Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Synthesis and Biological Evaluation of 1,2,3-Triazole Appended Benzothiazinone Derivatives via Click Chemistry

Author(s): Satish V. Akolkar, Mubarak H. Shaikh, Amol A. Nagargoje, Jaiprakash N. Sangshetti, Manoj G. Damale and Bapurao B. Shingate*

Volume 28, Issue 20, 2024

Published on: 08 July, 2024

Page: [1621 - 1630] Pages: 10

DOI: 10.2174/0113852728316869240626060258

Price: $65

Abstract

We have created novel 1,2,3-triazole-based benzothiazinone derivatives in the current work. The produced compounds' in vitro antioxidant, antifungal, and antitubercular properties were assessed. Moreover, a simulated molecular docking analysis was conducted on the cytochrome P450 lanosterol 14α-demethylase active site to elucidate the enzyme's binding affinity and interactions with synthesised benzothiazinone derivatives. A notable correlation between these compounds' antifungal activity and binding score was indicated by molecular docking data. The synthetic 1,2,3-triazole-based benzothiazinone derivatives may satisfy the structural criteria for creating novel antifungal drugs, according to the results of the in vitro and in silico investigations.

[1]
Keri, R.S.; Patil, M.R.; Patil, S.A.; Budagumpi, S. A comprehensive review in current developments of benzothiazole-based molecules in medicinal chemistry. Eur. J. Med. Chem., 2015, 89, 207-251.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.059] [PMID: 25462241]
[2]
Sabatini, S.; Gosetto, F.; Serritella, S.; Manfroni, G.; Tabarrini, O.; Iraci, N.; Brincat, J.P.; Carosati, E.; Villarini, M.; Kaatz, G.W.; Cecchetti, V. Pyrazolo[4,3-c][1,2]benzothiazines 5,5-dioxide: A promising new class of Staphylococcus aureus NorA efflux pump inhibitors. J. Med. Chem., 2012, 55(7), 3568-3572.
[http://dx.doi.org/10.1021/jm201446h] [PMID: 22432682]
[3]
Armenise, D.; Trapani, G.; Arrivo, V.; Laraspata, E.; Morlacchi, F. Research on potentially bioactive aza and thiaza polycyclic compounds containing a bridgehead nitrogen atom. III. Synthesis and antimicrobial activity of some 1,4‐benzothiazines and pyrrolobenzothiazines. J. Heterocycl. Chem., 2000, 37(6), 1611-1616.
[http://dx.doi.org/10.1002/jhet.5570370634]
[4]
Schiaffella, F.; Macchiarulo, A.; Milanese, L.; Vecchiarelli, A.; Fringuelli, R. Novel ketoconazole analogues based on the replacement of 2,4-dichlorophenyl group with 1,4-benzothiazine moiety: Design, synthesis, and microbiological evaluation. Bioorg. Med. Chem., 2006, 14(15), 5196-5203.
[http://dx.doi.org/10.1016/j.bmc.2006.04.004] [PMID: 16650767]
[5]
Cecchetti, V.; Calderone, V.; Tabarrini, O.; Sabatini, S.; Filipponi, E.; Testai, L.; Spogli, R.; Martinotti, E.; Fravolini, A. Highly potent 1,4-benzothiazine derivatives as K(ATP)-channel openers. J. Med. Chem., 2003, 46(17), 3670-3679.
[http://dx.doi.org/10.1021/jm030791q] [PMID: 12904071]
[6]
Marchetti, C.; Ulisse, S.; Bruscoli, S.; Russo, F.P.; Migliorati, G.; Schiaffella, F.; Cifone, M.G.; Riccardi, C.; Fringuelli, R. Induction of apoptosis by 1,4-benzothiazine analogs in mouse thymocytes. J. Pharmacol. Exp. Ther., 2002, 300(3), 1053-1062.
[http://dx.doi.org/10.1124/jpet.300.3.1053] [PMID: 11861815]
[7]
Gowda, J.; Khader, A.M.A.; Kalluraya, B.; Shree, P.; Shabaraya, A.R. Synthesis, characterization and pharmacological activity of 4-[1-substituted aminomethyl-4-arylideneamino-5-sulfanyl-4,5-dihydro-1H-1,2,4-triazol-3-yl]m-ethyl-2H-1,4-benzothiazin-3(4H)-ones. Eur. J. Med. Chem., 2011, 46(9), 4100-4106.
[http://dx.doi.org/10.1016/j.ejmech.2011.06.010] [PMID: 21724303]
[8]
Dabholkar, V.V.; Gavande, R.P. Synthesis and antimicrobial activities of novel 1,4-benzothiazine derivatives. Arab. J. Chem., 2016, 9, S225-S229.
[http://dx.doi.org/10.1016/j.arabjc.2011.03.009]
[9]
Watanabe, Y.; Osanai, K.; Nishi, T.; Miyawaki, N.; Shii, D.; Honda, T.; Shibano, T. Synthesis of azido derivatives of semotiadil, a novel 1,4-benzothiazine calcium antagonist, for photoaffinity probes of calcium channels. Bioorg. Med. Chem. Lett., 1996, 6(16), 1923-1926.
[http://dx.doi.org/10.1016/0960-894X(96)00338-1]
[10]
Rai, A.; Singh, A.K.; Raj, V.; Saha, S. 1,4-benzothiazines-a biologically attractive scaffold. Mini Rev. Med. Chem., 2018, 18(1), 42-57.
[PMID: 28552049]
[11]
Wang, X.; Huang, B.; Liu, X.; Zhan, P. Discovery of bioactive molecules from CuAAC click-chemistry-based combinatorial libraries. Drug Discov. Today, 2016, 21(1), 118-132.
[http://dx.doi.org/10.1016/j.drudis.2015.08.004] [PMID: 26315392]
[12]
Gao, P.; Sun, L.; Zhou, J.; Li, X.; Zhan, P.; Liu, X. Discovery of novel anti-HIV agents via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry-based approach. Expert Opin. Drug Discov., 2016, 11(9), 857-871.
[http://dx.doi.org/10.1080/17460441.2016.1210125] [PMID: 27400283]
[13]
Fu, N.; Wang, S.; Zhang, Y.; Zhang, C.; Yang, D.; Weng, L.; Zhao, B.; Wang, L. Efficient click chemistry towards fatty acids containing 1,2,3-triazole: Design and synthesis as potential antifungal drugs for Candida albicans. Eur. J. Med. Chem., 2017, 136, 596-602.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.001] [PMID: 28551587]
[14]
Zhang, B. Comprehensive review on the anti-bacterial activity of 1,2,3-triazole hybrids. Eur. J. Med. Chem., 2019, 168, 357-372.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.055] [PMID: 30826511]
[15]
Yadav, P.; Yadav, J.K.; Agarwal, A.; Awasthi, S.K. Insights into the interaction of potent antimicrobial chalcone triazole analogs with human serum albumin: spectroscopy and molecular docking approaches. RSC Advances, 2019, 9(55), 31969-31978.
[http://dx.doi.org/10.1039/C9RA04192C] [PMID: 35530759]
[16]
Bistrović, A.; Stipaničev, N.; Opačak-Bernardi, T.; Jukić, M.; Martinez, S.; Glavaš-Obrovac, L.; Raić-Malić, S. Synthesis of 4-aryl-1,2,3-triazolyl appended natural coumarin-related compounds with antiproliferative and radical scavenging activities and intracellular ROS production modification. New J. Chem., 2017, 41(15), 7531-7543.
[http://dx.doi.org/10.1039/C7NJ01469D]
[17]
Xu, Z.; Zhao, S.J.; Liu, Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. Eur. J. Med. Chem., 2019, 183, 111700.
[http://dx.doi.org/10.1016/j.ejmech.2019.111700] [PMID: 31546197]
[18]
Feng, L.S.; Zheng, M.J.; Zhao, F.; Liu, D. 1,2,3‐triazole hybrids with anti‐HIV‐1 activity. Arch. Pharm., 2021, 354(1), 2000163.
[http://dx.doi.org/10.1002/ardp.202000163] [PMID: 32960467]
[19]
Raj, R.; Singh, P.; Singh, P.; Gut, J.; Rosenthal, P.J.; Kumar, V. Azide-alkyne cycloaddition en route to 1H-1,2,3-triazole-tethered 7-chloroquinoline-isatin chimeras: Synthesis and antimalarial evaluation. Eur. J. Med. Chem., 2013, 62, 590-596.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.032] [PMID: 23434528]
[20]
Sharma, A.; Agrahari, A.K.; Rajkhowa, S.; Tiwari, V.K. Emerging impact of triazoles as anti-tubercular agent. Eur. J. Med. Chem., 2022, 238, 114454.
[http://dx.doi.org/10.1016/j.ejmech.2022.114454] [PMID: 35597009]
[21]
Kelley, J.L.; Koble, C.S.; Davis, R.G.; McLean, E.W.; Soroko, F.E.; Cooper, B.R. 1-(Fluorobenzyl)-4-amino-1H-1,2,3-triazolo[4,5-c]pyridines: Synthesis and anticonvulsant activity. J. Med. Chem., 1995, 38(20), 4131-4134.
[http://dx.doi.org/10.1021/jm00020a030] [PMID: 7562950]
[22]
Shareghi-Boroujeni, D.; Iraji, A.; Mojtabavi, S.; Faramarzi, M.A. Akbarza deh, T.; Saeedi, M. Synthesis, in vitro evaluation, and molecular docking] studies of novel hydrazineylideneindolinone linked to phenoxymethyl-1,2,3-] triazole derivatives as potential α-glucosidase inhibitors. Bioorg. Chem., 2021, 111, 104869.
[http://dx.doi.org/10.1016/j.bioorg.2021.104869] [PMID: 33839583]
[23]
Macan, A.M.; Harej, A.; Cazin, I.; Klobučar, M.; Stepanić, V.; Pavelić, K.; Pavelić, S.K.; Schols, D.; Snoeck, R.; Andrei, G.; Raić-Malić, S. Antitumor and antiviral activities of 4-substituted 1,2,3-triazolyl-2,3-dibenzyl-L-ascorbic acid derivatives. Eur. J. Med. Chem., 2019, 184, 111739.
[http://dx.doi.org/10.1016/j.ejmech.2019.111739] [PMID: 31586832]
[24]
Sambasiva Rao, P.; Kurumurthy, C.; Veeraswamy, B.; Santhosh Kumar, G.; Poornachandra, Y.; Ganesh Kumar, C.; Vasamsetti, S.B.; Kotamraju, S.; Narsaiah, B. Synthesis of novel 1,2,3-triazole substituted-N-alkyl/aryl nitrone derivatives, their anti-inflammatory and anticancer activity. Eur. J. Med. Chem., 2014, 80, 184-191.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.052] [PMID: 24780595]
[25]
a) Ellouz, M.; Sebbar, N.K.; Fichtali, I.; Ouzidan, Y.; Mennane, Z.; Charof, R.; Mague, J.T.; Urrutigoïty, M.; Essassi, E.M. Synthesis and antibacterial activity of new 1,2,3-triazolylmethyl-2H-1,4-benzothiazin-3(4H)-one derivatives. Chem. Cent. J., 2018, 12(1), 123.
[http://dx.doi.org/10.1186/s13065-018-0494-2] [PMID: 30499014];
b) Sebbar, N.K.; Mekhzoum, M.E.M.; Essassi, E.M.; Zerzouf, A.; Talbaoui, A.; Bakri, Y.; Saadi, M.; Ammari, L.E. Novel 1,4-benzothiazine derivatives: Synthesis, crystal structure, and anti-bacterial properties. Res. Chem. Intermed., 2016, 42(9), 6845-6862.
[http://dx.doi.org/10.1007/s11164-016-2499-6]
[26]
Shaikh, M.H.; Subhedar, D.D.; Arkile, M.; Khedkar, V.M.; Jadhav, N.; Sarkar, D.; Shingate, B.B. Synthesis and bioactivity of novel triazole incorporated benzothiazinone derivatives as antitubercular and antioxidant agent. Bioorg. Med. Chem. Lett., 2016, 26(2), 561-569.
[http://dx.doi.org/10.1016/j.bmcl.2015.11.071] [PMID: 26642768]
[27]
Borate, H.B.; Maujan, S.R.; Sawargave, S.P.; Chandavarkar, M.A.; Vaiude, S.R.; Joshi, V.A.; Wakharkar, R.D.; Iyer, R.; Kelkar, R.G.; Chavan, S.P.; Kunte, S.S. Fluconazole analogues containing 2H-1,4-benzothiazin-3(4H)-one or 2H-1,4-benzoxazin-3(4H)-one moieties, a novel class of anti-Candida agents. Bioorg. Med. Chem. Lett., 2010, 20(2), 722-725.
[http://dx.doi.org/10.1016/j.bmcl.2009.11.071] [PMID: 19963383]
[28]
Li, A.R.; Zhang, J.; Greenberg, J.; Lee, T.; Liu, J. Discovery of non-glucoside SGLT2 inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(8), 2472-2475.
[http://dx.doi.org/10.1016/j.bmcl.2011.02.056] [PMID: 21398124]
[29]
Fringuelli, R.; Schiaffella, F.; Bistoni, F.; Pitzurra, L.; Vecchiarelli, A. Azole derivatives of 1,4-benzothiazine as antifungal agents. Bioorg. Med. Chem., 1998, 6(1), 103-108.
[http://dx.doi.org/10.1016/S0968-0896(97)10016-5] [PMID: 9502109]
[30]
Sahoo, S.K.; Ahmad, M.N.; Kaul, G.; Nanduri, S.; Dasgupta, A.; Chopra, S.; Yaddanapudi, V.M. Synthesis and evaluation of triazole congeners of nitro-benzothiazinones potentially active against drug resistant Mycobacterium tuberculosis demonstrating bactericidal efficacy. RSC Med. Chem., 2022, 13(5), 585-593.
[http://dx.doi.org/10.1039/D1MD00387A] [PMID: 35694687]
[31]
Neeraja, P.; Srinivas, S.; Mukkanti, K.; Dubey, P.K.; Pal, S. 1H-1,2,3-Triazolyl-substituted 1,3,4-oxadiazole derivatives containing structural features of ibuprofen/naproxen: Their synthesis and antibacterial evaluation. Bioorg. Med. Chem. Lett., 2016, 26(21), 5212-5217.
[http://dx.doi.org/10.1016/j.bmcl.2016.09.059] [PMID: 27727124]
[32]
Wang, G.; Peng, Z.; Wang, J.; Li, X.; Li, J. Synthesis, in vitro evaluation and molecular docking studies of novel triazine-triazole derivatives as potential α-glucosidase inhibitors. Eur. J. Med. Chem., 2017, 125, 423-429.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.067] [PMID: 27689725]
[33]
Ferroni, C.; Pepe, A.; Kim, Y.S.; Lee, S.; Guerrini, A.; Parenti, M.D.; Tesei, A.; Zamagni, A.; Cortesi, M.; Zaffaroni, N.; De Cesare, M.; Beretta, G.L.; Trepel, J.B.; Malhotra, S.V.; Varchi, G. 1,4-substituted triazoles as nonsteroidal anti-androgens for prostate cancer treatment. J. Med. Chem., 2017, 60(7), 3082-3093.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00105] [PMID: 28272894]
[34]
Siddiqui, M.A.; Nagargoje, A.A.; Shaikh, M.H.; Siddiqui, R.A.; Pund, A.A.; Khedkar, V.M.; Asrondkar, A.; Deshpande, P.P.; Shingate, B.B. Design, synthesis and bioevaluation of highly functionalized 1,2,3-triazole-guanidine conjugates as anti-inflammatory and antioxidant agents. Polycycl. Aromat. Compd., 2023, 43(6), 5567-5581.
[http://dx.doi.org/10.1080/10406638.2022.2105904]
[35]
Shaikh, M.H.; Subhedar, D.D.; Akolkar, S.V.; Nagargoje, A.A.; Khedkar, V.M.; Sarkar, D.; Shingate, B.B. Tetrazoloquinoline-1,2,3-triazole derivatives as antimicrobial agents: Synthesis, biological evaluation and molecular docking study. Polycycl. Aromat. Compd., 2022, 42(4), 1920-1941.
[http://dx.doi.org/10.1080/10406638.2020.1821229]
[36]
Akolkar, S.V.; Nagargoje, A.A.; Krishna, V.S.; Sriram, D.; Sangshetti, J.N.; Damale, M.; Shingate, B.B. New N-phenylacetamide-incorporated 1,2,3-triazoles: [Et3NH][OAc]-mediated efficient synthesis and biological evaluation. RSC Advances, 2019, 9(38), 22080-22091.
[http://dx.doi.org/10.1039/C9RA03425K] [PMID: 35518861]
[37]
Akolkar, S.V.; Nagargoje, A.A.; Shaikh, M.H.; Warshagha, M.Z.A.; Sangshetti, J.N.; Damale, M.G.; Shingate, B.B. New N‐phenylacetamide‐linked 1,2,3‐triazole‐tethered coumarin conjugates: Synthesis, bioevaluation, and molecular docking study. Arch. Pharm., 2020, 353(11), 2000164.
[http://dx.doi.org/10.1002/ardp.202000164] [PMID: 32776355]
[38]
Akolkar, S.V.; Shaikh, M.H.; Bhalmode, M.K.; Pawar, P.U.; Sangshetti, J.N.; Damale, M.G.; Shingate, B.B. Click chemistry inspired syntheses of new amide linked 1,2,3-triazoles from naphthols: biological evaluation and in silico computational study. Res. Chem. Intermed., 2023, 49(6), 2725-2753.
[http://dx.doi.org/10.1007/s11164-023-05008-4]
[39]
Shaikh, M.H.; Subhedar, D.D.; Nawale, L.; Sarkar, D.; Khan, F.A.K.; Sangshetti, J.N.; Shingate, B.B. Novel benzylidenehydrazide-1,2,3-triazole conjugates as antitubercular agents: synthesis and molecular docking. Mini Rev. Med. Chem., 2019, 19(14), 1178-1194.
[http://dx.doi.org/10.2174/1389557518666180718124858] [PMID: 30019644]
[40]
Khan, Z.K. In vitro and vivo screening techniques for bioactivity screening and evaluation. Proceedings of the International Workshop UNIDO-CDRI, 1997, pp. 210-211.
[41]
Sarkar, S.; Sarkar, D. Potential use of nitrate reductase as a biomarker for the identification of active and dormant inhibitors of Mycobacterium tuberculosis in a THP1 infection model. SLAS Discov., 2012, 17(7), 966-973.
[http://dx.doi.org/10.1177/1087057112445485] [PMID: 22573731]
[42]
Li, S.; Li, D.; Xiao, T.; Zhang, S.; Song, Z.; Ma, H. Design, synthesis, fungicidal activity, and unexpected docking model of the first chiral boscalid analogues containing oxazolines. J. Agric. Food Chem., 2016, 64(46), 8927-8934.
[http://dx.doi.org/10.1021/acs.jafc.6b03464] [PMID: 27792876]
[43]
Burits, M.; Bucar, F. Antioxidant activity of Nigella sativa essential oil. Phytother. Res., 2000, 14(5), 323-328.
[http://dx.doi.org/10.1002/1099-1573(200008)14:5<323::AID-PTR621>3.0.CO;2-Q] [PMID: 10925395]
[44]
a) Hooft, R.W.W.; Vriend, G.; Sander, C.; Abola, E.E. Errors in protein structures. Nature, 1996, 381(6580), 272-272.
[http://dx.doi.org/10.1038/381272a0] [PMID: 8692262];
b) Shaikh, M.H.; Subhedar, D.D.; Nawale, L.; Sarkar, D.; Kalam Khan, F.A.; Sangshetti, J.N.; Shingate, B.B. 1,2,3-Triazole derivatives as antitubercular agents: synthesis, biological evaluation and molecular docking study. MedChemComm, 2015, 6(6), 1104-1116.
[http://dx.doi.org/10.1039/C5MD00057B]
[45]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy