Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Overexpression of NOP58 Facilitates Proliferation, Migration, Invasion, and Stemness of Non-small Cell Lung Cancer by Stabilizing hsa_circ_0001550

Author(s): Yiqian Jiang, Ying Cai, Yanhong Bao, Xiangyang Kong and Haigang Jin*

Volume 24, Issue 16, 2024

Published on: 11 July, 2024

Page: [1197 - 1206] Pages: 10

DOI: 10.2174/0118715206293943240615105417

Price: $65

Abstract

Background: NOP58 ribonucleoprotein (NOP58) is associated with the recurrence of lung adenocarcinoma.

Aims: Few investigations concentrate on the role of NOP58 in non-small cell lung cancer (NSCLC), which is the focus of our current study.

Methods: Following transfection, the proliferation, migration, and invasion of NSCLC cells were assessed by 5- ethynyl-2’-deoxyuridine (EdU), wound healing, and transwell assays. The percentage of CD9+ cells was evaluated by flow cytometry assay. Based on target genes and binding sites predicted through bioinformatics analysis, a dual-luciferase reporter assay was performed to verify the targeting relationship between hsa_circ_0001550 and NOP58. The effect of NOP58 overexpression on hsa_circ_0001550 stability was gauged using Actinomycin D. The hsa_circ_0001550 and NOP58 expression levels, as well as protein expressions of CD44, CD133, OCT4, and SOX2 in NSCLC cells were determined by quantitative real-time PCR and Western blot, respectively.

Results: Hsa_circ_0001550 was remarkably up-regulated in NSCLC cell lines A549 and PC9, silencing of which weakened cell abilities to proliferate, migrate and invade, decreased CD9+ cell ratio, and diminished protein expressions of CD44, CD133, OCT4, and SOX2. NOP58 could bind to hsa_circ_0001550 and stabilize its expression, and NOP58 overexpression partially abrogated hsa_circ_0001550 knockdown-inhibited NSCLC cell proliferation, migration, invasion and stemness.

Conclusion: Overexpression of NOP58 facilitates proliferation, migration, invasion, and stemness of NSCLC cells by stabilizing hsa_circ_0001550, hinting that NOP58 is a novel molecular target for NSCLC therapy.

[1]
Bade, B.C.; Dela Cruz, C.S. Lung Cancer 2020. Clin. Chest Med., 2020, 41(1), 1-24.
[http://dx.doi.org/10.1016/j.ccm.2019.10.001] [PMID: 32008623]
[2]
Sung, H.; Ferlay, J.; Siegel, R.L. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Thai, A.A.; Solomon, B.J.; Sequist, L.V.; Gainor, J.F.; Heist, R.S. Lung cancer. Lancet, 2021, 398(10299), 535-554.
[http://dx.doi.org/10.1016/S0140-6736(21)00312-3] [PMID: 34273294]
[4]
Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature, 2018, 553(7689), 446-454.
[http://dx.doi.org/10.1038/nature25183] [PMID: 29364287]
[5]
Hamilton, G.; Rath, B. Pharmacogenetics of platinum-based chemotherapy in non-small cell lung cancer: predictive validity of polymorphisms of ERCC1. Expert Opin. Drug Metab. Toxicol., 2018, 14(1), 17-24.
[http://dx.doi.org/10.1080/17425255.2018.1416095] [PMID: 29226731]
[6]
Dudnik, E.; Moskovitz, M.; Rottenberg, Y. Pembrolizumab as a monotherapy or in combination with platinum-based chemotherapy in advanced non-small cell lung cancer with PD-L1 tumor proportion score (TPS) ≥50%: real-world data. OncoImmunology, 2021, 10(1), 1865653.
[http://dx.doi.org/10.1080/2162402X.2020.1865653] [PMID: 33552685]
[7]
Wang, J.; Huang, R.; Huang, Y.; Chen, Y.; Chen, F. Overexpression of NOP58 as a prognostic marker in hepatocellular carcinoma: A TCGA data-based analysis. Adv. Ther., 2021, 38(6), 3342-3361.
[http://dx.doi.org/10.1007/s12325-021-01762-2] [PMID: 34014550]
[8]
Wu, H.; Qin, W.; Lu, S. Long noncoding RNA ZFAS1 promoting small nucleolar RNA-mediated 2′-O-methylation via NOP58 recruitment in colorectal cancer. Mol. Cancer, 2020, 19(1), 95.
[http://dx.doi.org/10.1186/s12943-020-01201-w] [PMID: 32443980]
[9]
He, J.; Yu, J. Long noncoding RNA FAM83A-AS1 facilitates hepatocellular carcinoma progression by binding with NOP58 to enhance the mRNA stability of FAM83A. Biosci. Rep., 2019, 39(11), BSR20192550.
[http://dx.doi.org/10.1042/BSR20192550] [PMID: 31696213]
[10]
Shen, Z.; Liu, S.; Liu, J.; Liu, J.; Yao, C. Weighted gene co-expression network analysis and treatment strategies of tumor recurrence-associated hub genes in lung adenocarcinoma. Front. Genet., 2021, 12, 756235.
[http://dx.doi.org/10.3389/fgene.2021.756235] [PMID: 34868230]
[11]
Zeng, Y.; Du, W.W.; Wu, Y. A circular RNA binds to and activates akt phosphorylation and nuclear localization reducing apoptosis and enhancing cardiac repair. Theranostics, 2017, 7(16), 3842-3855.
[http://dx.doi.org/10.7150/thno.19764] [PMID: 29109781]
[12]
Kristensen, L.S.; Andersen, M.S.; Stagsted, L.V.W.; Ebbesen, K.K.; Hansen, T.B.; Kjems, J. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet., 2019, 20(11), 675-691.
[http://dx.doi.org/10.1038/s41576-019-0158-7] [PMID: 31395983]
[13]
Li, H.; Xu, J.D.; Fang, X.H. Circular RNA circRNA_000203 aggravates cardiac hypertrophy via suppressing miR-26b-5p and miR-140-3p binding to Gata4. Cardiovasc. Res., 2020, 116(7), 1323-1334.
[http://dx.doi.org/10.1093/cvr/cvz215] [PMID: 31397837]
[14]
Chen, Y.G.; Kim, M.V.; Chen, X. Sensing self and foreign circular RNAs by intron identity. Mol. Cell, 2017, 67(2), 228-238.e5.
[http://dx.doi.org/10.1016/j.molcel.2017.05.022] [PMID: 28625551]
[15]
Liu, C.X.; Li, X.; Nan, F. Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell, 2019, 177(4), 865-880.e21.
[http://dx.doi.org/10.1016/j.cell.2019.03.046] [PMID: 31031002]
[16]
Goodall, G.J.; Wickramasinghe, V.O. RNA in cancer. Nat. Rev. Cancer, 2021, 21(1), 22-36.
[http://dx.doi.org/10.1038/s41568-020-00306-0] [PMID: 33082563]
[17]
Hong, W.; Xue, M.; Jiang, J.; Zhang, Y.; Gao, X. Circular RNA circ-CPA4/let-7 miRNA/PD-L1 axis regulates cell growth, stemness, drug resistance and immune evasion in non-small cell lung cancer (NSCLC). J. Exp. Clin. Cancer Res., 2020, 39(1), 149.
[http://dx.doi.org/10.1186/s13046-020-01648-1] [PMID: 32746878]
[18]
Fan, Y.; Wang, Q.; Shi, M. Circ_0020123 promotes NSCLC tumorigenesis via up-regulating KIAA1522 expression through miR-940. Cell Cycle, 2022, 21(9), 894-907.
[http://dx.doi.org/10.1080/15384101.2022.2034093] [PMID: 35196193]
[19]
Zhou, Y.; Zhang, Q.; Qiu, X.; Tian, T.; Xu, Q.; Liao, B. Hsa_circ_0001550 facilitates colorectal cancer progression through mediating microRNA -4262/nuclear casein kinase and cyclin-dependent kinase substrate 1 cascade. J. Clin. Lab. Anal., 2022, 36(7), e24532.
[http://dx.doi.org/10.1002/jcla.24532] [PMID: 35698305]
[20]
Zhao, S.; Wang, B.; Ma, Y.; Kuang, J.; Liang, J.; Yuan, Y. NUCKS1 promotes proliferation, invasion and migration of non-small cell lung cancer by upregulating CDK1 expression. Cancer Manag. Res., 2020, 12, 13311-13323.
[http://dx.doi.org/10.2147/CMAR.S282181] [PMID: 33380837]
[21]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[22]
Kristensen, L.S.; Jakobsen, T.; Hager, H.; Kjems, J. The emerging roles of circRNAs in cancer and oncology. Nat. Rev. Clin. Oncol., 2022, 19(3), 188-206.
[http://dx.doi.org/10.1038/s41571-021-00585-y] [PMID: 34912049]
[23]
Liu, X.X.; Yang, Y.E.; Liu, X. A two-circular RNA signature as a noninvasive diagnostic biomarker for lung adenocarcinoma. J. Transl. Med., 2019, 17(1), 50.
[http://dx.doi.org/10.1186/s12967-019-1800-z] [PMID: 30777071]
[24]
Ohshima, K.; Morii, E. Metabolic reprogramming of cancer cells during tumor progression and metastasis. Metabolites, 2021, 11(1), 28.
[http://dx.doi.org/10.3390/metabo11010028] [PMID: 33401771]
[25]
Lee, Y.T.; Tan, Y.J.; Oon, C.E. Molecular targeted therapy: Treating cancer with specificity. Eur. J. Pharmacol., 2018, 834, 188-196.
[http://dx.doi.org/10.1016/j.ejphar.2018.07.034] [PMID: 30031797]
[26]
Mun, E.J.; Babiker, H.M.; Weinberg, U.; Kirson, E.D.; Von Hoff, D.D. Tumor-treating fields: A fourth modality in cancer treatment. Clin. Cancer Res., 2018, 24(2), 266-275.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-1117] [PMID: 28765323]
[27]
Shackleton, M.; Quintana, E.; Fearon, E.R.; Morrison, S.J. Heterogeneity in cancer: Cancer stem cells versus clonal evolution. Cell, 2009, 138(5), 822-829.
[http://dx.doi.org/10.1016/j.cell.2009.08.017] [PMID: 19737509]
[28]
Skvortsova, I. Cancer stem cells: What do we know about them? Cells, 2021, 10(6), 1528.
[http://dx.doi.org/10.3390/cells10061528] [PMID: 34204391]
[29]
Walcher, L.; Kistenmacher, A.K.; Suo, H. Cancer stem cells—origins and biomarkers: Perspectives for targeted personalized therapies. Front. Immunol., 2020, 11, 1280.
[http://dx.doi.org/10.3389/fimmu.2020.01280] [PMID: 32849491]
[30]
Singh, A. RNA-binding protein kinetics. Nat. Methods, 2021, 18(4), 335.
[http://dx.doi.org/10.1038/s41592-021-01122-6] [PMID: 33828270]
[31]
Sommer, G.; Heise, T. Role of the RNA-binding protein La in cancer pathobiology. RNA Biol., 2021, 18(2), 218-236.
[http://dx.doi.org/10.1080/15476286.2020.1792677] [PMID: 32687431]
[32]
Liu, J.; Lu, J.; Li, W.; Mao, W.; Lu, Y. Machine learning screens potential drugs targeting a prognostic gene signature associated with proliferation in hepatocellular carcinoma. Front. Genet., 2022, 13, 900380.
[http://dx.doi.org/10.3389/fgene.2022.900380] [PMID: 35836576]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy