer Res., 2020, 9(4), 1569-1584.
[http://dx.doi.org/10.21037/tlcr-20-341] [PMID: 32953528]
[30]
He, G.N.; Bao, N.R.; Wang, S.; Xi, M.; Zhang, T.H.; Chen, F.S. Ketamine induces ferroptosis of liver cancer cells by targeting lncRNA PVT1/miR-214-3p/GPX4. Drug Des. Devel. Ther., 2021, 15, 3965-3978.
[http://dx.doi.org/10.2147/DDDT.S332847] [PMID: 34566408]
[31]
Yu, X.H.; Ren, X.H.; Liang, X.H.; Tang, Y.L. Roles of fatty acid metabolism in tumourigenesis: Beyond providing nutrition (Review). Mol. Med. Rep., 2018, 18(6), 5307-5316.
[http://dx.doi.org/10.3892/mmr.2018.9577] [PMID: 30365095]
[32]
Tang, Y.; Zhou, J.; Hooi, S.; Jiang, Y.M.; Lu, G.D. Fatty acid activation in carcinogenesis and cancer development: Essential roles of long chain acyl CoA synthetases (Review).. Oncol. Lett., 2018, 16(2), 1390-1396.
[http://dx.doi.org/10.3892/ol.2018.8843] [PMID: 30008815]
[33]
Cheng, J.; Fan, Y.Q.; Liu, B.H.; Zhou, H.; Wang, J.M.; Chen, Q.X. ACSL4 suppresses glioma cells proliferation via activating ferroptosis. Oncol. Rep., 2020, 43(1), 147-158.
[PMID: 31789401]
[34]
Feng, J.; Lu, P.; Zhu, G.; Hooi, S.C.; Wu, Y.; Huang, X.; Dai, H.; Chen, P.; Li, Z.; Su, W.; Han, C.; Ye, X.; Peng, T.; Zhou, J.; Lu, G. ACSL4 is a predictive biomarker of sorafenib sensitivity in hepatocellular carcinoma. Acta Pharmacol. Sin., 2021, 42(1), 160-170.
[http://dx.doi.org/10.1038/s41401-020-0439-x] [PMID: 32541921]
[35]
Liu, J.; Kang, R.; Tang, D. Signaling pathways and defense mechanisms of ferroptosis. FEBS J., 2022, 289(22), 7038-7050.
[http://dx.doi.org/10.1111/febs.16059] [PMID: 34092035]
[36]
Lei, G.; Mao, C.; Yan, Y.; Zhuang, L.; Gan, B. Ferroptosis, radiotherapy, and combination therapeutic strategies. Protein Cell, 2021, 12(11), 836-857.
[http://dx.doi.org/10.1007/s13238-021-00841-y] [PMID: 33891303]
[37]
Kuang, F.; Liu, J.; Tang, D.; Kang, R. Oxidative Damage and Antioxidant Defense in Ferroptosis. Front. Cell Dev. Biol., 2020, 8, 586578.
[http://dx.doi.org/10.3389/fcell.2020.586578] [PMID: 33043019]
[38]
Li, F.J.; Long, H.Z.; Zhou, Z.W.; Luo, H.Y.; Xu, S.G.; Gao, L.C.; System, X. System Xc−/GSH/GPX4 axis: An important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy. Front. Pharmacol., 2022, 13, 910292.
[http://dx.doi.org/10.3389/fphar.2022.910292] [PMID: 36105219]
[39]
Faraji, P.; Borchert, A.; Ahmadian, S.; Kuhn, H. Butylated hydroxytoluene (BHT) protects SH-SY5Y neuroblastoma cells from ferroptotic cell death: Insights from in vitro and in vivo studies. Antioxidants, 2024, 13(2), 242.
[http://dx.doi.org/10.3390/antiox13020242] [PMID: 38397840]
[40]
Zhang, Y.; Song, Q.; Zhang, Y.; Xiao, J.; Deng, X.; Xing, X.; Hu, H.; Zhang, Y. Iron-based nanovehicle delivering Fin56 for hyperthermia-boosted ferroptosis therapy against osteosarcoma. Int. J. Nanomedicine, 2024, 19, 91-107.
[http://dx.doi.org/10.2147/IJN.S441112] [PMID: 38192634]
[41]
Wang, Z.; Zhou, C.; Zhang, Y.; Tian, X.; Wang, H.; Wu, J.; Jiang, S. From synergy to resistance: Navigating the complex relationship between sorafenib and ferroptosis in hepatocellular carcinoma. Biomed. Pharmacother., 2024, 170, 116074.
[42]
Koppula, P.; Lei, G.; Zhang, Y.; Yan, Y.; Mao, C.; Kondiparthi, L.; Shi, J.; Liu, X.; Horbath, A.; Das, M.; Li, W.; Poyurovsky, M.V.; Olszewski, K.; Gan, B. A targetable CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1 inactive lung cancers. Nat. Commun., 2022, 13(1), 2206.
[http://dx.doi.org/10.1038/s41467-022-29905-1] [PMID: 35459868]
[43]
Kraft, V.A.N.; Bezjian, C.T.; Pfeiffer, S.; Ringelstetter, L.; Müller, C.; Zandkarimi, F.; Merl-Pham, J.; Bao, X.; Anastasov, N.; Kössl, J.; Brandner, S.; Daniels, J.D.; Schmitt-Kopplin, P.; Hauck, S.M.; Stockwell, B.R.; Hadian, K.; Schick, J.A. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent. Sci., 2020, 6(1), 41-53.
[http://dx.doi.org/10.1021/acscentsci.9b01063] [PMID: 31989025]
[44]
Liu, D.; Liang, C.; Huang, B.; Zhuang, X.; Cui, W.; Yang, L.; Yang, Y.; Zhang, Y.; Fu, X.; Zhang, X.; Du, L.; Gu, W.; Wang, X.; Yin, C.; Chai, R.; Chu, B. Tryptophan metabolism acts as a new anti‐ferroptotic pathway to mediate tumor growth. Adv. Sci. (Weinh.), 2023, 10(6), 2204006.
[http://dx.doi.org/10.1002/advs.202204006] [PMID: 36627132]
[45]
Gao, M.; Monian, P.; Quadri, N.; Ramasamy, R.; Jiang, X. Glutaminolysis and transferrin regulate ferroptosis. Mol. Cell, 2015, 59(2), 298-308.
[http://dx.doi.org/10.1016/j.molcel.2015.06.011] [PMID: 26166707]
[46]
Zhang, X.; Wang, L.; Li, H.; Zhang, L.; Zheng, X.; Cheng, W. Crosstalk between noncoding RNAs and ferroptosis: new dawn for overcoming cancer progression. Cell Death Dis., 2020, 11(7), 580.
[http://dx.doi.org/10.1038/s41419-020-02772-8] [PMID: 32709863]
[47]
Pan, C.; Chen, G.; Zhao, X.; Xu, X.; Liu, J. lncRNA BBOX1-AS1 silencing inhibits esophageal squamous cell cancer progression by promoting ferroptosis via miR-513a-3p/SLC7A11 axis. Eur. J. Pharmacol., 2022, 934, 175317.
[http://dx.doi.org/10.1016/j.ejphar.2022.175317] [PMID: 36216119]
[48]
Lin, Z.; Song, J.; Gao, Y.; Huang, S.; Dou, R.; Zhong, P.; Huang, G.; Han, L.; Zheng, J.; Zhang, X.; Wang, S.; Xiong, B. Hypoxia-induced HIF-1α/lncRNA-PMAN inhibits ferroptosis by promoting the cytoplasmic translocation of ELAVL1 in peritoneal dissemination from gastric cancer. Redox Biol., 2022, 52, 102312.
[http://dx.doi.org/10.1016/j.redox.2022.102312] [PMID: 35447413]
[49]
Zhang, H.; Deng, T.; Liu, R.; Ning, T.; Yang, H.; Liu, D.; Zhang, Q.; Lin, D.; Ge, S.; Bai, M.; Wang, X.; Zhang, L.; Li, H.; Yang, Y.; Ji, Z.; Wang, H.; Ying, G.; Ba, Y. CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol. Cancer, 2020, 19(1), 43.
[http://dx.doi.org/10.1186/s12943-020-01168-8] [PMID: 32106859]
[50]
Toden, S.; Zumwalt, T.J.; Goel, A. Non-coding RNAs and potential therapeutic targeting in cancer. Biochim. Biophys. Acta Rev. Cancer, 2021, 1875(1), 188491.
[http://dx.doi.org/10.1016/j.bbcan.2020.188491] [PMID: 33316377]
[51]
Babu, K.R.; Muckenthaler, M.U. miR-148a regulates expression of the transferrin receptor 1 in hepatocellular carcinoma. Sci. Rep., 2019, 9(1), 1518.
[http://dx.doi.org/10.1038/s41598-018-35947-7] [PMID: 30728365]
[52]
Kindrat, I.; Tryndyak, V.; de Conti, A.; Shpyleva, S.; Mudalige, T.K.; Kobets, T.; Erstenyuk, A.M.; Beland, F.A.; Pogribny, I.P. MicroRNA-152-mediated dysregulation of hepatic transferrin receptor 1 in liver carcinogenesis. Oncotarget, 2016, 7(2), 1276-1287.
[http://dx.doi.org/10.18632/oncotarget.6004] [PMID: 26657500]
[53]
Fu, Y.; Lin, L.; Xia, L. MiR-107 function as a tumor suppressor gene in colorectal cancer by targeting transferrin receptor 1. Cell. Mol. Biol. Lett., 2019, 24(1), 31.
[http://dx.doi.org/10.1186/s11658-019-0155-z] [PMID: 31131011]
[54]
Hamara, K.; Bielecka-Kowalska, A.; Przybylowska-Sygut, K.; Sygut, A.; Dziki, A.; Szemraj, J. Alterations in expression profile of iron-related genes in colorectal cancer. Mol. Biol. Rep., 2013, 40(10), 5573-5585.
[http://dx.doi.org/10.1007/s11033-013-2659-3] [PMID: 24078156]
[55]
Chekhun, V.F.; Lukyanova, N.A.T.A.L.I.A.Y.; Burlaka, A.P.; Bezdenezhnykh, N.A.; Shpyleva, S.; Tryndyak, V.P.; Beland, F.A.; Pogribny, I.P. Iron metabolism disturbances in the MCF-7 human breast cancer cells with acquired resistance to doxorubicin and cisplatin. Int. J. Oncol., 2013, 43(5), 1481-1486.
[http://dx.doi.org/10.3892/ijo.2013.2063] [PMID: 23969999]
[56]
Zhang, R.; Pan, T.; Xiang, Y.; Zhang, M.; Xie, H.; Liang, Z.; Chen, B.; Xu, C.; Wang, J.; Huang, X.; Zhu, Q.; Zhao, Z.; Gao, Q.; Wen, C.; Liu, W.; Ma, W.; Feng, J.; Sun, X.; Duan, T.; Lai-Han Leung, E.; Xie, T.; Wu, Q.; Sui, X. Curcumenol triggered ferroptosis in lung cancer cells via lncRNA H19/miR-19b-3p/FTH1 axis. Bioact. Mater., 2022, 13, 23-36.
[http://dx.doi.org/10.1016/j.bioactmat.2021.11.013] [PMID: 35224289]
[57]
Lu, M.; Huang, J.; Deng, C.; Guo, T.; Chen, X.; Chen, P.; Du, S. Cinobufotalin induces ferroptosis to suppress lung cancer cell growth by lncRNA LINC00597/hsa-miR-367-3p/TFRC pathway via resibufogenin. Anticancer. Agents Med. Chem., 2023, 23(6), 717-725.
[http://dx.doi.org/10.2174/1871520622666221010092922] [PMID: 36221890]
[58]
He, M.; Wang, Y.; Xie, J.; Pu, J.; Shen, Z.; Wang, A.; Li, T.; Wang, T.; Li, G.; Liu, Y.; Mei, Z.; Ren, Z.; Wang, W.; Liu, X.; Hong, J.; Liu, Q.; Lei, H.; He, X.; Du, W.; Yuan, Y.; Yang, L. M7G modification of FTH1 and pri-miR-26a regulates ferroptosis and chemotherapy resistance in osteosarcoma. Oncogene, 2024, 43(5), 341-353.
[http://dx.doi.org/10.1038/s41388-023-02882-5] [PMID: 38040806]
[59]
Zheng, S.; Hu, L.; Song, Q.; Shan, Y.; Yin, G.; Zhu, H.; Kong, W.; Zhou, C. miR-545 promotes colorectal cancer by inhibiting transferring in the non-normal ferroptosis signaling. Aging (Albany NY), 2021, 13(24), 26137-26147.
[http://dx.doi.org/10.18632/aging.203801] [PMID: 34954694]
[60]
Yang, G.; Pan, Q.; Lu, Y.; Zhu, J.; Gou, X. miR-29a-5p modulates ferroptosis by targeting ferritin heavy chain FTH1 in prostate cancer. Biochem. Biophys. Res. Commun., 2023, 652, 6-13.
[http://dx.doi.org/10.1016/j.bbrc.2023.02.030] [PMID: 36806086]
[61]
Zhu, C.; Song, Z.; Chen, Z.; Lin, T.; Lin, H.; Xu, Z.; Ai, F.; Zheng, S. MicroRNA-4735-3p facilitates ferroptosis in clear Cell renal cell carcinoma by targeting SLC40A1. Anal. Cell. Pathol. (Amst.), 2022, 2022, 1-12.
[http://dx.doi.org/10.1155/2022/4213401] [PMID: 35646516]
[62]
Xu, P.; Ge, F.H.; Li, W.X.; Xu, Z.; Wang, X.L.; Shen, J.L.; Xu, A.B.; Hao, R.R. MicroRNA-147a targets SLC40A1 to induce ferroptosis in human glioblastoma. Anal. Cell. Pathol. (Amst.), 2022, 2022, 1-14.
[http://dx.doi.org/10.1155/2022/2843990] [PMID: 35942174]
[63]
Chen, X.; Kang, R.; Kroemer, G.; Tang, D. Broadening horizons: the role of ferroptosis in cancer. Nat. Rev. Clin. Oncol., 2021, 18(5), 280-296.
[http://dx.doi.org/10.1038/s41571-020-00462-0] [PMID: 33514910]
[64]
Ma, L.L.; Liang, L.; Zhou, D.; Wang, S.W. Tumor suppressor miR-424-5p abrogates ferroptosis in ovarian cancer through targeting ACSL4. Neoplasma, 2021, 68(1), 165-173.
[http://dx.doi.org/10.4149/neo_2020_200707N705] [PMID: 33038905]
[65]
Qi, R.; Bai, Y.; Li, K.; Liu, N.; Xu, Y.; Dal, E.; Wang, Y.; Lin, R.; Wang, H.; Liu, Z.; Li, X.; Wang, X.; Shi, B. Cancer-associated fibroblasts suppress ferroptosis and induce gemcitabine resistance in pancreatic cancer cells by secreting exosome-derived ACSL4-targeting miRNAs. Drug Resistance Updates. Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy, 2023, 68, 100960.
[66]
Wang, W.; Wang, T.; Zhang, Y.; Deng, T.; Zhang, H.; Ba, Y. Gastric cancer secreted miR-214-3p inhibits the anti-angiogenesis effect of apatinib by suppressing ferroptosis in vascular endothelial cells. Oncol. Res., 2024, 32(3), 489-502.
[http://dx.doi.org/10.32604/or.2023.046676] [PMID: 38370339]
[67]
Yang, H.; Sun, W.; Bi, T.; Sun, J.; Lu, Z.; Li, J.; Wei, H. ZNF8-miR-552-5p axis modulates ACSL4-mediated ferroptosis in hepatocellular carcinoma. DNA Cell Biol., 2023, 42(6), 336-347.
[http://dx.doi.org/10.1089/dna.2022.0582] [PMID: 37126948]
[68]
Mashima, R.; Okuyama, T. The role of lipoxygenases in pathophysiology; new insights and future perspectives. Redox Biol., 2015, 6, 297-310.
[http://dx.doi.org/10.1016/j.redox.2015.08.006] [PMID: 26298204]
[69]
Tomita, K.; Nagasawa, T.; Kuwahara, Y.; Torii, S.; Igarashi, K.; Roudkenar, M.H.; Roushandeh, A.M.; Kurimasa, A.; Sato, T. MiR-7-5p Is involved in ferroptosis signaling and radioresistance thru the generation of ROS in radioresistant HeLa and SAS cell lines. Int. J. Mol. Sci., 2021, 22(15), 8300.
[http://dx.doi.org/10.3390/ijms22158300] [PMID: 34361070]
[70]
Yang, X.; Liu, J.; Wang, C.; Cheng, K.K.; Xu, H.; Li, Q.; Hua, T.; Jiang, X.; Sheng, L.; Mao, J.; Liu, Z. miR-18a promotes glioblastoma development by down-regulating ALOXE3-mediated ferroptotic and anti-migration activities. Oncogenesis, 2021, 10(2), 15.
[http://dx.doi.org/10.1038/s41389-021-00304-3] [PMID: 33579899]
[71]
Gong, H.; Li, Z.; Wu, Z.; Lian, G.; Su, Z. Modulation of ferroptosis by non coding RNAs in cancers: Potential biomarkers for cancer diagnose and therapy. Pathol. Res. Pract., 2024, 253, 155042.
[http://dx.doi.org/10.1016/j.prp.2023.155042] [PMID: 38184963]
[72]
Shao, C.J.; Zhou, H.L.; Gao, X.Z.; Xu, C.F. Downregulation of miR-221–3p promotes the ferroptosis in gastric cancer cells via upregulation of ATF3 to mediate the transcription inhibition of GPX4 and HRD1. Transl. Oncol., 2023, 32, 101649.
[http://dx.doi.org/10.1016/j.tranon.2023.101649] [PMID: 36947996]
[73]
Yu, R.; Zhou, Y.; Shi, S.; Wang, X.; Huang, S.; Ren, Y. Icariside II induces ferroptosis in renal cell carcinoma cells by regulating the miR-324-3p/GPX4 axis. Phytomedicine, 2022, 102, 154182.
[http://dx.doi.org/10.1016/j.phymed.2022.154182] [PMID: 35636172]
[74]
Hou, Y.; Cai, S.; Yu, S.; Lin, H. Metformin induces ferroptosis by targeting miR-324-3p/GPX4 axis in breast cancer. Acta Biochim. Biophys. Sin. (Shanghai), 2021, 53(3), 333-341.
[http://dx.doi.org/10.1093/abbs/gmaa180] [PMID: 33522578]
[75]
Deng, S.; Wu, D.; Li, L.; Liu, T.; Zhang, T.; Li, J.; Yu, Y.; He, M.; Zhao, Y.Y.; Han, R.; Xu, Y. miR-324-3p reverses cisplatin resistance by inducing GPX4-mediated ferroptosis in lung adenocarcinoma cell line A549. Biochem. Biophys. Res. Commun., 2021, 549, 54-60.
[http://dx.doi.org/10.1016/j.bbrc.2021.02.077] [PMID: 33662669]
[76]
Han, B.; Liu, Y.; Zhang, Q.; Liang, L. Propofol decreases cisplatin resistance of non-small cell lung cancer by inducing GPX4-mediated ferroptosis through the miR-744-5p/miR-615-3p axis. J. Proteomics, 2023, 274, 104777.
[http://dx.doi.org/10.1016/j.jprot.2022.104777] [PMID: 36427803]
[77]
Hu, Z.; Yin, Y.; Jiang, J.; Yan, C.; Wang, Y.; Wang, D.; Li, L. Exosomal miR-142-3p secreted by hepatitis B virus (HBV)-hepatocellular carcinoma (HCC) cells promotes ferroptosis of M1-type macrophages through SLC3A2 and the mechanism of HCC progression. J. Gastrointest. Oncol., 2022, 13(2), 754-767.
[http://dx.doi.org/10.21037/jgo-21-916] [PMID: 35557596]
[78]
Ni, H.; Qin, H.; Sun, C.; Liu, Y.; Ruan, G.; Guo, Q.; Xi, T.; Xing, Y.; Zheng, L. MiR-375 reduces the stemness of gastric cancer cells through triggering ferroptosis. Stem Cell Res. Ther., 2021, 12(1), 325.
[http://dx.doi.org/10.1186/s13287-021-02394-7] [PMID: 34090492]
[79]
Elrebehy, M.A.; Abdelghany, T.M.; Elshafey, M.M.; Gomaa, M.H.; Doghish, A.S. miR-509–5p promotes colorectal cancer cell ferroptosis by targeting SLC7A11. Pathol. Res. Pract., 2023, 247, 154557.
[http://dx.doi.org/10.1016/j.prp.2023.154557] [PMID: 37229918]
[80]
Sun, D.; Li, Y.C.; Zhang, X.Y. Lidocaine promoted ferroptosis by targeting miR-382-5p/SLC7A11 axis in ovarian and breast cancer. Front. Pharmacol., 2021, 12, 681223.
[http://dx.doi.org/10.3389/fphar.2021.681223] [PMID: 34122108]
[81]
Yadav, P.; Sharma, P.; Sundaram, S.; Venkatraman, G.; Bera, A.K.; Karunagaran, D. SLC7A11/xCT is a target of miR-5096 and its restoration partially rescues miR-5096-mediated ferroptosis and anti-tumor effects in human breast cancer cells. Cancer Lett., 2021, 522, 211-224.
[http://dx.doi.org/10.1016/j.canlet.2021.09.033] [PMID: 34571083]
[82]
Zhu, J.H.; De Mello, R.A.; Yan, Q.L.; Wang, J.W.; Chen, Y.; Ye, Q.H.; Wang, Z.J.; Tang, H.J.; Huang, T. MiR-139-5p/SLC7A11 inhibits the proliferation, invasion and metastasis of pancreatic carcinoma via PI3K/Akt signaling pathway. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(6), 165747.
[http://dx.doi.org/10.1016/j.bbadis.2020.165747] [PMID: 32109492]
[83]
Lu, X.; Kang, N.; Ling, X.; Pan, M.; Du, W.; Gao, S. MiR-27a-3p promotes non-small cell lung cancer through SLC7A11-mediated-ferroptosis. Front. Oncol., 2021, 11, 759346.
[http://dx.doi.org/10.3389/fonc.2021.759346] [PMID: 34722314]
[84]
Luo, M.; Wu, L.; Zhang, K.; Wang, H.; Zhang, T.; Gutierrez, L.; O’Connell, D.; Zhang, P.; Li, Y.; Gao, T.; Ren, W.; Yang, Y. miR-137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma. Cell Death Differ., 2018, 25(8), 1457-1472.
[http://dx.doi.org/10.1038/s41418-017-0053-8] [PMID: 29348676]
[85]
Zhang, K.; Wu, L.; Zhang, P.; Luo, M.; Du, J.; Gao, T.; O’Connell, D.; Wang, G.; Wang, H.; Yang, Y. miR‐9 regulates ferroptosis by targeting glutamic‐oxaloacetic transaminase GOT1 in melanoma. Mol. Carcinog., 2018, 57(11), 1566-1576.
[http://dx.doi.org/10.1002/mc.22878] [PMID: 30035324]
[86]
Song, Z.; Jia, G.; Ma, P.; Cang, S. Exosomal miR-4443 promotes cisplatin resistance in non-small cell lung carcinoma by regulating FSP1 m6A modification-mediated ferroptosis. Life Sci., 2021, 276, 119399.
[http://dx.doi.org/10.1016/j.lfs.2021.119399] [PMID: 33781830]
[87]
Statello, L.; Guo, C.J.; Chen, L.L.; Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol., 2021, 22(2), 96-118.
[http://dx.doi.org/10.1038/s41580-020-00315-9] [PMID: 33353982]
[88]
Luo, W.; Wang, J.; Xu, W.; Ma, C.; Wan, F.; Huang, Y.; Yao, M.; Zhang, H.; Qu, Y.; Ye, D.; Zhu, Y. LncRNA RP11-89 facilitates tumorigenesis and ferroptosis resistance through PROM2-activated iron export by sponging miR-129-5p in bladder cancer. Cell Death Dis., 2021, 12(11), 1043.
[http://dx.doi.org/10.1038/s41419-021-04296-1] [PMID: 34728613]
[89]
Luo, Y.; Huang, S.; Wei, J.; Zhou, H.; Wang, W.; Yang, J.; Deng, Q.; Wang, H.; Fu, Z. Long noncoding RNA LINC01606 protects colon cancer cells from ferroptotic cell death and promotes stemness by SCD1–Wnt/β‐catenin–TFE3 feedback loop signalling. Clin. Transl. Med., 2022, 12(4), e752.
[http://dx.doi.org/10.1002/ctm2.752] [PMID: 35485210]
[90]
Jiang, X.; Guo, S.; Zhang, Y.; Zhao, Y.; Li, X.; Jia, Y.; Xu, Y.; Ma, B. LncRNA NEAT1 promotes docetaxel resistance in prostate cancer by regulating ACSL4 via sponging miR-34a-5p and miR-204-5p. Cell. Signal., 2020, 65, 109422.
[http://dx.doi.org/10.1016/j.cellsig.2019.109422] [PMID: 31672604]
[91]
Li, X.; Li, Y.; Lian, P. lv, Q.; Liu, F. Silencing lncRNA HCG18 regulates GPX4-inhibited ferroptosis by adsorbing miR-450b-5p to avert sorafenib resistance in hepatocellular carcinoma. Hum. Exp. Toxicol., 2023, 42.
[http://dx.doi.org/10.1177/09603271221142818] [PMID: 36786348]
[92]
Lei, S.; Cao, W.; Zeng, Z.; Zhang, Z.; Jin, B.; Tian, Q.; Wu, Y.; Zhang, T.; Li, D.; Hu, C.; Lan, J.; Zhang, J.; Chen, T. JUND/linc00976 promotes cholangiocarcinoma progression and metastasis, inhibits ferroptosis by regulating the miR-3202/GPX4 axis. Cell Death Dis., 2022, 13(11), 967.
[http://dx.doi.org/10.1038/s41419-022-05412-5] [PMID: 36400758]
[93]
Ma, Q.; Dai, X.; Lu, W.; Qu, X.; Liu, N.; Zhu, C. Silencing long non-coding RNA MEG8 inhibits the proliferation and induces the ferroptosis of hemangioma endothelial cells by regulating miR-497-5p/NOTCH2 axis. Biochem. Biophys. Res. Commun., 2021, 556, 72-78.
[http://dx.doi.org/10.1016/j.bbrc.2021.03.132] [PMID: 33839417]
[94]
Li, Y.; Zhu, H.C.; Du, Y.; Zhao, H.; Wang, L. Silencing lncRNA SLC16A1-AS1 induced ferroptosis in renal cell carcinoma through miR-143-3p/SLC7A11 signaling. Technol. Cancer Res. Treat., 2022, 21.
[http://dx.doi.org/10.1177/15330338221077803] [PMID: 35167383]
[95]
Jiang, X.; Guo, S.; Xu, M.; Ma, B.; Liu, R.; Xu, Y.; Zhang, Y. TFAP2C-mediated lncRNA PCAT1 inhibits ferroptosis in docetaxel-resistant prostate cancer through c-Myc/miR-25-3p/SLC7A11 signaling. Front. Oncol., 2022, 12, 862015.
[http://dx.doi.org/10.3389/fonc.2022.862015] [PMID: 35402284]
[96]
Liu, L.; Su, S.; Ye, D.; Yu, Z.; Lu, W.; Li, X. Long non-coding RNA OGFRP1 regulates cell proliferation and ferroptosis by miR-299-3p/SLC38A1 axis in lung cancer. Anticancer Drugs, 2022, 33(9), 826-839.
[http://dx.doi.org/10.1097/CAD.0000000000001328] [PMID: 36066402]
[97]
Kang, R.; Kroemer, G.; Tang, D. The tumor suppressor protein p53 and the ferroptosis network. Free Radic. Biol. Med., 2019, 133, 162-168.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.05.074] [PMID: 29800655]
[98]
Mao, C.; Wang, X.; Liu, Y.; Wang, M.; Yan, B.; Jiang, Y.; Shi, Y.; Shen, Y.; Liu, X.; Lai, W.; Yang, R.; Xiao, D.; Cheng, Y.; Liu, S.; Zhou, H.; Cao, Y.; Yu, W.; Muegge, K.; Yu, H.; Tao, Y.A. G3BP1-interacting lncRNA promotes ferroptosis and apoptosis in cancer via nuclear sequestration of p53. Cancer Res., 2018, 78(13), 3484-3496.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-3454] [PMID: 29588351]
[99]
Fu, H.; Zhang, Z.; Li, D.; Lv, Q.; Chen, S.; Zhang, Z.; Wu, M. LncRNA Pelaton, a ferroptosis suppressor and prognositic sigNATURE for GBM. Front. Oncol., 2022, 12, 817737.
[http://dx.doi.org/10.3389/fonc.2022.817737] [PMID: 35574340]
[100]
Han, Y.; Gao, X.; Wu, N.; Jin, Y.; Zhou, H.; Wang, W.; Liu, H.; Chu, Y.; Cao, J.; Jiang, M.; Yang, S.; Shi, Y.; Xie, X.; Chen, F.; Han, Y.; Qin, W.; Xu, B.; Liang, J. Long noncoding RNA LINC00239 inhibits ferroptosis in colorectal cancer by binding to Keap1 to stabilize Nrf2. Cell Death Dis., 2022, 13(8), 742.
[http://dx.doi.org/10.1038/s41419-022-05192-y] [PMID: 36038548]
[101]
Zheng, J.; Zhang, Q.; Zhao, Z.; Qiu, Y.; Zhou, Y.; Wu, Z.; Jiang, C.; Wang, X.; Jiang, X. Epigenetically silenced lncRNA SNAI3-AS1 promotes ferroptosis in glioma via perturbing the m6A-dependent recognition of Nrf2 mRNA mediated by SND1. J. Exp. Clin. Cancer Res., 2023, 42(1), 127.
[http://dx.doi.org/10.1186/s13046-023-02684-3] [PMID: 37202791]
[102]
Zhang, B.; Bao, W.; Zhang, S.; Chen, B.; Zhou, X.; Zhao, J.; Shi, Z.; Zhang, T.; Chen, Z.; Wang, L.; Zheng, X.; Chen, G.; Wang, Y. LncRNA HEPFAL accelerates ferroptosis in hepatocellular carcinoma by regulating SLC7A11 ubiquitination. Cell Death Dis., 2022, 13(8), 734.
[http://dx.doi.org/10.1038/s41419-022-05173-1] [PMID: 36008384]
[103]
Li, H.; Wei, Y.; Wang, J.; Yao, J.; Zhang, C.; Yu, C.; Tang, Y.; Zhu, D.; Yang, J.; Zhou, J. Long noncoding RNA LINC00578 inhibits ferroptosis in pancreatic cancer via regulating SLC7A11 ubiquitination. Oxid. Med. Cell. Longev., 2023, 2023, 1-17.
[http://dx.doi.org/10.1155/2023/1744102] [PMID: 36846713]
[104]
Kristensen, L.S.; Hansen, T.B.; Venø, M.T.; Kjems, J. Circular RNAs in cancer: opportunities and challenges in the field. Oncogene, 2018, 37(5), 555-565.
[http://dx.doi.org/10.1038/onc.2017.361] [PMID: 28991235]
[105]
Verduci, L.; Tarcitano, E.; Strano, S.; Yarden, Y.; Blandino, G. CircRNAs: role in human diseases and potential use as biomarkers. Cell Death Dis., 2021, 12(5), 468.
[http://dx.doi.org/10.1038/s41419-021-03743-3] [PMID: 33976116]
[106]
Ou, R.; Lu, S.; Wang, L.; Wang, Y.; Lv, M.; Li, T.; Xu, Y.; Lu, J.; Ge, R. Circular RNA circLMO1 suppresses cervical cancer growth and metastasis by triggering miR-4291/ACSL4-mediated ferroptosis. Front. Oncol., 2022, 12, 858598.
[http://dx.doi.org/10.3389/fonc.2022.858598] [PMID: 35321435]
[107]
Liu, Y.; Li, J. Circular RNA 0016142 knockdown induces ferroptosis in hepatocellular carcinoma cells via modulation of the microRNA-188-3p/glutathione peroxidase 4 axis. Biochem. Genet., 2024, 62(1), 333-351.
[http://dx.doi.org/10.1007/s10528-023-10417-6] [PMID: 37344692]
[108]
Li, Z.; Luo, Y.; Wang, C.; Han, D.; Sun, W. Circular RNA circBLNK promotes osteosarcoma progression and inhibits ferroptosis in osteosarcoma cells by sponging miR 188 3p and regulating GPX4 expression. Oncol. Rep., 2023, 50(5), 192.
[http://dx.doi.org/10.3892/or.2023.8629] [PMID: 37711054]
[109]
Tan, Y.R.; Jiang, B.H.; Feng, W.J.; He, Z.L.; Jiang, Y.L.; Xun, Y.; Wu, X.P.; Li, Y.H.; Zhu, H.B. Circ0060467 sponges miR-6805 to promote hepatocellular carcinoma progression through regulating AIFM2 and GPX4 expression. Aging (Albany NY), 2024, 16(2), 1796-1807.
[http://dx.doi.org/10.18632/aging.205460] [PMID: 38244593]
[110]
Li, Z.; Fan, M.; Zhou, Z.; Sang, X. Circ_0082374 promotes the tumorigenesis and suppresses ferroptosis in non-small cell lung cancer by up-regulating GPX4 through sequestering miR-491-5p. Mol. Biotechnol., 2024.
[http://dx.doi.org/10.1007/s12033-024-01059-z] [PMID: 38438754]
[111]
Ma, Y.; Gao, J.; Guo, H. Circ_0000140 alters miR-527/SLC7A11-mediated ferroptosis to influence oral squamous cell carcinoma cell resistance to DDP. Pharm. Genomics Pers. Med., 2023, 16, 1079-1089.
[http://dx.doi.org/10.2147/PGPM.S426205] [PMID: 38105907]
[112]
Li, Q.; Li, K.; Guo, Q.; Yang, T. CIRCRNA CIRCSTIL inhibits ferroptosis in colorectal cancer via MIR ‐431/SLC7A11 axis. Environ. Toxicol., 2023, 38(5), 981-989.
[http://dx.doi.org/10.1002/tox.23670] [PMID: 36840697]
[113]
Jiang, Y.; Zhao, J.; Li, R.; Liu, Y.; Zhou, L.; Wang, C.; Lv, C.; Gao, L.; Cui, D. CircLRFN5 inhibits the progression of glioblastoma via PRRX2/GCH1 mediated ferroptosis. J. Exp. Clin. Cancer Res., 2022, 41(1), 307.
[http://dx.doi.org/10.1186/s13046-022-02518-8] [PMID: 36266731]
[114]
Wang, L.; Wu, S.; He, H.; Ai, K.; Xu, R.; Zhang, L.; Zhu, X. CircRNA-ST6GALNAC6 increases the sensitivity of bladder cancer cells to erastin-induced ferroptosis by regulating the HSPB1/P38 axis. Lab. Invest., 2022, 102(12), 1323-1334.
[http://dx.doi.org/10.1038/s41374-022-00826-3] [PMID: 35945269]
[115]
Liu, Z.; Wang, Q.; Wang, X.; Xu, Z.; Wei, X.; Li, J. Circular RNA cIARS regulates ferroptosis in HCC cells through interacting with RNA binding protein ALKBH5. Cell Death Discov., 2020, 6(1), 72.
[http://dx.doi.org/10.1038/s41420-020-00306-x] [PMID: 32802409]
[116]
Zhang, X.; Xu, Y.; Ma, L.; Yu, K.; Niu, Y.; Xu, X.; Shi, Y.; Guo, S.; Xue, X.; Wang, Y.; Qiu, S.; Cui, J.; Wang, H.; Tian, X.; Miao, Y.; Meng, F.; Qiao, Y.; Yu, Y.; Wang, J. Essential roles of exosome and circRNA_101093 on ferroptosis desensitization in lung adenocarcinoma. Cancer Commun. (Lond.), 2022, 42(4), 287-313.
[http://dx.doi.org/10.1002/cac2.12275] [PMID: 35184419]
[117]
Viswanathan, V.S.; Ryan, M.J.; Dhruv, H.D.; Gill, S.; Eichhoff, O.M.; Seashore-Ludlow, B.; Kaffenberger, S.D.; Eaton, J.K.; Shimada, K.; Aguirre, A.J.; Viswanathan, S.R.; Chattopadhyay, S.; Tamayo, P.; Yang, W.S.; Rees, M.G.; Chen, S.; Boskovic, Z.V.; Javaid, S.; Huang, C.; Wu, X.; Tseng, Y.Y.; Roider, E.M.; Gao, D.; Cleary, J.M.; Wolpin, B.M.; Mesirov, J.P.; Haber, D.A.; Engelman, J.A.; Boehm, J.S.; Kotz, J.D.; Hon, C.S.; Chen, Y.; Hahn, W.C.; Levesque, M.P.; Doench, J.G.; Berens, M.E.; Shamji, A.F.; Clemons, P.A.; Stockwell, B.R.; Schreiber, S.L. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature, 2017, 547(7664), 453-457.
[http://dx.doi.org/10.1038/nature23007] [PMID: 28678785]
[118]
Hangauer, M.J.; Viswanathan, V.S.; Ryan, M.J.; Bole, D.; Eaton, J.K.; Matov, A.; Galeas, J.; Dhruv, H.D.; Berens, M.E.; Schreiber, S.L.; McCormick, F.; McManus, M.T. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature, 2017, 551(7679), 247-250.
[http://dx.doi.org/10.1038/nature24297] [PMID: 29088702]
[119]
Li, Z.; Dai, H.; Huang, X.; Feng, J.; Deng, J.; Wang, Z.; Yang, X.; Liu, Y.; Wu, Y.; Chen, P.; Shi, H.; Wang, J.; Zhou, J.; Lu, G. Artesunate synergizes with sorafenib to induce ferroptosis in hepatocellular carcinoma. Acta Pharmacol. Sin., 2021, 42(2), 301-310.
[http://dx.doi.org/10.1038/s41401-020-0478-3] [PMID: 32699265]
[120]
Guo, J.; Xu, B.; Han, Q.; Zhou, H.; Xia, Y.; Gong, C.; Dai, X.; Li, Z.; Wu, G. Ferroptosis: A Novel Anti-tumor Action for Cisplatin. Cancer Res. Treat., 2018, 50(2), 445-460.
[http://dx.doi.org/10.4143/crt.2016.572] [PMID: 28494534]
[121]
Slack, F.J.; Chinnaiyan, A.M. The Role of Non-coding RNAs in Oncology. Cell, 2019, 179(5), 1033-1055.
[http://dx.doi.org/10.1016/j.cell.2019.10.017] [PMID: 31730848]
[122]
Winkle, M.; El-Daly, S.M.; Fabbri, M.; Calin, G.A. Noncoding RNA therapeutics — challenges and potential solutions. Nat. Rev. Drug Discov., 2021, 20(8), 629-651.
[http://dx.doi.org/10.1038/s41573-021-00219-z] [PMID: 34145432]
[123]
Wang, W.T.; Han, C.; Sun, Y.M.; Chen, T.Q.; Chen, Y.Q. Noncoding RNAs in cancer therapy resistance and targeted drug development. J. Hematol. Oncol., 2019, 12(1), 55.
[http://dx.doi.org/10.1186/s13045-019-0748-z] [PMID: 31174564]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy