Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Mini-Review Article

Natural Compounds as Protease Inhibitors in Therapeutic Focus on Cancer Therapy

Author(s): Bhadra Kakali*

Volume 24, Issue 16, 2024

Published on: 10 July, 2024

Page: [1167 - 1181] Pages: 15

DOI: 10.2174/0118715206303964240708095110

Price: $65

Abstract

Proteases are implicated in every hallmark of cancer and have complicated functions. For cancer cells to survive and thrive, the process of controlling intracellular proteins to keep the balance of the cell proteome is essential. Numerous natural compounds have been used as ligands/ small molecules to target various proteases that are found in the lysosomes, mitochondria, cytoplasm, and extracellular matrix, as possible anticancer therapeutics. Promising protease modulators have been developed for new drug discovery technology through recent breakthroughs in structural and chemical biology. The protein structure, function of significant tumor-related proteases, and their natural compound inhibitors have been briefly included in this study. This review highlights the most current frontiers and future perspectives for novel therapeutic approaches associated with the list of anticancer natural compounds targeting protease and the mode and mechanism of proteinase-mediated molecular pathways in cancer.

Next »
[1]
Beynon, R.J.; Bond, J.S. Proteolytic Enzymes: A Practical Approach; Oxford University Press: London, 2001.
[http://dx.doi.org/10.1093/oso/9780199636631.001.0001]
[2]
López-Otín, C.; Matrisian, L.M. Emerging roles of proteases in tumour suppression. Nat. Rev. Cancer, 2007, 7(10), 800-808.
[http://dx.doi.org/10.1038/nrc2228] [PMID: 17851543]
[3]
Proteases: Multifunctional enzymes in life and disease. Lo´ pez-Otín, C.; Judith, S.B., Eds.; The J Biol. Chem., 2008, 283(45), 30433-30437.
[4]
Chakraborti, S.; Chakraborti, T.; Dhalla, N.S. Eds.; Advances in Biochemistry in health and disease, proteases in human diseases; Springer Nature, 2013.
[http://dx.doi.org/10.1007/978-1-4614-9233-7]
[5]
García-Lorenzo, M.; Sjödin, A.; Jansson, S.; Funk, C. Protease gene families in Populus and Arabidopsis. BMC Plant Biol., 2006, 6(1), 30.
[http://dx.doi.org/10.1186/1471-2229-6-30] [PMID: 17181860]
[6]
Voshavar, C. Protease inhibitors for the treatment of HIV/AIDS: Recent advances and future challenges. Curr. Top. Med. Chem., 2019, 19(18), 1571-1598.
[http://dx.doi.org/10.2174/1568026619666190619115243] [PMID: 31237209]
[7]
Ang, D.; Kendall, R.; Atamian, H. Virtual and in vitro screening of natural products identifies indole and benzene derivatives as inhibitors of SARS-CoV-2 Main Protease (Mpro). Biology, 2023, 12(4), 519.
[http://dx.doi.org/10.3390/biology12040519] [PMID: 37106720]
[8]
Wadanambi, P.M.; Jayathilaka, N.; Seneviratne, K.N. A computational study of carbazole alkaloids from Murraya koenigii as potential SARS-CoV-2 main protease inhibitors. Appl. Biochem. Biotechnol., 2023, 195(1), 573-596.
[http://dx.doi.org/10.1007/s12010-022-04138-6] [PMID: 36107386]
[9]
Rakash, S.; Rana, F.; Rafiq, S.; Masood, A.; Amin, S. Role of proteases in cancer: A review. Biotechnol. Mol. Biol. Rev., 2012, 7(4), 90-101.
[http://dx.doi.org/10.5897/BMBR11.027]
[10]
Veltri, C.A. Proteases: Nature’s destroyers and the drugs that stop them. Pharm. Pharmacol. Int. J., 2015, 2(6), 1-11.
[http://dx.doi.org/10.15406/ppij.2015.02.00044]
[11]
Quintero-Fabián, S.; Arreola, R.; Becerril-Villanueva, E.; Torres-Romero, J.C.; Arana-Argáez, V.; Lara-Riegos, J.; Ramírez-Camacho, M.A.; Alvarez-Sánchez, M.E. Role of matrix metalloproteinases in angiogenesis and cancer. Front. Oncol., 2019, 9, 1370.
[http://dx.doi.org/10.3389/fonc.2019.01370] [PMID: 31921634]
[12]
Tagirasa, R.; Yoo, E. Role of serine proteases at the tumor-stroma interface. Front. Immunol., 2022, 13, 832418.
[http://dx.doi.org/10.3389/fimmu.2022.832418] [PMID: 35222418]
[13]
Sarkar, S.; Bhattacharjee, P.; Bhadra, K. DNA binding and apoptotic induction ability of harmalol in HepG2: Biophysical and biochemical approaches. Chem. Biol. Interact., 2016, 258, 142-152.
[http://dx.doi.org/10.1016/j.cbi.2016.08.024] [PMID: 27590872]
[14]
Bhattacharjee, P.; Sarkar, S.; Ghosh, T.; Bhadra, K. Therapeutic potential of harmaline, a novel alkaloid, against cervical cancer cells in vitro: Apoptotic induction and DNA interaction study. J. Appl. Biol. Biotechnol., 2018, 6(4), 1-8.
[15]
Sarkar, S.; Trebedi, P.; Bhadra, K. Structure-activity insights of harmine targeting DNA, ROS inducing cytotoxicity with PARP mediated apoptosis against cervical cancer, anti-biofilm formation and in vivo therapeutic study. J. Biomol. Struct. Dyn., 2022, 40(13), 5880-5902.
[http://dx.doi.org/10.1080/07391102.2021.1874533] [PMID: 33480316]
[16]
Li, Y.Y.; Bao, Y.L.; Song, Z.B.; Sun, L.G.; Wu, P.; Zhang, Y.; Fan, C.; Huang, Y.X.; Wu, Y.; Yu, C.L.; Sun, Y.; Zheng, L.H.; Wang, G.N.; Li, Y.X. The threonine protease activity of testes-specific protease 50 (TSP50) is essential for its function in cell proliferation. PLoS One, 2012, 7(5), e35030.
[http://dx.doi.org/10.1371/journal.pone.0035030] [PMID: 22574111]
[17]
Ueno, T.; Elmberger, G.; Weaver, T.E.; Toi, M.; Linder, S. The aspartic protease napsin A suppresses tumor growth independent of its catalytic activity. Lab. Invest., 2008, 88(3), 256-263.
[http://dx.doi.org/10.1038/labinvest.3700718] [PMID: 18195689]
[18]
Dudani, J.S.; Warren, A.D.; Bhatia, S.N. Harnessing protease activity to Improve cancer care. Annu. Rev. Cancer Biol., 2018, 2(1), 353-376.
[http://dx.doi.org/10.1146/annurev-cancerbio-030617-050549]
[19]
Olson, O.C.; Joyce, J.A. Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response. Nat. Rev. Cancer, 2015, 15(12), 712-729.
[http://dx.doi.org/10.1038/nrc4027] [PMID: 26597527]
[20]
Kessenbrock, K.; Plaks, V.; Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell, 2010, 141(1), 52-67.
[http://dx.doi.org/10.1016/j.cell.2010.03.015] [PMID: 20371345]
[21]
Barreira da Silva, R.; Laird, M.E.; Yatim, N.; Fiette, L.; Ingersoll, M.A.; Albert, M.L. Dipeptidylpeptidase 4 inhibition enhances lymphocyte trafficking, improving both naturally occurring tumor immunity and immunotherapy. Nat. Immunol., 2015, 16(8), 850-858.
[http://dx.doi.org/10.1038/ni.3201] [PMID: 26075911]
[22]
Tehreem, M.; Maimoona, Q.; Asimur, R.; Mohamad, T.; Naveed, A.; Abdelhamid, E. Exploiting proteases for cancer theranostic through molecular imaging and drug delivery. Int. J. Pharm., 2020, 587, 119712.
[23]
Trezza, A.; Cicaloni, V.; Pettini, F.; Spiga, O. Potential roles of protease inhibitors in anticancer therapy. In: Cancer-Leading Proteases; Elsevier, 2020; pp. 13-49.
[http://dx.doi.org/10.1016/B978-0-12-818168-3.00002-4]
[24]
Turk, B. Targeting proteases: successes, failures and future prospects. Nat. Rev. Drug Discov., 2006, 5(9), 785-799.
[http://dx.doi.org/10.1038/nrd2092] [PMID: 16955069]
[25]
Ahmad, B.; Batool, M.; Ain, Q.; Kim, M.S.; Choi, S. Exploring the binding mechanism of PF-07321332 SARS-CoV-2 protease inhibitor through molecular dynamics and binding free energy simulations. Int. J. Mol. Sci., 2021, 22(17), 9124.
[http://dx.doi.org/10.3390/ijms22179124] [PMID: 34502033]
[26]
Gills, J.J. A Lead HIV protease inhibitor, is a broad-spectrum, anticancer agent that induces endoplasmic reticulum stress, autophagy, and apoptosis in vitro and in vivo. Clin. Cancer Res., 2007, 13(17), 5183-5194.
[27]
Rudzińska, M.; Daglioglu, C.; Savvateeva, L.V.; Kaci, F.N.; Antoine, R.; Zamyatnin, A.A., Jr; Zamyatnin, A.A., Jr Current status and perspectives of protease inhibitors and their combination with nanosized drug delivery systems for targeted cancer therapy. Drug Des. Devel. Ther., 2021, 15, 9-20.
[http://dx.doi.org/10.2147/DDDT.S285852] [PMID: 33442233]
[28]
Rudzińska, M.; Parodi, A.; Soond, S.M.; Vinarov, A.Z.; Korolev, D.O.; Morozov, A.O.; Daglioglu, C.; Tutar, Y.; Zamyatnin, A.A., Jr The role of cysteine cathepsins in cancer progression and drug resistance. Int. J. Mol. Sci., 2019, 20(14), 3602.
[http://dx.doi.org/10.3390/ijms20143602] [PMID: 31340550]
[29]
Petushkova, A.I.; Zamyatnin, A.A., Jr Redox-mediated post-translational modifications of proteolytic enzymes and their role in protease functioning. Biomolecules, 2020, 10(4), 650.
[http://dx.doi.org/10.3390/biom10040650] [PMID: 32340246]
[30]
WHO. Guidelines for the assessment of herbal medicines; World Health Organization: Geneva, 1991.
[31]
Gahtori, R.; Tripathi, A.H.; Kumari, A.; Negi, N.; Paliwal, A.; Tripathi, P.; Joshi, P.; Rai, R.C.; Upadhyay, S.K. Anticancer plant-derivatives: deciphering their oncopreventive and therapeutic potential in molecular terms. Fut. J. Pharmac. Sci., 2023, 9(1), 14.
[http://dx.doi.org/10.1186/s43094-023-00465-5]
[32]
Bhadra, K. Handbook of smart materials, technologies, and devices. In: Applications of Industry 4.0; Springer: Cham, 2023.
[http://dx.doi.org/10.1007/978-3-030-58675-1]
[33]
Carbone, D.; De Franco, M.; Pecoraro, C.; Bassani, D.; Pavan, M.; Cascioferro, S.; Parrino, B.; Cirrincione, G.; Dall’Acqua, S.; Sut, S.; Moro, S.; Gandin, V.; Diana, P. Structural manipulations of marine natural products inspire a new library of 3-amino-1,2,4-triazine PDK inhibitors endowed with antitumor activity in pancreatic ductal adenocarcinoma. Mar. Drugs, 2023, 21(5), 288.
[http://dx.doi.org/10.3390/md21050288] [PMID: 37233482]
[34]
Nan, Y.; Su, H.; Zhou, B.; Liu, S. The function of natural compounds in important anticancer mechanisms. Front. Oncol., 2023, 12, 1049888.
[http://dx.doi.org/10.3389/fonc.2022.1049888] [PMID: 36686745]
[35]
Luo, Y.; Yin, S.; Lu, J.; Zhou, S.; Shao, Y.; Bao, X.; Wang, T.; Qiu, Y.; Yu, H. Tumor microenvironment: A prospective target of natural alkaloids for cancer treatment. Cancer Cell Int., 2021, 21(1), 386.
[http://dx.doi.org/10.1186/s12935-021-02085-6] [PMID: 34284780]
[36]
Naman, C.B.; Benatrehina, P.A.; Kinghorn, A.D.; Ohio, T. Pharmaceuticals, plant drugs, 2nd ed; Elsevier: New York, 2017.
[http://dx.doi.org/10.1016/B978-0-12-394807-6.00163-5]
[37]
Mukeshwar, P.; Mousumi, D.; Shobit, G.; Surender, K.C. Phytomedicine: An ancient approach turning into future potential source of therapeutics. J. Pharmacogn. Phytother., 2011, 3(2), 27-37.
[38]
Chunarkar-Patil, P.; Kaleem, M.; Mishra, R.; Ray, S.; Ahmad, A.; Verma, D.; Bhayye, S.; Dubey, R.; Singh, H.; Kumar, S. Anticancer drug discovery based on natural products: From computational approaches to clinical studies. Biomedicines, 2024, 12(1), 201.
[http://dx.doi.org/10.3390/biomedicines12010201] [PMID: 38255306]
[39]
Li, X.; Yu, N.; Li, J.; Bai, J.; Ding, D.; Tang, Q.; Xu, H. Novel “carrier-free” nanofiber codelivery systems with the synergistic antitumor effect of paclitaxel and tetrandrine through the enhancement of mitochondrial apoptosis. ACS Appl. Mater. Interfaces, 2020, 12(9), 10096-10106.
[http://dx.doi.org/10.1021/acsami.9b17363] [PMID: 32027119]
[40]
Laskar, P.; Somani, S.; Campbell, S.J.; Mullin, M.; Keating, P.; Tate, R.J.; Irving, C.; Leung, H.Y.; Dufès, C. Camptothecin-based dendrimersomes for gene delivery and redox-responsive drug delivery to cancer cells. Nanoscale, 2019, 11(42), 20058-20071.
[http://dx.doi.org/10.1039/C9NR07254C] [PMID: 31612185]
[41]
Ishii, N.; Araki, K.; Yokobori, T.; Hagiwara, K.; Gantumur, D.; Yamanaka, T.; Handa, T.; Tsukagoshi, M.; Igarashi, T.; Watanabe, A.; Kubo, N.; Harimoto, N.; Masamune, A.; Umezawa, K.; Kuwano, H.; Shirabe, K. Conophylline suppresses pancreatic cancer desmoplasia and cancer‐promoting cytokines produced by cancer‐associated fibroblasts. Cancer Sci., 2019, 110(1), 334-344.
[http://dx.doi.org/10.1111/cas.13847] [PMID: 30353606]
[42]
Antropow, A.H.; Xu, K.; Buchsbaum, R.J.; Movassaghi, M. Synthesis and evaluation of agelastatin derivatives as potent modulators for cancer invasion and metastasis. J. Org. Chem., 2017, 82(15), 7720-7731.
[http://dx.doi.org/10.1021/acs.joc.7b01162] [PMID: 28696693]
[43]
Weng, T.Y.; Wu, H.F.; Li, C.Y.; Hung, Y.H.; Chang, Y.W.; Chen, Y.L.; Hsu, H.P.; Chen, Y.H.; Wang, C.Y.; Chang, J.Y.; Lai, M.D. Homoharringtonine induced immune alteration for an efcient anti-tumor response in mouse models of non-small cell lung adenocarcinoma expressing Kras mutation. Sci. Rep., 2018, 8(1), 8216.
[http://dx.doi.org/10.1038/s41598-018-26454-w] [PMID: 29844447]
[44]
Hock, B.D.; MacPherson, S.A.; McKenzie, J.L. Idelalisib and caffeine reduce suppression of T cell responses mediated by activated chronic lymphocytic leukemia cells. PLoS One, 2017, 12(3), e0172858.
[http://dx.doi.org/10.1371/journal.pone.0172858] [PMID: 28257435]
[45]
Choi, D.W.; Jung, S.Y.; Shon, D.H.; Shin, H.S. PiperineAmeliorates Trimellitic anhydride-induced atopic dermatitis-like symptoms by suppressing Th2-mediated immune responses via inhibition of STAT6 phosphorylation. Molecules, 2020, 25(9), 2186.
[http://dx.doi.org/10.3390/molecules25092186] [PMID: 32392825]
[46]
Liu, H.; Zou, M.; Li, P.; Wang, H.; Lin, X.; Ye, J. Oxymatrine mediated maturation of dendritic cells leads to activation of FOXP3+/CD4+ Treg cells and reversal of cisplatin resistance in lung cancer cells. Mol. Med. Rep., 2019, 19(5), 4081-4090.
[http://dx.doi.org/10.3892/mmr.2019.10064] [PMID: 30896871]
[47]
Guo, G.; Shi, F.; Zhu, J.; Shao, Y.; Gong, W.; Zhou, G.; Wu, H.; She, J.; Shi, W. Piperine, a functional food alkaloid, exhibits inhibitory potential against TNBS-induced colitis via the inhibition of IκB-α/NF-κB and induces tight junction protein (claudin-1, occludin, and ZO-1) signaling pathway in experimental mice. Hum. Exp. Toxicol., 2020, 39(4), 477-491.
[http://dx.doi.org/10.1177/0960327119892042] [PMID: 31835924]
[48]
Yao, M.; Fan, X.; Yuan, B.; Takagi, N.; Liu, S.; Han, X.; Ren, J.; Liu, J. Berberine inhibits NLRP3 inflammasome pathway in human triple-negative breast cancer MDA-MB-231 cell. BMC Complement. Altern. Med., 2019, 19(1), 216.
[http://dx.doi.org/10.1186/s12906-019-2615-4] [PMID: 31412862]
[49]
Zhu, L.; Huang, S.; Li, J.; Chen, J.; Yao, Y.; Li, L.; Guo, H.; Xiang, X.; Deng, J.; Xion, J. Sophoridine inhibits lung cancer cell growth and enhances cisplatin sensitivity through activation of the p53 and Hippo signaling pathways. Gene, 2020, 742, 144556.
[http://dx.doi.org/10.1016/j.gene.2020.144556]
[50]
Zhao, L.; Wang, L.; Di, S.N.; Xu, Q.; Ren, Q.C.; Chen, S.Z.; Huang, N.; Jia, D.; Shen, X.F. Steroidal alkaloid solanine A from Solanum nigrum Linn. Exhibits anti-inflammatory activity in lipopolysaccharide/interferon gamma activated murine macrophages and animal models of inflammation. Pharmacotherapy, 2018, 105, 606-615.
[51]
Pang, L.; Liu, C.Y.; Gong, G.H.; Quan, Z.S. Synthesis, in vitro and in vivo biological evaluation of novel lappaconitine derivatives as potential anti-inflammatory agents. Acta Pharm. Sin. B, 2020, 10(4), 628-645.
[http://dx.doi.org/10.1016/j.apsb.2019.09.002]
[52]
Wang, X.; Gao, J.Q.; Ouyang, X.; Wang, J.; Sun, X.; Lv, Y. Mesenchymal stem cells loaded with paclitaxel–poly(lactic-co-glycolic acid) nanoparticles for glioma-targeting therapy. Int. J. Nanomedicine, 2018, 13, 5231-5248.
[http://dx.doi.org/10.2147/IJN.S167142] [PMID: 30237710]
[53]
Li, H.; Guo, L.; Jie, S.; Liu, W.; Zhu, J.; Du, W.; Fan, L.; Wang, X.; Fu, B.; Huang, S. Berberine inhibits SDF-1-induced AML cells and leukemic stem cells migration via regulation of SDF-1 level in bone marrow stromal cells. Biomed. Pharmacother., 2008, 62(9), 573-578.
[http://dx.doi.org/10.1016/j.biopha.2008.08.003] [PMID: 18805669]
[54]
Chakravarthy, D.; Muñoz, A.R.; Su, A.; Hwang, R.F.; Keppler, B.R.; Chan, D.E.; Halff, G.; Ghosh, R.; Kumar, A.P. Palmatine suppresses glutamine-mediated interaction between pancreatic cancer and stellate cells through simultaneous inhibition of survivin and COL1A1. Cancer Lett., 2018, 419, 103-115.
[http://dx.doi.org/10.1016/j.canlet.2018.01.057] [PMID: 29414301]
[55]
Jie, S.; Li, H.; Tian, Y.; Guo, D.; Zhu, J.; Gao, S.; Jiang, L. Berberine inhibits angiogenic potential of Hep G2 cell line through VEGF down‐regulation in vitro. J. Gastroenterol. Hepatol., 2011, 26(1), 179-185.
[http://dx.doi.org/10.1111/j.1440-1746.2010.06389.x] [PMID: 21175812]
[56]
Wen, Z.; Huang, C.; Xu, Y.; Xiao, Y.; Tang, L.; Dai, J.; Sun, H.; Chen, B.; Zhou, M. α-Solanine inhibits vascular endothelial growth factor expression by down-regulating the ERK1/2-HIF-1α and STAT3 signaling pathways. Eur. J. Pharmacol., 2016, 771, 93-98.
[http://dx.doi.org/10.1016/j.ejphar.2015.12.020] [PMID: 26688571]
[57]
Zhang, H.; Ren, Y.; Tang, X.; Wang, K.; Liu, Y.; Zhang, L.; Li, X.; Liu, P.; Zhao, C.; He, J. Vascular normalization induced by sinomenine hydrochloride results in suppressed mammary tumor growth and metastasis. Sci. Rep., 2015, 5(1), 8888.
[http://dx.doi.org/10.1038/srep08888] [PMID: 25749075]
[58]
Guo, X.X.; Li, X.P.; Zhou, P.; Li, D.Y.; Lyu, X.T.; Chen, Y.; Lyu, Y.W.; Tian, K.; Yuan, D.Z.; Ran, J.H.; Chen, D.L.; Jiang, R.; Li, J. Evodiamine induces apoptosis in SMMC-7721 and HepG2 cells by suppressing NOD1 signal pathway. Int. J. Mol. Sci., 2018, 19(11), 3419.
[http://dx.doi.org/10.3390/ijms19113419] [PMID: 30384473]
[59]
Bräutigam, J.; Bischoff, I.; Schürmann, C.; Buchmann, G.; Epah, J.; Fuchs, S.; Heiss, E.; Brandes, R.P.; Fürst, R. Narciclasine inhibits angiogenic processes by activation of Rho kinase and by downregulation of the VEGF receptor 2. J. Mol. Cell. Cardiol., 2019, 135, 97-108.
[http://dx.doi.org/10.1016/j.yjmcc.2019.08.001] [PMID: 31381906]
[60]
Yuan, Z.; Liang, Z.; Yi, J.; Chen, X.; Li, R.; Wu, Y.; Wu, J.; Sun, Z. Protective effect of koumine, an alkaloid from gelsemium sempervirens, on injury induced by H2O2 in IPEC-J2 cells. Int. J. Mol. Sci., 2019, 20(3), 754.
[http://dx.doi.org/10.3390/ijms20030754] [PMID: 30754638]
[61]
Yang, M.H.; Jung, S.H.; Sethi, G.; Ahn, K.S. Pleiotropic pharmacological actions of capsazepine, a synthetic analogue of capsaicin, against various cancers and infammatory diseases. Molecules, 2019, 24(5), 995.
[http://dx.doi.org/10.3390/molecules24050995] [PMID: 30871017]
[62]
Xu, Z.; Zhang, F.; Bai, C.; Yao, C.; Zhong, H.; Zou, C.; Chen, X. Sophoridine induces apoptosis and S phase arrest via ROS-dependent JNK and ERK activation in human pancreatic cancer cells. J. Exp. Clin. Cancer Res., 2017, 36(1), 124.
[http://dx.doi.org/10.1186/s13046-017-0590-5] [PMID: 28893319]
[63]
Bhattacharjee, P.; Sarkar, P.; Bhadra, K. Evaluation of chemotherapeutic role of harmaline: In vitro cytotoxicity targeting nucleic acids. J. Asian Nat. Prod. Res., 2024, 26(4), 519-533.
[http://dx.doi.org/10.1080/10286020.2023.2251116]
[64]
Awale, S.; Dibwe, D.F.; Balachandran, C.; Fayez, S.; Feineis, D.; Lombe, B.K.; Bringmann, G. Ancistrolikokine E3, a 5,8′-coupled naphthylisoquinoline alkaloid, eliminates the tolerance of cancer cells to nutrition starvation by inhibition of the Akt/mTOR/autophagy signaling pathway. J. Nat. Prod., 2018, 81(10), 2282-2291.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00733] [PMID: 30303002]
[65]
Song, L.; Wang, Y.; Zhen, Y.; Li, D.; He, X.; Yang, H.; Zhang, H.; Liu, Q. Piperine inhibits colorectal cancer migration and invasion by regulating STAT3/Snail-mediated epithelial–mesenchymal transition. Biotechnol. Lett., 2020, 42(10), 2049-2058.
[http://dx.doi.org/10.1007/s10529-020-02923-z] [PMID: 32500474]
[66]
Su, Q.; Fan, M.; Wang, J.; Ullah, A.; Ghauri, M.A.; Dai, B.; Zhan, Y.; Zhang, D.; Zhang, Y. Sanguinarine inhibits epithelial–mesenchymal transition via targeting HIF-1α/TGF-β feed-forward loop in hepatocellular carcinoma. Cell Death Dis., 2019, 10(12), 939.
[http://dx.doi.org/10.1038/s41419-019-2173-1] [PMID: 31819036]
[67]
Huang, C.; Wang, X.; Qi, F.; Pang, Z. Berberine inhibits epithelial-mesenchymal transition and promotes apoptosis of tumour-associated fibroblast-induced colonic epithelial cells through regulation of TGF-β signalling. J. Cell Commun. Signal., 2020, 14(1), 53-66.
[http://dx.doi.org/10.1007/s12079-019-00525-7] [PMID: 31399854]
[68]
Deng, G.; Zeng, S.; Ma, J.; Zhang, Y.; Qu, Y.; Han, Y.; Yin, L.; Cai, C.; Guo, C.; Shen, H. The anti-tumor activities of Neferine on cell invasion and oxaliplatin sensitivity regulated by EMT via Snail signaling in hepatocellular carcinoma. Sci. Rep., 2017, 7(1), 41616.
[http://dx.doi.org/10.1038/srep41616] [PMID: 28134289]
[69]
Jiang, Y.; Jiao, Y.; Liu, Y.; Zhang, M.; Wang, Z.; Li, Y.; Li, T.; Zhao, X.; Wang, D. Sinomenine hydrochloride inhibits the metastasis of human glioblastoma cells by suppressing the expression of matrix metalloproteinase-2/-9 and reversing the endogenous and exogenous epithelial mesenchymal transition. Int. J. Mol. Sci., 2018, 19(3), 844.
[http://dx.doi.org/10.3390/ijms19030844] [PMID: 29538296]
[70]
Kim, J.H.; Cho, E.B.; Lee, J.; Jung, O.; Ryu, B.J.; Kim, S.H.; Cho, J.Y.; Ryou, C.; Lee, S.Y. Emetine inhibits migration and invasion of human non-small-cell lung cancer cells via regulation of ERK and p38 signaling pathways. Chem. Biol. Interact., 2015, 242, 25-33.
[http://dx.doi.org/10.1016/j.cbi.2015.08.014] [PMID: 26332055]
[71]
Rahim, N.F.C.; Hussin, Y.; Aziz, M.N.M.; Mohamad, N.E.; Yeap, S.K.; Masarudin, M.J.; Abdullah, R.; Akhtar, M.N.; Alitheen, N.B. Cytotoxicity and apoptosis effects of curcumin analogue (2E, 6E)-2, 6-bis (2,3-dimethoxybenzylidine) cyclohexanone (DMCH) on human colon cancer cells HT29 and SW620 in vitro. Molecules, 2021, 26(5), 1261.
[http://dx.doi.org/10.3390/molecules26051261] [PMID: 33652694]
[72]
Ferhi, S.; Santaniello, S.; Zerizer, S.; Cruciani, S.; Fadda, A.; Sanna, D.; Dore, A.; Maioli, M.; D’hallewin, G. Total phenols from grape leaves counteract cell proliferation and modulate apoptosis related gene expression in MCF-7 and HepG2 human cancer cell lines. Molecules, 2019, 24(3), 612.
[http://dx.doi.org/10.3390/molecules24030612] [PMID: 30744145]
[73]
Yu, Y.; Zhang, C.; Liu, L.; Li, X. Hepatic arterial administration of ginsenoside Rg3 and transcatheter arterial embolization for the treatment of VX2 liver carcinomas. Exp. Ther. Med., 2013, 5(3), 761-766.
[http://dx.doi.org/10.3892/etm.2012.873] [PMID: 23404440]
[74]
Wu, L.; Wang, L.; Tian, X.; Zhang, J.; Feng, H. Germacrone exerts anti-cancer effects on gastric cancer through induction of cell cycle arrest and promotion of apoptosis. BMC Complement. Med. Ther., 2020, 20(1), 21.
[http://dx.doi.org/10.1186/s12906-019-2810-3]
[75]
Lau, T.S.; Chan, L.K.Y.; Man, G.C.W.; Wong, C.H.; Lee, J.H.S.; Yim, S.F.; Cheung, T.H.; McNeish, I.A.; Kwong, J. Paclitaxel induces immunogenic cell death in ovarian cancer via TLR4/IKK2/SNARE dependent Exocytosis Paclitaxel induces ICD via TLR4 in cancer cells. Cancer Immunol. Res., 2020, 8(8), 1099-1111.
[http://dx.doi.org/10.1158/2326-6066.CIR-19-0616] [PMID: 32354736]
[76]
Sun, Y.; Zhou, Q.M.; Lu, Y.Y.; Zhang, H.; Chen, Q.L.; Zhao, M.; Su, S.B. Resveratrol inhibits the migration and metastasis of MDA-MB-231 human breast cancer by reversing TGF-b1-induced epithelial-mesenchymal transition. Molecules, 2019, 24(6), 1131.
[http://dx.doi.org/10.3390/molecules24061131] [PMID: 30901941]
[77]
Wang, Y.; Ren, X.; Deng, C.; Yang, L.; Yan, E.; Guo, T.; Li, Y.; Xu, M.X. Mechanism of the inhibition of the STAT3 signaling pathway by EGCG. Oncol. Rep., 2013, 30(6), 2691-2696.
[http://dx.doi.org/10.3892/or.2013.2743] [PMID: 24065300]
[78]
Ghasemi, F.; Shafiee, M.; Banikazemi, Z.; Pourhanifeh, M.H.; Khanbabaei, H.; Shamshirian, A.; Amiri Moghadam, S. ArefNezhad, R.; Sahebkar, A.; Avan, A.; Mirzaei, H. Curcumin inhibits NF-kB and Wnt/β-catenin pathways in cervical cancer cells. Pathol. Res. Pract., 2019, 215(10), 152556.
[http://dx.doi.org/10.1016/j.prp.2019.152556] [PMID: 31358480]
[79]
Fan, H.; Jiang, C.; Zhong, B.; Sheng, J.; Chen, T.; Chen, Q.; Li, J.; Zhao, H. Matrine ameliorates colorectal cancer in rats via inhibition of HMGB1 signalling and downregulation of IL-6, TNF-a, and HMGB1. J. Immunol. Res., 2018, 2018, 1-8.
[http://dx.doi.org/10.1155/2018/5408324] [PMID: 29546074]
[80]
Zhao, L.; Zhang, C. Berberine inhibits MDA-MB-231 cells by attenuating their inflammatory responses. BioMed Res. Int., 2020, 2020, 1-6.
[http://dx.doi.org/10.1155/2020/3617514] [PMID: 32258115]
[81]
Prabhu, K.S.; Bhat, A.A.; Siveen, K.S.; Kuttikrishnan, S.; Raza, S.S.; Raheed, T.; Jochebeth, A.; Khan, A.Q.; Chawdhery, M.Z.; Haris, M.; Kulinski, M.; Dermime, S.; Steinhoff, M.; Uddin, S. Sanguinarine mediated apoptosis in non-small cell lung cancer via generation of reactive oxygen species and suppression of JAK/STAT pathway. Biomed. Pharmacother., 2021, 144, 112358.
[http://dx.doi.org/10.1016/j.biopha.2021.112358] [PMID: 34794241]
[82]
Zhang, W.; Gou, P.; Dupret, J.M.; Chomienne, C.; Rodrigues-Lima, F. Etoposide, an anticancer drug involved in therapy-related secondary leukemia: Enzymes at play. Transl. Oncol., 2021, 14(10), 101169.
[http://dx.doi.org/10.1016/j.tranon.2021.101169] [PMID: 34243013]
[83]
Syed, R.; Rani, R. Sabeena; Masoodi, T.A.; Shafi, G.; Alharbi, K. Functional analysis and structure determination of alkaline protease from Aspergillus flavus. Bioinformation, 2012, 8(4), 175-180.
[http://dx.doi.org/10.6026/97320630008175] [PMID: 22419836]
[84]
Kent, S.; Marshall, G.R.; Wlodawer, A. Determining the 3D structure of HIV-1 protease. Science, 2000, 288(5471), 1590.
[http://dx.doi.org/10.1126/science.288.5471.1590a] [PMID: 10858137]
[85]
Overall, C.M.; López-Otín, C. Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat. Rev. Cancer, 2002, 2(9), 657-672.
[http://dx.doi.org/10.1038/nrc884] [PMID: 12209155]
[86]
Yan, C.; Boyd, D.D. Regulation of matrix metalloproteinase gene expression. J. Cell. Physiol., 2007, 211(1), 19-26.
[http://dx.doi.org/10.1002/jcp.20948] [PMID: 17167774]
[87]
Riedl, S.J.; Salvesen, G.S. The apoptosome: signalling platform of cell death. Nat. Rev. Mol. Cell Biol., 2007, 8(5), 405-413.
[http://dx.doi.org/10.1038/nrm2153] [PMID: 17377525]
[88]
Versteeg, H.H.; Ruf, W. Emerging insights in tissue factor-dependent signaling events. Semin. Thromb. Hemost., 2006, 32(1), 024-032.
[http://dx.doi.org/10.1055/s-2006-933337] [PMID: 16479459]
[89]
Fu, X.; Parks, W.C.; Heinecke, J.W. RETRACTED: Activation and silencing of matrix metalloproteinases. Semin. Cell Dev. Biol., 2008, 19(1), 2-13.
[http://dx.doi.org/10.1016/j.semcdb.2007.06.005] [PMID: 17689277]
[90]
Bode, W.; Huber, R. Structural basis of the endoproteinase–protein inhibitor interaction. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 2000, 1477(1-2), 241-252.
[http://dx.doi.org/10.1016/S0167-4838(99)00276-9] [PMID: 10708861]
[91]
Hashem, S.; Ali, T.A.; Akhtar, S.; Nisar, S.; Sageena, G.; Ali, S.; Al-Mannai, S.; Therachiyil, L.; Mir, R.; Elfaki, I.; Mir, M.M.; Jamal, F.; Masoodi, T.; Uddin, S.; Singh, M.; Haris, M.; Macha, M.; Bhat, A.A. Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents. Biomed. Pharmacother., 2022, 150, 113054.
[http://dx.doi.org/10.1016/j.biopha.2022.113054] [PMID: 35658225]
[92]
Hedstrom, L. Serine protease mechanism and specificity. Chem. Rev., 2002, 102(12), 4501-4524.
[http://dx.doi.org/10.1021/cr000033x] [PMID: 12475199]
[93]
Jedinak, A.; Maliar, T. Inhibitors of proteases as anticancer drugs. Neoplasma, 2005, 52(3), 185-192.
[PMID: 15875078]
[94]
Al-Awadhi, F.; Salvador, L.; Law, B.; Paul, V.; Luesch, H. Kempopeptin C, a novel marine-derived serine protease inhibitor targeting invasive breast cancer. Mar. Drugs, 2017, 15(9), 290-307.
[http://dx.doi.org/10.3390/md15090290] [PMID: 28926939]
[95]
Al-Awadhi, F.H.; Luesch, H. Targeting eukaryotic proteases for natural products-based drug development. Nat. Prod. Rep., 2020, 37(6), 827-860.
[http://dx.doi.org/10.1039/C9NP00060G] [PMID: 32519686]
[96]
Kuo, C.L.; Chi, C.W.; Liu, T.Y. Modulation of apoptosis by berberine through inhibition of cyclooxygenase-2 and Mcl-1 expression in oral cancer cells. in vivo 2005, 19(1), 247-252.
[PMID: 15796182]
[97]
Kim, J.S.; Oh, D.; Yim, M.J.; Park, J.J.; Kang, K.R.; Cho, I.A.; Moon, S.M.; Oh, J.S.; You, J.S.; Kim, C.S.; Kim, D.K.; Lee, S.Y.; Lee, G.J. Im, H.J.; Kim, S.G. Berberine induces FasL-related apoptosis through p38 activation in KB human oral cancer cells. Oncol. Rep., 2015, 33(4), 1775-1782.
[http://dx.doi.org/10.3892/or.2015.3768] [PMID: 25634589]
[98]
Jagetia, G.C. Anticancer potential of natural isoquinoline alkaloid berberine. J. Explorat. Res. Pharmacol., 2021, 6(3), 105-133.
[http://dx.doi.org/10.14218/JERP.2021.00005]
[99]
Lee, S.L.; Dickson, R.B.; Lin, C.Y. Activation of hepatocyte growth factor and urokinase/plasminogen activator by matriptase, an epithelial membrane serine protease. J. Biol. Chem., 2000, 275(47), 36720-36725.
[http://dx.doi.org/10.1074/jbc.M007802200] [PMID: 10962009]
[100]
Bhatt, A.S.; Erdjument-Bromage, H.; Tempst, P.; Craik, C.S.; Moasser, M.M. Adhesion signaling by a novel mitotic substrate of src kinases. Oncogene, 2005, 24(34), 5333-5343.
[http://dx.doi.org/10.1038/sj.onc.1208582] [PMID: 16007225]
[101]
Uhland, K. Matriptase and its putative role in cancer. Cell. Mol. Life Sci., 2006, 63(24), 2968-2978.
[http://dx.doi.org/10.1007/s00018-006-6298-x] [PMID: 17131055]
[102]
List, K. Matriptase: A culprit in cancer? Future Oncol., 2009, 5(1), 97-104.
[http://dx.doi.org/10.2217/14796694.5.1.97] [PMID: 19243302]
[103]
Li, P.; Jiang, S.; Lee, S.L.; Lin, C.Y.; Johnson, M.D.; Dickson, R.B.; Michejda, C.J.; Roller, P.P. Design and synthesis of novel and potent inhibitors of the type II transmembrane serine protease, matriptase, based upon the sunflower trypsin inhibitor-1. J. Med. Chem., 2007, 50(24), 5976-5983.
[http://dx.doi.org/10.1021/jm0704898] [PMID: 17985858]
[104]
Law, M.E.; Corsino, P.E.; Jahn, S.C.; Davis, B.J.; Chen, S.; Patel, B.; Pham, K.; Lu, J.; Sheppard, B.; Nørgaard, P.; Hong, J.; Higgins, P.; Kim, J-S.; Luesch, H.; Law, B.K. Glucocorticoids and histone deacetylase inhibitors cooperate to block the invasiveness of basal-like breast cancer cells through novel mechanisms. Oncogene, 2013, 32(10), 1316-1329.
[http://dx.doi.org/10.1038/onc.2012.138] [PMID: 22543582]
[105]
Nguyen, H.H.; Aronchik, I.; Brar, G.A.; Nguyen, D.H.H.; Bjeldanes, L.F.; Firestone, G.L. The dietary phytochemical indole-3-carbinol is a natural elastase enzymatic inhibitor that disrupts cyclin E protein processing. Proc. Natl. Acad. Sci., 2008, 105(50), 19750-19755.
[http://dx.doi.org/10.1073/pnas.0806581105] [PMID: 19064917]
[106]
Aronchik, I.; Bjeldanes, L.F.; Firestone, G.L. Direct inhibition of elastase activity by indole-3-carbinol triggers a CD40-TRAF regulatory cascade that disrupts NF-kappaB transcriptional activity in human breast cancer cells. Cancer Res., 2010, 70(12), 4961-4971.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3349] [PMID: 20530686]
[107]
Crocetti, L.; Quinn, M.T.; Schepetkin, I.A.; Giovannoni, M.P. A patenting perspective on human neutrophil elastase (HNE) inhibitors (2014-2018) and their therapeutic applications. Expert Opin. Ther. Pat., 2019, 29(7), 555-578.
[http://dx.doi.org/10.1080/13543776.2019.1630379] [PMID: 31204543]
[108]
Akizuki, M.; Fukutomi, T.; Takasugi, M.; Takahashi, S.; Sato, T.; Harao, M.; Mizumoto, T.; Yamashita, J. Prognostic significance of immunoreactive neutrophil elastase in human breast cancer: long-term follow-up results in 313 patients. Neoplasia, 2007, 9(3), 260-264.
[http://dx.doi.org/10.1593/neo.06808] [PMID: 17401466]
[109]
Sato, T.; Takahashi, S.; Mizumoto, T.; Harao, M.; Akizuki, M.; Takasugi, M.; Fukutomi, T.; Yamashita, J. Neutrophil elastase and cancer. Surg. Oncol., 2006, 15(4), 217-222.
[http://dx.doi.org/10.1016/j.suronc.2007.01.003] [PMID: 17320378]
[110]
Mittendorf, E.A.; Alatrash, G.; Qiao, N.; Wu, Y.; Sukhumalchandra, P.; St John, L.S.; Philips, A.V.; Xiao, H.; Zhang, M.; Ruisaard, K.; Clise-Dwyer, K.; Lu, S.; Molldrem, J.J. Breast cancer cell uptake of the inflammatory mediator neutrophil elastase triggers an anticancer adaptive immune response. Cancer Res., 2012, 72(13), 3153-3162.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-4135] [PMID: 22564522]
[111]
Nawa, M.; Osada, S.; Morimitsu, K.; Nonaka, K.; Futamura, M.; Kawaguchi, Y.; Yoshida, K. Growth effect of neutrophil elastase on breast cancer: favorable action of sivelestat and application to anti-HER2 therapy. Anticancer Res., 2012, 32(1), 13-19.
[PMID: 22213283]
[112]
Porter, D.C.; Zhang, N.; Danes, C.; McGahren, M.J.; Harwell, R.M.; Faruki, S.; Keyomarsi, K. Tumor-specific proteolytic processing of cyclin E generates hyperactive lower-molecular-weight forms. Mol. Cell. Biol., 2001, 21(18), 6254-6269.
[http://dx.doi.org/10.1128/MCB.21.18.6254-6269.2001] [PMID: 11509668]
[113]
Akli, S.; Keyomarsi, K. Cyclin E and its low molecular weight forms in human cancer and as targets for cancer therapy. Cancer Biol. Ther., 2003, 2(sup1)(1), 37-46.
[http://dx.doi.org/10.4161/cbt.201] [PMID: 14508079]
[114]
Hunt, K.K.; Keyomarsi, K. Cyclin E as a prognostic and predictive marker in breast cancer. Semin. Cancer Biol., 2005, 15(4), 319-326.
[http://dx.doi.org/10.1016/j.semcancer.2005.04.007] [PMID: 16043362]
[115]
Loeb, K.R.; Chen, X. Too much cleavage of cyclin E promotes breast tumorigenesis. PLoS Genet., 2012, 8(3), e1002623.
[http://dx.doi.org/10.1371/journal.pgen.1002623] [PMID: 22479209]
[116]
Hess, S.; Engelmann, H. A novel function of CD40: Induction of cell death in transformed cells. J. Exp. Med., 1996, 183(1), 159-167.
[http://dx.doi.org/10.1084/jem.183.1.159] [PMID: 8551219]
[117]
Wingett, D.G.; Vestal, R.E.; Forcier, K.; Hadjokas, N.; Nielson, C.P. CD40 is functionally expressed on human breast carcinomas: Variable inducibility by cytokines and enhancement of Fas-mediated apoptosis. Breast Cancer Res. Treat., 1998, 50(1), 27-36.
[http://dx.doi.org/10.1023/A:1006012607452] [PMID: 9802617]
[118]
Hirano, A.; Longo, D.L.; Taub, D.D.; Ferris, D.K.; Young, L.S.; Eliopoulos, A.G.; Agathanggelou, A.; Cullen, N.; Macartney, J.; Fanslow, W.C.; Murphy, W.J. Inhibition of human breast carcinoma growth by a soluble recombinant human CD40 ligand. Blood, 1999, 93(9), 2999-3007.
[http://dx.doi.org/10.1182/blood.V93.9.2999] [PMID: 10216096]
[119]
Al-Awadhi, F.H.; Paul, V.J.; Luesch, H. Structural diversity and anticancer activity of marine‐derived elastase inhibitors: Key features and mechanisms mediating the antimetastatic effects in invasive breast cancer. ChemBioChem, 2018, 19(8), 815-825.
[http://dx.doi.org/10.1002/cbic.201700627] [PMID: 29405541]
[120]
Di, D.; Chen, L.; Wang, L.; Sun, P.; Liu, Y.; Xu, Z.; Ju, J. Downregulation of human intercellular adhesion molecule-1 attenuates the metastatic ability in human breast cancer cell lines. Oncol. Rep., 2016, 35(3), 1541-1548.
[http://dx.doi.org/10.3892/or.2016.4543] [PMID: 26751847]
[121]
Gitlin-Domagalska, A.; Maciejewska, A.; Dębowski, D. Bowman-birk inhibitors: Insights into family of multifunctional proteins and peptides with potential therapeutical applications. Pharmaceuticals, 2020, 13(12), 421.
[http://dx.doi.org/10.3390/ph13120421] [PMID: 33255583]
[122]
Srikanth, S.; Chen, Z. Plant protease inhibitors in therapeutics-focus on cancer therapy. Front. Pharmacol., 2016, 7, 470-489.
[http://dx.doi.org/10.3389/fphar.2016.00470] [PMID: 28008315]
[123]
Armstrong, W.B.; Kennedy, A.R.; Wan, X.S.; Atiba, J.; McLaren, C.E.; Meyskens, F.L. Jr Single-dose administration of Bowman-Birk inhibitor concentrate in patients with oral leukoplakia. Cancer Epidemiol. Biomarkers Prev., 2000, 9(1), 43-47.
[PMID: 10667462]
[124]
Manasanch, E.E.; Orlowski, R.Z. Proteasome inhibitors in cancer therapy. Nat. Rev. Clin. Oncol., 2017, 14(7), 417-433.
[http://dx.doi.org/10.1038/nrclinonc.2016.206] [PMID: 28117417]
[125]
Bibo-Verdugo, B.; Jiang, Z.; Caffrey, C.R.; O’Donoghue, A.J. Targeting proteasomes in infectious organisms to combat disease. FEBS J., 2017, 284(10), 1503-1517.
[http://dx.doi.org/10.1111/febs.14029] [PMID: 28122162]
[126]
Della Sala, G.; Agriesti, F.; Mazzoccoli, C.; Tataranni, T.; Costantino, V.; Piccoli, C. Clogging the ubiquitin-proteasome machinery with marine natural products: last decade update. Mar. Drugs, 2018, 16(12), 467.
[http://dx.doi.org/10.3390/md16120467] [PMID: 30486251]
[127]
Hanada, M.; Sugawara, K.; Kaneta, K.; Toda, S.; Nishiyama, Y.; Tomita, K.; Yamamoto, H.; Konishi, M.; Oki, T. Epoxomicin, a new antitumor agent of microbial origin. J. Antibiot., 1992, 45(11), 1746-1752.
[http://dx.doi.org/10.7164/antibiotics.45.1746] [PMID: 1468981]
[128]
Meng, L.; Mohan, R.; Kwok, B.H.B.; Elofsson, M.; Sin, N.; Crews, C.M. Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc. Natl. Acad. Sci., 1999, 96(18), 10403-10408.
[http://dx.doi.org/10.1073/pnas.96.18.10403] [PMID: 10468620]
[129]
Groll, M.; Huber, R.; Potts, B.C.M. Crystal structures of Salinosporamide A (NPI-0052) and B (NPI-0047) in complex with the 20S proteasome reveal important consequences of β-lactone ring opening and a mechanism for irreversible binding. J. Am. Chem. Soc., 2006, 128(15), 5136-5141.
[http://dx.doi.org/10.1021/ja058320b] [PMID: 16608349]
[130]
Macherla, V.R.; Mitchell, S.S.; Manam, R.R.; Reed, K.A.; Chao, T.H.; Nicholson, B.; Deyanat-Yazdi, G.; Mai, B.; Jensen, P.R.; Fenical, W.F.; Neuteboom, S.T.C.; Lam, K.S.; Palladino, M.A.; Potts, B.C.M. Structure-activity relationship studies of salinosporamide A (NPI-0052), a novel marine derived proteasome inhibitor. J. Med. Chem., 2005, 48(11), 3684-3687.
[http://dx.doi.org/10.1021/jm048995+] [PMID: 15916417]
[131]
Manam, R.R.; McArthur, K.A.; Chao, T.H.; Weiss, J.; Ali, J.A.; Palombella, V.J.; Groll, M.; Lloyd, G.K.; Palladino, M.A.; Neuteboom, S.T.C.; Macherla, V.R.; Potts, B.C.M. Leaving groups prolong the duration of 20S proteasome inhibition and enhance the potency of salinosporamides. J. Med. Chem., 2008, 51(21), 6711-6724.
[http://dx.doi.org/10.1021/jm800548b] [PMID: 18939815]
[132]
Potts, B.C.; Lam, K.S. Generating a generation of proteasome inhibitors: from microbial fermentation to total synthesis of salinosporamide a (marizomib) and other salinosporamides. Mar. Drugs, 2010, 8(4), 835-880.
[http://dx.doi.org/10.3390/md8040835] [PMID: 20479958]
[133]
Ma, L.; Diao, A. Marizomib, a potent second generation proteasome inhibitor from natural origin. Anticancer. Agents Med. Chem., 2015, 15(3), 298-306.
[http://dx.doi.org/10.2174/1871520614666141114202606] [PMID: 25403165]
[134]
Pereira, R.B.; Evdokimov, N.M.; Lefranc, F.; Valentão, P.; Kornienko, A.; Pereira, D.M.; Andrade, P.B.; Gomes, N.G.M. Marine-derived anticancer agents: Clinical benefits, innovative mechanisms, and new targets. Mar. Drugs, 2019, 17(6), 329.
[http://dx.doi.org/10.3390/md17060329] [PMID: 31159480]
[135]
Pereira, A.R.; Kale, A.J.; Fenley, A.T.; Byrum, T.; Debonsi, H.M.; Gilson, M.K.; Valeriote, F.A.; Moore, B.S.; Gerwick, W.H. The carmaphycins: new proteasome inhibitors exhibiting an α,β-epoxyketone warhead from a marine cyanobacterium. ChemBioChem, 2012, 13(6), 810-817.
[http://dx.doi.org/10.1002/cbic.201200007] [PMID: 22383253]
[136]
Rawat, A.; Roy, M.; Jyoti, A.; Kaushik, S.; Verma, K.; Srivastava, V.K. Cysteine proteases: Battling pathogenic parasitic protozoans with omnipresent enzymes. Microbiol. Res., 2021, 249, 126784.
[http://dx.doi.org/10.1016/j.micres.2021.126784] [PMID: 33989978]
[137]
Verma, S.; Dixit, R.; Pandey, K.C. Cysteine proteases: Modes of activation and future prospects as pharmacological targets. Front. Pharmacol., 2016, 7, 107.
[http://dx.doi.org/10.3389/fphar.2016.00107] [PMID: 27199750]
[138]
Turk, V.; Stoka, V.; Vasiljeva, O.; Renko, M.; Sun, T.; Turk, B.; Turk, D. Cysteine cathepsins: From structure, function and regulation to new frontiers. Biochim. Biophys. Acta. Proteins Proteomics, 2012, 1824(1), 68-88.
[http://dx.doi.org/10.1016/j.bbapap.2011.10.002]
[139]
Sudhan, D.R.; Siemann, D.W.; Cathepsin, L. Cathepsin L targeting in cancer treatment. Pharmacol. Ther., 2015, 155, 105-116.
[http://dx.doi.org/10.1016/j.pharmthera.2015.08.007] [PMID: 26299995]
[140]
Fujishima, A.; Imai, Y.; Nomura, T.; Fujisawa, Y.; Yamamoto, Y.; Sugawara, T. The crystal structure of human cathepsin L complexed with E‐64. FEBS Lett., 1997, 407(1), 47-50.
[http://dx.doi.org/10.1016/S0014-5793(97)00216-0] [PMID: 9141479]
[141]
Ono, Y.; Saido, T.C.; Sorimachi, H. Calpain research for drug discovery: Challenges and potential nature reviews drug discovery. Nat. Publis. Gr., 2016, 11(29), 854-876.
[142]
Saatman, K.E.; Creed, J.; Raghupathi, R. Calpain as a therapeutic target in traumatic brain injury. Neurotherapeutics, 2010, 7(1), 31-42.
[http://dx.doi.org/10.1016/j.nurt.2009.11.002] [PMID: 20129495]
[143]
Leloup, L.; Wells, A. Calpains as potential anti-cancer targets. Expert Opin. Ther. Targets, 2011, 15(3), 309-323.
[http://dx.doi.org/10.1517/14728222.2011.553611] [PMID: 21244345]
[144]
Potz, B.A.; Abid, M.R.; Sellke, F.W. Role of calpain in pathogenesis of human disease processes. J. Nat. Sci., 2016, 2(9), e218.
[PMID: 27747292]
[145]
Barnard, D.L.; Hubbard, V.D.; Burton, J.; Smee, D.F.; Morrey, J.D.; Otto, M.J.; Sidwell, R.W. Inhibition of severe acute respiratory syndrome-associated coronavirus (SARSCoV) by calpain inhibitors and β-D-N4-hydroxycytidine. Antivir. Chem. Chemother., 2004, 15(1), 15-22.
[http://dx.doi.org/10.1177/095632020401500102] [PMID: 15074711]
[146]
Schneider, M.; Ackermann, K.; Stuart, M.; Wex, C.; Protzer, U.; Schätzl, H.M.; Gilch, S. Severe acute respiratory syndrome coronavirus replication is severely impaired by MG132 due to proteasome-independent inhibition of M-calpain. J. Virol., 2012, 86(18), 10112-10122.
[http://dx.doi.org/10.1128/JVI.01001-12] [PMID: 22787216]
[147]
Taori, K.; Liu, Y.; Paul, V.J.; Luesch, H. Combinatorial strategies by marine cyanobacteria: symplostatin 4, an antimitotic natural dolastatin 10/15 hybrid that synergizes with the coproduced HDAC inhibitor largazole. ChemBioChem, 2009, 10(10), 1634-1639.
[http://dx.doi.org/10.1002/cbic.200900192] [PMID: 19514039]
[148]
Liu, S.; Gao, X.; Zhang, L.; Qin, S.; Wei, M.; Liu, N.; Zhao, R.; Li, B.; Meng, Y.; Lin, G.; Lu, C.; Liu, X.; Xie, M.; Liu, T.; Zhou, H.; Qi, M.; Yang, G.; Yang, C. A novel Anti-Cancer Stem Cells compound optimized from the natural symplostatin 4 scaffold inhibits Wnt/β-catenin signaling pathway. Eur. J. Med. Chem., 2018, 156, 21-42.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.046] [PMID: 30006166]
[149]
White, J.B.; Beckford, J.; Yadegarynia, S.; Ngo, N.; Lialiutska, T.; d’Alarcao, M. Some natural flavonoids are competitive inhibitors of caspase-1, -3, and -7 despite their cellular toxicity. Food Chem., 2012, 131(4), 1453-1459.
[http://dx.doi.org/10.1016/j.foodchem.2011.10.026] [PMID: 22140296]
[150]
Yadav, P.; Yadav, R.; Jain, S.; Vaidya, A. Caspase‐3: A primary target for natural and synthetic compounds for cancer therapy. Chem. Biol. Drug Des., 2021, 98(1), 144-165.
[http://dx.doi.org/10.1111/cbdd.13860] [PMID: 33963665]
[151]
Al-Awadhi, F.H.; Law, B.K.; Paul, V.J.; Luesch, H. Grassystatins D–F, potent aspartic protease inhibitors from marine cyanobacteria as potential antimetastatic agents targeting invasive breast cancer. J. Nat. Prod., 2017, 80(11), 2969-2986.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00551] [PMID: 29087712]
[152]
Cerdà-Costa, N.; Xavier Gomis-Rüth, F. Architecture and function of metallopeptidase catalytic domains. Protein Sci., 2014, 23(2), 123-144.
[http://dx.doi.org/10.1002/pro.2400] [PMID: 24596965]
[153]
Kumar, G.B.; Nair, B.G.; Perry, J.J.P.; Martin, D.B.C. Recent insights into natural product inhibitors of matrix metalloproteinases. MedChemComm, 2019, 10(12), 2024-2037.
[http://dx.doi.org/10.1039/C9MD00165D] [PMID: 32904148]
[154]
Gupta, P. Natural products as inhibitors of matrix metalloproteinases. Nat. Prod. Chem. Res., 2016, 4(1), 1.
[http://dx.doi.org/10.4172/2329-6836.1000e114]
[155]
Cathcart, J.; Pulkoski-Gross, A.; Cao, J. Targeting matrix metalloproteinases in cancer: Bringing new life to old ideas genes and diseases. Chongq. Med. Univ., 2015, 3(1), 26-34.
[156]
Mannello, F.; Tonti, G.; Papa, S. Matrix metalloproteinase inhibitors as anticancer therapeutics. Curr. Cancer Drug Targets, 2005, 5(4), 285-298.
[http://dx.doi.org/10.2174/1568009054064615] [PMID: 15975049]
[157]
Peng, P.L.; Hsieh, Y.S.; Wang, C.J.; Hsu, J.L.; Chou, F.P. Inhibitory effect of berberine on the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2. Toxicol. Appl. Pharmacol., 2006, 214(1), 8-15.
[http://dx.doi.org/10.1016/j.taap.2005.11.010] [PMID: 16387334]
[158]
James, M.A.; Fu, H.; Liu, Y.; Chen, D.R.; You, M. Dietary administration of berberine or Phellodendron amurense extract inhibits cell cycle progression and lung tumorigenesis. Mol. Carcinog., 2011, 50(1), 1-7.
[http://dx.doi.org/10.1002/mc.20690] [PMID: 21061266]
[159]
Ling, X.H.; Wang, S.K.; Huang, Y.H.; Huang, M.J.; Duh, C.Y. A high-content screening assay for the discovery of novel proteasome inhibitors from formosan soft corals. Mar. Drugs, 2018, 16(10), 395.
[http://dx.doi.org/10.3390/md16100395] [PMID: 30347865]
[160]
Majumdar, D.D. Recent updates on pharmaceutical potential of plant protease inhibitors. Int. J. Med. Pharm. Sci., 2013, 3, 101-120.
[161]
Clemente, A.; Arques, M.C. Bowman-Birk inhibitors from legumes as colorectal chemopreventive agents. World J. Gastroenterol., 2014, 20(30), 10305-10315.
[http://dx.doi.org/10.3748/wjg.v20.i30.10305] [PMID: 25132747]
[162]
Morrison, K.C.; Hergenrother, P.J. Natural products as starting points for the synthesis of complex and diverse compounds. Nat. Prod. Rep., 2014, 31(1), 6-14.
[http://dx.doi.org/10.1039/C3NP70063A] [PMID: 24219884]
[163]
Hashmi, M.A.; Andreassend, S.K.; Keyzers, R.A.; Lein, M. Accurate prediction of the optical rotation and NMR properties for highly flexible chiral natural products. Phys. Chem. Chem. Phys., 2016, 18(35), 24506-24510.
[http://dx.doi.org/10.1039/C6CP04828E] [PMID: 27539138]
[164]
Adelusi, T.I.; Oyedele, A.Q.K.; Boyenle, I.D.; Ogunlana, A.T.; Adeyemi, R.O.; Ukachi, C.D.; Idris, M.O.; Olaoba, O.T.; Adedotun, I.O.; Kolawole, O.E.; Xiaoxing, Y.; Abdul-Hammed, M. Molecular modeling in drug discovery. Informatics in Medicine Unlocked, 2022, 29, 100880.
[http://dx.doi.org/10.1016/j.imu.2022.100880]
[165]
Baxi, S.M.; Beall, R.; Yang, J.; Mackey, T.K. A multidisciplinary review of the policy, intellectual property rights, and international trade environment for access and affordability to essential cancer medications. Global. Health, 2019, 15(1), 57.
[http://dx.doi.org/10.1186/s12992-019-0497-3] [PMID: 31533850]
[166]
Liu, G.H.; Chen, T.; Zhang, X.; Ma, X.L.; Shi, H.S. Small molecule inhibitors targeting the cancers. MedComm, 2022, 3(4), e181.
[http://dx.doi.org/10.1002/mco2.181] [PMID: 36254250]
[167]
Bedard, P.L.; Hyman, D.M.; Davids, M.S.; Siu, L.L. Small molecules, big impact: 20 years of targeted therapy in oncology. Lancet, 2020, 395(10229), 1078-1088.
[http://dx.doi.org/10.1016/S0140-6736(20)30164-1] [PMID: 32222192]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy