Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Modified Microwave-assisted Solid-liquid Halex Reaction using Phosphonium Salt as Efficient and Robust Phase Transfer Catalyst

Author(s): Dhanaji M. Mohite, Pandurang M. Chavhan and Arghya Basu*

Volume 28, Issue 20, 2024

Published on: 09 July, 2024

Page: [1605 - 1612] Pages: 8

DOI: 10.2174/0113852728311593240626091836

Price: $65

Abstract

A modified solid-liquid halex reaction was developed in the presence of a robust phase transfer catalyst under microwave conditions. A fast, mild, and practical microwave- assisted synthesis of 2,3-difluoro-5-chloropyridine 3 starting from 2,3,5- trichlorpyridine 1 and spray-dried KF in polar aprotic solvent was developed. The addition of Tetrakis (piperidino) phosphonium chloride as phase transfer catalyst A was studied under microwave irritation (450W) and increased the yield and significantly reduced the reaction time in contrast to the conventional heating procedure. The highest reaction rate was observed at 5 wt% phase transfer phosphonium salt catalyst to 2,3,5-trichloropyridine 1.

[1]
Jeschke, P. The unique role of halogen substituents in the design of modern agrochemicals. Pest Manag. Sci., 2010, 66(1), 10-27.
[http://dx.doi.org/10.1002/ps.1829] [PMID: 19701961]
[2]
Finger, G.C.; Kruse, C.W.; Shiley, R.H.; White, R.H.; Whaley, H.A. Abstract, organic chemistry division. XVIth International Congress of Pure and Applied Chemistry Paris, 1957, 303.
[3]
Maynard, J.T. The synthesis of highly fluorinated compounds by use of potassium fluoride in polar solvents. J. Org. Chem., 1963, 28(1), 112-115.
[http://dx.doi.org/10.1021/jo01036a025]
[4]
Bunnett, J.F.; Zahler, R.E. Aromatic nucleophilic substitution reactions. Chem. Rev., 1951, 49(2), 273-412.
[http://dx.doi.org/10.1021/cr60153a002]
[5]
Finger, G.C.; Starr, L.D.; Dickerson, D.R.; Gutowsky, H.S.; Hamer, J. Aromatic fluorine compounds. XI. Replacement of chlorine by fluorine in halopyridines. J. Org. Chem., 1963, 28(6), 1666-1668.
[http://dx.doi.org/10.1021/jo01041a058]
[6]
Boudakian, M.M. Solvent‐free fluorination of partially‐chlorinated heterocyclics: Synthesis of 2,6‐difluoropyridine from 2,6‐dichloropyridine. J. Heterocycl. Chem., 1968, 5(5), 683-684.
[http://dx.doi.org/10.1002/jhet.5570050515]
[7]
Boudakian, M.M.; Pittsford, J.; Stanely, J. Method for the preparation difluoropyridines. U.S. Patent 3,798,228,, 1974.
[8]
Venugopal, J.; Balakrishnan, C.; Rouge, B. Process for the preparation of 2,3-difluoro-5-halopyridines. E.P. Patent 0710,649,, 1995.
[9]
Little, J.C.; Wilson, C.A. Preparation of difluoropyridine compounds. U.S. Patent 4,822,887,, 1989.
[10]
Little, J.C.; Charles, A.; Wilson, C.A. Preparation of difluoropyridine compounds. E.P. Patent 0146924,, 1984.
[11]
Schurter, R.; Rempfler, H. 2‐[4‐(5‐Chloro‐3‐Fluoropyridin‐2‐yloxy)‐Phenoxyl]‐propionic acid‐propynyl ester with herbicidal activity. U.S. Patent 4,713,109, 1987.
[12]
Berthold, S.; Thomas, W.; Ralph, P.; Andrew, B.; Walter, H. Mixtures comprising tetrakis (pyrrolidino/piperidino) phosphonium salts. E.P. Patent 1070724, 2000.
[13]
Thomas, W.; Daniel, D.; Thomas, S.; Hagen, H.; Reinhard, S. Phosphazenium salt mixtures containing hexakis (amino) diphosphazenium tetrakis (amino) phosphonium and polyaminophosphazenium salts. D.E. Patent 10307558, 2003.
[14]
Ahmadi, A. Application of new blended catalyst for synthesizing of fluoro intermediate in herbicide industries. Asian J. Chem., 2009, 21(9), 6651-6655.
[15]
Zhong, P.; Hu, H.; Guo, S. Direct formation of 2,3,5‐trichloropyridine and its nucleophilic displacement reactions in ionic liquid. Synth. Commun., 2004, 34(23), 4301-4311.
[http://dx.doi.org/10.1081/SCC-200039365]
[16]
Sasson, Y.; Negussie, S.; Royz, M.; Mushkin, N. Tetramethylammonium chloride as a selective and robust phase transfer catalyst in a solid–liquid halex reaction: The role of water. Chem. Commun., 1996, (3), 297-298.
[http://dx.doi.org/10.1039/CC9960000297]
[17]
Alexander, K.; Sergei, P. Process for preparing fluorine-containing compounds U.S. Patent 6,184,425,, 2001.
[18]
Fan, A.; Chuah, G.K.; Jaenicke, S. Phosphonium ionic liquids as highly thermal stable and efficient phase transfer catalysts for solid–liquid Halex reactions. Catal. Today, 2012, 198(1), 300-304.
[http://dx.doi.org/10.1016/j.cattod.2012.02.063]
[19]
Chiappe, C.; Pieraccini, D.; Saullo, P. Nucleophilic displacement reactions in ionic liquids: substrate and solvent effect in the reaction of NaN(3) and KCN with alkyl halides and tosylates. J. Org. Chem., 2003, 68(17), 6710-6715.
[http://dx.doi.org/10.1021/jo026838h] [PMID: 12919037]
[20]
Shestopalov, A.M.; Rodinovskaya, L.A.; Mortikov, V.Y.; Fedorov, A.E. Synthesis of fluorinated pyridines. Fluor. Heterocycl. Chem., 2014, 2, 1-58.
[21]
Worrell, B.T.; Hein, J.E.; Fokin, V.V. Halogen exchange (Halex) reaction of 5-iodo-1,2,3-triazoles: Synthesis and applications of 5-fluorotriazoles. Angew. Chem. Int. Ed., 2012, 51(47), 11791-11794.
[http://dx.doi.org/10.1002/anie.201204979] [PMID: 23059856]
[22]
Alič, B.; Petrovčič, J.; Jelen, J.; Tavčar, G.; Iskra, J. Renewable reagent for nucleophilic fluorination. J. Org. Chem., 2022, 87(9), 5987-5993.
[http://dx.doi.org/10.1021/acs.joc.2c00247] [PMID: 35438994]
[23]
Wang, Y.; Chen, Q.; Sun, F.; Liu, C.; He, M. Synthesis of 2,3-difluoro-5-chloropyridine by phase transfer catalysis. Chemical Reagents, 2011, 33(1), 91-93.
[24]
Luo, J.; Lü, C.; Cai, C.; Qü, W. A polymer onium acting as phase-transfer catalyst in halogen-exchange fluorination promoted by microwave. J. Fluor. Chem., 2004, 125(5), 701-704.
[http://dx.doi.org/10.1016/j.jfluchem.2003.11.018]
[25]
Bamidele, A.O. Process for the production of fluorinated aromatic rings by simultaneous cooling and microwave heated halogen exchange., U.S. Patent 0,022,804, 2010.
[26]
Kremsner, J.M.; Rack, M.; Pilger, C.; Oliver Kappe, C. Microwave-assisted aliphatic fluorine–chlorine exchange using triethylamine trihydrofluoride (TREAT-HF). Tetrahedron Lett., 2009, 50(26), 3665-3668.
[http://dx.doi.org/10.1016/j.tetlet.2009.03.103]
[27]
Pan, D.H.; Wang, T.Z.; Xiao, G.M. Microwave-assisted synthesis of 1,4-bis(difluoromethyl)benzene. Chem. Pap., 2017, 71(7), 1249-1254.
[http://dx.doi.org/10.1007/s11696-016-0118-z]
[28]
Hohmann, E.; Keglevich, G.; Greiner, I. The effect of onium salt additives on the diels-alder reactions of a 1-phenyl-1,2-dihydrophosphinine oxide under microwave conditions. Phosphorus Sulfur Silicon Relat. Elem., 2008, 182(10), 2351-2357.
[http://dx.doi.org/10.1080/10426500701441473]
[29]
Perato, S.; Giorgi, M.; Burzicki, G.; Legalite, F.; Rault, S.; Voisin-Chiret, A. Focus on microwaves assisted halogen-halogen exchange reaction conditions on 2-halopyridines. Curr. Microw. Chem., 2014, 1(1), 75-80.
[http://dx.doi.org/10.2174/22133356114019990003]
[30]
Tiwari, G.; Khanna, A.; Mishra, V.K.; Sagar, R. Recent developments on microwave-assisted organic synthesis of nitrogen- and oxygen-containing preferred heterocyclic scaffolds. RSC Advances, 2023, 13(47), 32858-32892.
[http://dx.doi.org/10.1039/D3RA05986C] [PMID: 37942237]
[31]
Srivastava, M.; Banger, A.; Yadav, R.; Srivastava, A.; Dwivedi, J.; Rawat, V. Advanced microwave assisted organic synthesis method in organic chemistry. Adv. Org. Synth., 2022, 17, 101-150.
[http://dx.doi.org/10.2174/9789815040524122170005]
[32]
Atri, S.; Tomar, R. A review on the synthesis and modification of functional inorganic‐organic‐hybrid materials via microwave‐assisted method. ChemistrySelect, 2021, 6(34), 9351-9362.
[http://dx.doi.org/10.1002/slct.202102030]
[33]
Strekalova, A.A.; Shesterkina, A.A.; Kustov, A.L.; Kustov, L.M. Recent studies on the application of microwave-assisted method for the preparation of heterogeneous catalysts and catalytic hydrogenation processes. Int. J. Mol. Sci., 2023, 24(9), 8272.
[http://dx.doi.org/10.3390/ijms24098272] [PMID: 37175978]
[34]
Phillips, A.M.M.F.; Pombeiro, A.J. Microwave-assisted synthesis of fluoroorganics. In: Green sustainable process for chemical and environmental engineering and science, 1st ed; Elsevier, 2021, pp. 415-488.
[35]
Iskra, J. Green methods in halogenation of heterocycles. In: Halogenated Heterocycles. Topics in Heterocyclic Chemistry; Springer: Berlin, Heidelberg.,, 2011, 27, pp. 269-308.
[36]
Keglevich, G.; Grün, A.; Bálint, E. Microwave irradiation and phase transfer catalysis in C-,O-and N-alkylation reactions. Curr. Org. Synth., 2013, 10(5), 751-763.
[http://dx.doi.org/10.2174/1570179411310050006]
[37]
Evano, G.; Nitelet, A.; Thilmany, P.; Dewez, D.F. Metal-mediated halogen exchange in aryl and vinyl halides: A review. Front Chem., 2018, 6, 114.
[http://dx.doi.org/10.3389/fchem.2018.00114] [PMID: 29755967]
[38]
Baqi, Y. Recent advances in microwave-assisted copper-catalyzed cross-coupling reactions. Catalysts, 2020, 11(1), 46.
[http://dx.doi.org/10.3390/catal11010046]
[39]
Miyajima, F.; Iijima, T.; Tomoi, M.; Kimura, Y. Aromatic nucleophilic fluorination with KF catalyzed by polymer-supported phosphonium salts under solid–solid–liquid phase transfer conditions. React. Funct. Polym., 2000, 43(3), 315-324.
[http://dx.doi.org/10.1016/S1381-5148(99)00067-X]
[40]
Rakesh, D.A. Phase transfer catalysis: A green methodology for new drug discovery research: A review, indo American. J. Pharm. Res., 2018.
[41]
Greiner, I.; Sypaseuth, F.; Grun, A.; Karsai, E.; Keglevich, G. The role of phase transfer catalysis in the microwave-assisted n-benzylation of amides, imides and n-heterocycles. Lett. Org. Chem., 2009, 6(7), 529-534.
[http://dx.doi.org/10.2174/157017809789869546]
[42]
Bougrin, K.; Loupy, A.; Soufiaoui, M. Microwave-assisted solvent-free heterocyclic synthesis. J. Photochem. Photobiol. Photochem. Rev., 2005, 6(2-3), 139-167.
[http://dx.doi.org/10.1016/j.jphotochemrev.2005.07.001]
[43]
Hara, S.; Inagaki, T.; Fukuhara, T. Effective fluorinationreaction with Et3N.3HF under microwave irradiation. Synthesis, 2003, 2003(8), 1157-1159.
[http://dx.doi.org/10.1055/s-2003-39395]
[44]
Adams, D.J.; Clark, J.H. Nucleophilic routes to selectively fluorinated aromatics. Chem. Soc. Rev., 1999, 28(4), 225-231.
[http://dx.doi.org/10.1039/a808707e]
[45]
Saint-Jalmes, L. Selective aliphatic fluorination by halogen exchange in mild conditions. ChemInform, 2006, 37.
[46]
Pleschke, A.; Marhold, A.; Schneider, M.; Kolomeitsev, A.; Röschenthaler, G.V. Halex reactions of aromatic compounds catalysed by 2-azaallenium, carbophosphazenium, aminophosphonium and diphosphazenium salts: A comparative study. J. Fluor. Chem., 2004, 125(6), 1031-1038.
[http://dx.doi.org/10.1016/j.jfluchem.2004.01.030]
[47]
Liang, Z.Y.; Lü, C.X.; Luo, J.; Dong, L.B. A polymer imidazole salt as phase-transfer catalyst in halex fluorination irradiated by microwave. J. Fluor. Chem., 2007, 128(6), 608-611.
[http://dx.doi.org/10.1016/j.jfluchem.2007.02.002]
[48]
Liang, Z.Y.; Lü, C.X. Halogen-exchange fluorination of chlorinated benzaldehydes and diphenyl ketones promoted by microwave. Adv. Mat. Res., 2011, 266, 292-295.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.266.292]
[49]
Placzek, M.; LaBeaume, P.; Harris, L.; Ng, P.; Daniels, M.; Kallmerten, A.; Jones, G.B. Microwave accelerated three-component fluoroalkylations: Expeditious routes to fluoropharmaceuticals and PET ligands. Tetrahedron Lett., 2011, 52(2), 332-335.
[http://dx.doi.org/10.1016/j.tetlet.2010.11.056]
[50]
Hayes, B.L. Recent advances in microwave-assisted synthesis. Aldrichim Acta, 2004, 37(2), 66-77.
[51]
Kumar, P.; Wiebe, L.I.; Asikoglu, M.; Tandon, M.; McEwan, A.J.B. Microwave-assisted (radio)halogenation of nitroimidazole-based Hypoxia markers. Appl. Radiat. Isot., 2002, 57(5), 697-703.
[http://dx.doi.org/10.1016/S0969-8043(02)00185-9] [PMID: 12433044]
[52]
Kranjc, K.; Kocevar, M. From conventional reaction conditions to microwave-assisted catalytic transformations of various substrates. State of the art in 2012 (Part B: Catalysis). Curr. Org. Chem., 2013, 17(5), 457-473.
[http://dx.doi.org/10.2174/1385272811317050004]
[53]
Nilsson, P.; Olofsson, K.; Larhed, M. Microwave-assisted and metal-catalyzed coupling reactions; Microwave Methods in Organic Synthesis, 2006, pp. 103-144.
[54]
Kokel, A.; Schäfer, C.; Török, B. Application of microwave-assisted heterogeneous catalysis in sustainable synthesis design. Green Chem., 2017, 19(16), 3729-3751.
[http://dx.doi.org/10.1039/C7GC01393K]
[55]
Rauf, A.; Farshori, N.N.; Rauf, A. Imidazoles. In: Microwave-induced Synthesis of Aromatic Heterocycles; Springer: Dordrecht, , 2012; 3, pp. 47-55.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy