Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Synthesis of Polyoxygenated 4,5-Diarylpyridazines with Antiproliferative and Antitubulin Activity via Inverse Electron-Demand Diels-Alder Reaction of 1,2,4,5- Tetrazine#

Author(s): Olga I. Adaeva, Dmitry V. Demchuk, Roman A. Dolotov, Tatiana S. Kuptsova, Marina N. Semenova and Victor V. Semenov*

Volume 28, Issue 20, 2024

Published on: 03 July, 2024

Page: [1613 - 1620] Pages: 8

DOI: 10.2174/0113852728314401240613045216

Price: $65

Abstract

The synthesis of a series of multifunctionalized 4,5-diarylpyridazines via inverse electron-demand Diels-Alder reaction between highly oxygenated diarylacetylenes and unsubstituted 1,2,4,5-tetrazine was developed using polyalkoxybenzenes isolated from industrial essential oils as starting material. The reaction proceeded smoothly to afford combretastatin A-4 analogues with pyridazine linker in consistently high yield. In a phenotypic sea urchin embryo assay, diarylpyridazine with 3,4,5-trimethoxyphenyl and 3-amino- 4-methoxyphenyl aryl rings was identified as a potent antimitotic microtubule-destabilizing compound.

[1]
Sergeev, P.G.; Nenajdenko, V.G. Recent advances in the chemistry of pyridazine - an important representative of six-membered nitrogen heterocycles. Russ. Chem. Rev., 2020, 89(4), 393-429.
[http://dx.doi.org/10.1070/rcr4922]
[2]
Wermuth, C.G. Are pyridazines privileged structures? MedChemComm, 2011, 2(10), 935-941.
[http://dx.doi.org/10.1039/c1md00074h]
[3]
Asif, M.; Alghamdi, S. A mini-review on pyridazine analogs: Chemical and pharmacological potentials. Mini Rev. Org. Chem., 2023, 20(2), 100-123.
[http://dx.doi.org/10.2174/1570193x19666220329155551]
[4]
Malik, A.; Mishra, R.; Mazumder, R.; Mazumder, A.; Mishra, P.S. A comprehensive study on synthesis and biological activities of pyridazine derivatives. Res. J. Pharm. Technol., 2021, 14(6), 3423-3429.
[http://dx.doi.org/10.52711/0974-360x.2021.00595]
[5]
He, Z-X.; Gong, Y.P.; Zhang, X.; Ma, L.Y.; Zhao, W. Pyridazine as a privileged structure: An updated review on anticancer activity of pyridazine containing bioactive molecules. Eur. J. Med. Chem., 2021, 209, 112946.
[http://dx.doi.org/10.1016/j.ejmech.2020.112946] [PMID: 33129590]
[6]
Sonker, P.; Singh, M.; Nidhar, M.; Sharma, V.P.; Yadav, P.; Singh, R.; Koch, B.; Tewari, A.K. Novel pyrimido-pyridazine derivatives: design, synthesis, anticancer evaluation and in silico studies. Future Med. Chem., 2022, 14(23), 1693-1704.
[http://dx.doi.org/10.4155/fmc-2022-0199] [PMID: 36533662]
[7]
Elmeligie, S.; Ahmed, E.M.; Abuel-Maaty, S.M.; Zaitone, S.A.; Mikhail, D.S. Design and synthesis of pyridazine containing compounds with promising anticancer activity. Chem. Pharm. Bull. , 2017, 65(3), 236-247.
[http://dx.doi.org/10.1248/cpb.c16-00532] [PMID: 28250345]
[8]
Sabt, A.; Eldehna, W.M.; Al-Warhi, T.; Alotaibi, O.J.; Elaasser, M.M.; Suliman, H.; Abdel-Aziz, H.A. Discovery of 3,6-disubstituted pyridazines as a novel class of anticancer agents targeting cyclin-dependent kinase 2: synthesis, biological evaluation and in silico insights. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1616-1630.
[http://dx.doi.org/10.1080/14756366.2020.1806259] [PMID: 32781872]
[9]
Asif, M. The anticancer potential of various substituted pyridazines and related compounds. Int. J. Adv. Chem., 2014, 2(2), 148-161.
[http://dx.doi.org/10.14419/ijac.v2i2.2661]
[10]
Jaballah, M.Y.; Serya, R.T.; Abouzid, K. Pyridazine based scaffolds as privileged structures in anti-cancer therapy. Drug Res. (Stuttg.), 2017, 67(3), 138-148.
[http://dx.doi.org/10.1055/s-0042-119992] [PMID: 28073115]
[11]
Al-Mehizia, A.A.; Bakheit, A.H.; Zargar, S.; Bhat, M.A.; Asmari, M.M.; Wani, T.A. Evaluation of biophysical interaction between newly synthesized pyrazoline pyridazine derivative and bovine serum albumin by spectroscopic and molecular docking studies. J. Spectrosc., 2019, 2019, 1-12.
[http://dx.doi.org/10.1155/2019/3848670]
[12]
Mikstacka, R.; Stefanski, T.; Rozanski, J. Tubulin-interactive stilbene derivatives as anticancer agents. Cell. Mol. Biol. Lett., 2013, 18(3), 368-397.
[http://dx.doi.org/10.2478/s11658-013-0094-z] [PMID: 23818224]
[13]
Yang, X.; Cheng, B.; Xiao, Y.; Xue, M.; Liu, T.; Cao, H.; Chen, J. Discovery of novel CA-4 analogs as dual inhibitors of tubulin polymerization and PD-1/PD-L1 interaction for cancer treatment. Eur. J. Med. Chem., 2021, 213, 113058.
[http://dx.doi.org/10.1016/j.ejmech.2020.113058] [PMID: 33280898]
[14]
Baytas, S.N. Recent advances in combretastatin A-4 inspired inhibitors of tubulin polymerization: An Update. Curr. Med. Chem., 2022, 29(20), 3557-3585.
[http://dx.doi.org/10.2174/1871526522666220105114437] [PMID: 34986762]
[15]
Liu, P.; Qin, Y.; Wu, L.; Yang, S.; Li, N.; Wang, H.; Xu, H.; Sun, K.; Zhang, S.; Han, X.; Sun, Y. A phase I clinical trial assessing the safety and tolerability of combretastatin A4 phosphate injections. Anticancer Drugs, 2014, 25(4), 462-471.
[http://dx.doi.org/10.1097/CAD.0000000000000070] [PMID: 24500030]
[16]
Jaroch, K.; Karolak, M.; Gorski, P.; Jaroch, A.; Krajewski, A.; Ilnicka, A.; Sloderbach, A.; Stefanski, T.; Sobiak, S. Combretastatins: In vitro structure-activity relationship, mode of action and current clinical status. Pharmacol. Rep., 2016, 68(6), 1266-1275.
[http://dx.doi.org/10.1016/j.pharep.2016.08.007] [PMID: 27686966]
[17]
Grisham, R.; Ky, B.; Tewari, K.S.; Chaplin, D.J.; Walker, J. Clinical trial experience with CA4P anticancer therapy: focus on efficacy, cardiovascular adverse events, and hypertension management. Gynecol. Oncol. Res. Pract., 2018, 5(1), 1-10.
[http://dx.doi.org/10.1186/s40661-017-0058-5] [PMID: 29318022]
[18]
Cushman, M.; Nagarathnam, D.; Gopal, D.; Chakraborti, A.K.; Lin, C.M.; Hamel, E. Synthesis and evaluation of stilbene and dihydrostilbene derivatives as potential anticancer agents that inhibit tubulin polymerization. J. Med. Chem., 1991, 34(8), 2579-2588.
[http://dx.doi.org/10.1021/jm00112a036] [PMID: 1875350]
[19]
Pettit, G.R.; Rhodes, M.R.; Herald, D.L.; Hamel, E.; Schmidt, J.M.; Pettit, R.K. Antineoplastic agents. 445. Synthesis and evaluation of structural modifications of (Z)- and (E)-combretastatin A-41. J. Med. Chem., 2005, 48(12), 4087-4099.
[http://dx.doi.org/10.1021/jm0205797] [PMID: 15943482]
[20]
Semenov, V.V.; Kiselyov, A.S.; Titov, I.Y.; Sagamanova, I.K.; Ikizalp, N.N.; Chernysheva, N.B.; Tsyganov, D.V.; Konyushkin, L.D.; Firgang, S.I.; Semenov, R.V.; Karmanova, I.B. Synthesis of antimitotic polyalkoxyphenyl derivatives of combretastatin using plant allylpolyalkoxybenzenes. J. Nat. Prod., 2010, 73(11), 1796-1802.
[http://dx.doi.org/10.1021/np1004278] [PMID: 21049975]
[21]
Rajak, H.; Dewangan, P.K.; Patel, V.; Jain, D.K.; Singh, A.; Veerasamy, R.; Sharma, P.C.; Dixit, A. Design of combretastatin A-4 analogs as tubulin targeted vascular disrupting agent with special emphasis on their cis-restricted isomers. Curr. Pharm. Des., 2013, 19(10), 1923-1955.
[http://dx.doi.org/10.2174/1381612811319100013] [PMID: 23237054]
[22]
Semenova, M.N.; Demchuk, D.V.; Tsyganov, D.V.; Chernysheva, N.B.; Samet, A.V.; Silyanova, E.A.; Kislyi, V.P.; Maksimenko, A.S.; Varakutin, A.E.; Konyushkin, L.D.; Raihstat, M.M. Sea urchin embryo model as a reliable in vivo phenotypic screen to characterize selective antimitotic molecules. Comparative evaluation of combretapyrazoles, -isoxazoles, -1,2,3-triazoles, and -pyrroles as tubulin-binding agents. ACS Comb. Sci., 2018, 20(12), 700-721.
[http://dx.doi.org/10.1021/acscombsci.8b00113] [PMID: 30452225]
[23]
Romagnoli, R.; Oliva, P.; Salvador, M.K.; Manfredini, S.; Padroni, C.; Brancale, A.; Ferla, S.; Hamel, E.; Ronca, R.; Maccarinelli, F.; Rruga, F. A facile synthesis of diaryl pyrroles led to the discovery of potent colchicine site antimitotic agents. Eur. J. Med. Chem., 2021, 214, 113229.
[http://dx.doi.org/10.1016/j.ejmech.2021.113229] [PMID: 33550186]
[24]
Simoni, D.; Grisolia, G.; Giannini, G.; Roberti, M.; Rondanin, R.; Piccagli, L.; Baruchello, R.; Rossi, M.; Romagnoli, R.; Invidiata, F.P.; Grimaudo, S. Heterocyclic and phenyl double-bond-locked combretastatin analogues possessing potent apoptosis-inducing activity in HL60 and in MDR cell lines. J. Med. Chem., 2005, 48(3), 723-736.
[http://dx.doi.org/10.1021/jm049622b]
[25]
Zheng, S.; Zhong, Q.; Mottamal, M.; Zhang, Q.; Zhang, C.; Lemelle, E.; McFerrin, H.; Wang, G. Design, synthesis, and biological evaluation of novel pyridine-bridged analogues of combretastatin-A4 as anticancer agents. J. Med. Chem., 2014, 57(8), 3369-3381.
[http://dx.doi.org/10.1021/jm500002k] [PMID: 24669888]
[26]
Punganuru, S.R.; Samala, R.; Srivenugopal, K.S. One-pot synthesis and antitumor activity of unsymmetrical terphenyls. Drug Res. (Stuttg.), 2017, 67(1), 25-31.
[http://dx.doi.org/10.1055/s-0042-114776] [PMID: 27626606]
[27]
Huo, Z.; Liu, K.; Zhang, X.; Liang, Y.; Sun, X. Discovery of pyrimidine-bridged CA-4 CBSIs for the treatment of cervical cancer in combination with cisplatin with significantly reduced nephrotoxicity. Eur. J. Med. Chem., 2022, 235, 114271.
[http://dx.doi.org/10.1016/j.ejmech.2022.114271] [PMID: 35339837]
[28]
Sauer, J.; Lang, D. Diels-Alder-Reaktionen der 1.2.4.5-Tetrazine. Angew. Chem., 1964, 76(13), 603-603.
[http://dx.doi.org/10.1002/ange.196407613122]
[29]
Birkofer, L.; Hänsel, E.; Steigel, A. Synthese von 3‐Phenyl‐5‐silylpyridazinen durch regioselektive [4 + 2]‐. Cycloadditionen. Chem. Ber., 2006, 115(7), 2574-2585.
[http://dx.doi.org/10.1002/cber.19821150720]
[30]
Oliveira, B.L.; Guo, Z.; Bernardes, G.J.L. Inverse electron demand Diels-Alder reactions in chemical biology. Chem. Soc. Rev., 2017, 46(16), 4895-4950.
[http://dx.doi.org/10.1039/c7cs00184c] [PMID: 28660957]
[31]
Li, X.; Liu, Z.; Dong, S. Bicyclo[6.1.0]nonyne and tetrazine amino acids for Diels–Alder reactions. RSC Adv., 2017, 7(8), 44470-44473.
[http://dx.doi.org/10.1039/c7ra08136g]
[32]
Foster, R.A.; Willis, M.C. Tandem inverse-electron-demand hetero-/retro-Diels-Alder reactions for aromatic nitrogen heterocycle synthesis. Chem. Soc. Rev., 2013, 42(1), 63-76.
[http://dx.doi.org/10.1039/c2cs35316d] [PMID: 23079670]
[33]
Sauer, J.; Heldmann, D.K.; Hetzenegger, J.; Krauthan, J.; Sichert, H.; Schuster, J. 1,2,4,5-Tetrazine: Synthesis and Reactivity in. [4+2] Cycloadditions. Eur. J. Org. Chem., 1998, 1998(12), 2885-2896.
[http://dx.doi.org/10.1002/(sici)1099-0690(199812)1998:12<2885::aid-ejoc2885>3.0.co;2-l]
[34]
Boger, D.L.; Soenen, D.R.; Boyce, C.W.; Hedrick, M.P.; Jin, Q. Total synthesis of ningalin B utilizing a heterocyclic azadiene Diels-Alder reaction and discovery of a new class of potent multidrug resistant (MDR) reversal agents. J. Org. Chem., 2000, 65(8), 2479-2483.
[http://dx.doi.org/10.1021/jo9916535] [PMID: 10789460]
[35]
Saracoglu, N. Recent advances and applications in 1,2,4,5-tetrazine chemistry. Tetrahedron, 2007, 63(20), 4199-4236.
[http://dx.doi.org/10.1016/j.tet.2007.02.051]
[36]
Semenov, V.V.; Rusak, V.V.; Chartov, E.M.; Zaretskii, M.I.; Konyushkin, L.D.; Firgang, S.I.; Chizhov, A.O.; Elkin, V.V.; Latin, N.N.; Bonashek, V.M.; Stas’eva, O.N. Polyalkoxybenzenes from plant raw materials 1. Isolation of polyalkoxybenzenes from CO2 extracts of Umbelliferae plant seeds. Russ. Chem. Bull., 2007, 56(12), 2448-2455.
[http://dx.doi.org/10.1007/s11172-007-0389-1]
[37]
Rusanov, D.A.; Samet, A.V.; Rusak, V.V.; Semenov, V.V. Synthesis of functionalized 1-methylchromeno[3,4-b]pyrrol-4(3H)-ones via the Barton–Zard reaction starting from pseudonitrosites. Chem. Heterocycl. Compd., 2021, 57(9), 944-948.
[http://dx.doi.org/10.1007/s10593-021-03004-3]
[38]
Ohira, S. Methanolysis of dimethyl (1-diazo-2-oxopropyl) phosphonate: generation of dimethyl (diazomethyl) phosphonate and reaction with carbonyl compounds. Synth. Commun., 1998, 19(3-4), 561-564.
[http://dx.doi.org/10.1080/00397918908050700]
[39]
Dhameja, M.; Pandey, J. Bestmann–Ohira reagent: A convenient and promising reagent in the chemical world. Asian J. Org. Chem., 2018, 7(8), 1502-1523.
[http://dx.doi.org/10.1002/ajoc.201800051]
[40]
Jamali, M.F.; Vaishanv, N.K.; Mohanan, K. The Bestmann-Ohira reagent and related diazo compounds for the synthesis of azaheterocycles. Chem. Rec., 2020, 20(11), 1394-1408.
[http://dx.doi.org/10.1002/tcr.202000091] [PMID: 32986304]
[41]
Zuo, Y.; He, X.; Tang, Q.; Hu, W.; Zhou, T.; Hu, W.; Shang, Y. Palladium‐catalyzed 5‐exo‐dig cyclization cascade, sequential amination/etherification for stereoselective construction of 3‐methyleneindolinones. Adv. Synth. Catal., 2020, 363(8), 2117-2123.
[http://dx.doi.org/10.1002/adsc.202001369]
[42]
Ohtsuka, N.; Okuno, M.; Hoshino, Y.; Honda, K. A base-mediated self-propagative Lossen rearrangement of hydroxamic acids for the efficient and facile synthesis of aromatic and aliphatic primary amines. Org. Biomol. Chem., 2016, 14(38), 9046-9054.
[http://dx.doi.org/10.1039/c6ob01178k] [PMID: 27605448]
[43]
Schultzke, S.; Walther, M.; Staubitz, A. Active ester functionalized azobenzenes as versatile building blocks. Molecules, 2021, 26(13), 3916.
[http://dx.doi.org/10.3390/molecules26133916] [PMID: 34206950]
[44]
Podsiadło, M.; Jakóbek, K.; Katrusiak, A. Density, freezing and molecular aggregation in pyridazine, pyridine and benzene. CrystEngComm, 2010, 12(9), 2561-2567.
[http://dx.doi.org/10.1039/c001153c]
[45]
Chernysheva, N.B.; Maksimenko, A.S.; Andreyanov, F.A.; Kislyi, V.P.; Strelenko, Y.A.; Khrustalev, V.N.; Semenova, M.N.; Semenov, V.V. Regioselective synthesis of 3,4-diaryl-5-unsubstituted isoxazoles, analogues of natural cytostatic combretastatin A4. Eur. J. Med. Chem., 2018, 146, 511-518.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.070] [PMID: 29407976]
[46]
Demchuk, D.V.; Samet, A.V.; Chernysheva, N.B.; Ushkarov, V.I.; Stashina, G.A.; Konyushkin, L.D.; Raihstat, M.M.; Firgang, S.I.; Philchenkov, A.A.; Zavelevich, M.P.; Kuiava, L.M. Synthesis and antiproliferative activity of conformationally restricted 1,2,3-triazole analogues of combretastatins in the sea urchin embryo model and against human cancer cell lines. Bioorg. Med. Chem., 2014, 22(2), 738-755.
[http://dx.doi.org/10.1016/j.bmc.2013.12.015] [PMID: 24387982]
[47]
Pettit, G.R.; Singh, S.B.; Boyd, M.R.; Hamel, E.; Pettit, R.K.; Schmidt, J.M.; Hogan, F. Antineoplastic agents. 291. Isolation and synthesis of combretastatins A-4, A-5, and A-6(1a). J. Med. Chem., 1995, 38(10), 1666-1672.
[http://dx.doi.org/10.1021/jm00010a011] [PMID: 7752190]
[48]
CrysAlisPro, 1.171.41; Rigaku Oxford Diffraction: 2021.
[49]
Sheldrick, G.M. SHELXT - integrated space-group and crystal-structure determination. Acta Crystallogr. A Found. Adv., 2015, 71(1), 3-8.
[http://dx.doi.org/10.1107/S2053273314026370] [PMID: 25537383]
[50]
Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem., 2015, 71(1), 3-8.
[http://dx.doi.org/10.1107/S2053229614024218] [PMID: 25567568]
[51]
Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr., 2009, 42(2), 339-341.
[http://dx.doi.org/10.1107/s0021889808042726]
[52]
Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A, 2008, 64(1), 112-122.
[http://dx.doi.org/10.1107/S0108767307043930] [PMID: 18156677]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy