Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Microwave-assisted Synthesis of Pyrroles, Pyridines, Chromenes, Coumarins, and Betti Bases via Alcohol Dehydrogenation with Chroman-4-one Amino Ligands

Author(s): Danish Khan*, Beauty Kumari, Abdullah Yahya Abdullah Alzahrani, Neha Dua, Shaily and Nirma Maurya*

Volume 28, Issue 20, 2024

Published on: 11 July, 2024

Page: [1593 - 1604] Pages: 12

DOI: 10.2174/0113852728304957240628180342

Price: $65

Abstract

This study outlines the development of a novel approach utilizing microwave assistance for the alcohol dehydrogenative reaction. The process is catalyzed by manganese (II) and cobalt (II) in conjunction with chroman-4-one amino ligands. This research introduces a unique catalytic system capable of synthesizing various heterocyclic compounds, including pyrroles, pyridines, Betti bases, chromenes, and coumarins via alcohol dehydrogenation. The synthesis involved the preparation and characterization of a series of chroman- 4-one amino ligands (C1-C6) using standard analytical techniques. These ligands, in combination with MnCl2‧4H2O and CoCl2, demonstrated remarkable catalytic activity, effectively driving alcohol dehydrogenation. The catalytic cycle was initiated by the in-situ formation of metal complexes with the ligands during the reaction. Characterization using ESI-MS confirmed the presence of metal complexes (Int-1) and other intermediates (Int-II and Int-III) throughout the catalytic cycle. Additionally, the controlled experiment corroborated the efficacy of the catalytic system, evidenced by the evolution of H2 gas.

[1]
Nallagangula, M.; Subaramanian, M.; Kumar, R.; Balaraman, E. Transition metal-catalysis in interrupted borrowing hydrogen strategy. Chem. Commun., 2023, 59(51), 7847-7862.
[http://dx.doi.org/10.1039/D3CC01517C] [PMID: 37259885]
[2]
Borthakur, I.; Sau, A.; Kundu, S. Cobalt-catalyzed dehydrogenative functionalization of alcohols: Progress and future prospect. Coord. Chem. Rev., 2022, 451, 214257.
[http://dx.doi.org/10.1016/j.ccr.2021.214257]
[3]
Diez, A.S.; Piqueras, C.M.; Araiza, D.G.; Díaz, G.; Volpe, M.A. Preparation and characterization of Cu single bond CeO2 catalytic materials for the oxidation of benzyl alcohol to benzaldehyde in water. Mater. Chem. Phys., 2019, 232, 265-271.
[http://dx.doi.org/10.1016/j.matchemphys.2019.04.053]
[4]
Liu, C.; Li, T.; Dai, X.; Zhao, J.; He, D.; Li, G.; Wang, B.; Cui, X. Catalytic activity enhancement on alcohol dehydrogenation via directing reaction pathways from single- to double-atom catalysis. J. Am. Chem. Soc., 2022, 144(11), 4913-4924.
[http://dx.doi.org/10.1021/jacs.1c12705] [PMID: 35261231]
[5]
Miao, J.; Ge, H. Recent advances in first‐row‐transition‐metal‐catalyzed dehydrogenative Cou pling of C(sp3)–H bonds. Eur. J. Org. Chem., 2015, 2015(36), 7859-7868.
[http://dx.doi.org/10.1002/ejoc.201501186]
[6]
Maria, A.; Phillips, F.; Pombeiro, A. J. L. Recent developments in transition metal‐catalyzed cross‐dehydrogenative coupling reactions of ethers and thioethers. chemcatchem., 2018, 10, 3354-3383.
[http://dx.doi.org/10.1002/cctc.201800582]
[7]
Heravi, M.R.P.; Hosseinian, A.; Rahmani, Z.; Ebadi, A.; Vessally, E. Transition‐metal‐catalyzed dehydrogenative coupling of alcohols and amines: A novel and atom‐economical access to amides. J. Chin. Chem. Soc. , 2021, 68(5), 723-737.
[http://dx.doi.org/10.1002/jccs.202000301]
[8]
Xie, J.; Huang, Z-Z. Cross‐dehydrogenative coupling reactions by transition‐metal and aminocatalysis for the synthesis of amino acid derivatives. Angew. Chem., 2010, 122(52), 10379-10383.
[http://dx.doi.org/10.1002/ange.201004940]
[9]
Murata, M.; Watanabe, S.; Masuda, Y. Rhodium-catalyzed dehydrogenative coupling reaction of vinylarenes with pinacolborane to vinylboronates. Tetrahedron Lett., 1999, 40(13), 2585-2588.
[http://dx.doi.org/10.1016/S0040-4039(99)00253-1]
[10]
Rana, J.; Babu, R.; Subaramanian, M.; Balaraman, E. Ni-Catalyzed dehydrogenative coupling of primary and secondary alcohols with methyl-N-heteroaromatics. Org. Chem. Front., 2018, 5(22), 3250-3255.
[http://dx.doi.org/10.1039/C8QO00764K]
[11]
Itazaki, M.; Ueda, K.; Nakazawa, H. Iron-catalyzed dehydrogenative coupling of tertiary silanes. Angew. Chem. Int. Ed., 2009, 48(18), 3313-3316.
[http://dx.doi.org/10.1002/anie.200805112] [PMID: 19338005]
[12]
Zhang, M.J.; Ge, X.L.; Young, D.J.; Li, H.X. Recent advances in co-catalyzed C–C and C–N bond formation via ADC and ATH reactions. Tetrahedron, 2021, 93, 132309.
[http://dx.doi.org/10.1016/j.tet.2021.132309]
[13]
Higasio, Y.S.; Shoji, T. Heterocyclic compounds such as pyrroles, pyridines, pyrollidins, piperdines, indoles, imidazol and pyrazins. Appl. Catal. A Gen., 2001, 221(1-2), 197-207.
[http://dx.doi.org/10.1016/S0926-860X(01)00815-8]
[14]
Borah, B.; Dhar Dwivedi, K.; Chowhan, L.R. 4‐Hydroxycoumarin: A versatile substrate for transition‐metal‐free multicomponent synthesis of bioactive heterocycles. Asian J. Org. Chem., 2021, 10(12), 3101-3126.
[http://dx.doi.org/10.1002/ajoc.202100550]
[15]
Sreedevi, R.; Saranya, S.; Rohit, K.R.; Anilkumar, G. Recent trends in iron‐catalyzed reactions towards the synthesis of nitrogen‐containing heterocycles. Adv. Synth. Catal., 2019, 361(10), 2236-2249.
[http://dx.doi.org/10.1002/adsc.201801471]
[16]
Obaid, R.J.; Naeem, N.; Mughal, E.U.; Al-Rooqi, M.M.; Sadiq, A.; Jassas, R.S.; Moussa, Z.; Ahmed, S.A. Inhibitory potential of nitrogen, oxygen and sulfur containing heterocyclic scaffolds against acetylcholinesterase and butyrylcholinesterase. RSC Adv., 2022, 12(31), 19764-19855.
[http://dx.doi.org/10.1039/D2RA03081K] [PMID: 35919585]
[17]
Küpeli Akkol, E.; Genç, Y.; Karpuz, B.; Sobarzo-Sánchez, E.; Capasso, R. Coumarins and coumarin-related compounds in pharmacotherapy of cancer. Cancers , 2020, 12(7), 1959.
[http://dx.doi.org/10.3390/cancers12071959] [PMID: 32707666]
[18]
Keri, R.S.; Budagumpi, S.; Balappa Somappa, S. Synthetic and natural coumarins as potent anticonvulsant agents: A review with structure–activity relationship. J. Clin. Pharm. Ther., 2022, 47(7), 915-931.
[http://dx.doi.org/10.1111/jcpt.13644] [PMID: 35288962]
[19]
Panja, S.K.; Dwivedi, N.; Saha, S. First report of the application of simple molecular complexes as organo-catalysts for Knoevenagel condensation. RSC Advances, 2015, 5(80), 65526-65531.
[http://dx.doi.org/10.1039/C5RA09036A]
[20]
Sharma, S.; Singh, U.P.; Singh, A.P. Synthesis of MCM-41 supported cobalt (II) complex for the formation of polyhydroquinoline derivatives. Polyhedron, 2021, 199, 115102.
[http://dx.doi.org/10.1016/j.poly.2021.115102]
[21]
Gao, H.; Zhou, L.; Wan, J.P.; Liu, Y. Rongalite as C1 synthon in the synthesis of divergent pyridines and quinolines. J. Org. Chem., 2023, 88(11), 7188-7198.
[http://dx.doi.org/10.1021/acs.joc.3c00428] [PMID: 37171406]
[22]
Fu, L.; Wan, J.P.; Zhou, L.; Liu, Y. Copper-catalyzed C–H/N–H annulation of enaminones and alkynyl esters for densely substituted pyrrole synthesis. Chem. Commun. , 2022, 58(11), 1808-1811.
[http://dx.doi.org/10.1039/D1CC06768K] [PMID: 35040446]
[23]
Zahoor, A.F.; Iftikhar, R.; Ahmad, S.; Haq, A.; Naheed, S. Revisiting the synthesis of betti bases: facile, one-pot, and efficient synthesis of betti bases promoted by FeCl3•6H2O. Curr. Org. Synth., 2022, 19(5), 569-577.
[http://dx.doi.org/10.2174/1570179419666220127144352] [PMID: 35086451]
[24]
Fu, L.; Liu, Y.; Wan, J.P. Pd-catalyzed triple-fold C(sp2)–H activation with enaminones and alkenes for pyrrole synthesis via hydrogen evolution. Org. Lett., 2021, 23(11), 4363-4367.
[http://dx.doi.org/10.1021/acs.orglett.1c01301] [PMID: 34013729]
[25]
Begum, A.F.; Balasubramanian, K.K.; Shanmugasundaram, B. Acid activated montmorillonite K-10 mediated intramolecular acylation: Simple and convenient synthesis of 4-chromanones. Tetrahedron Lett., 2021, 82, 153372.
[http://dx.doi.org/10.1016/j.tetlet.2021.153372]
[26]
Yang, L.; Wan, J.P. Ethyl lactate-involved three-component dehydrogenative reactions: Biomass feedstock in diversity-oriented quinoline synthesis. Green Chem., 2020, 22(10), 3074-3078.
[http://dx.doi.org/10.1039/D0GC00738B]
[27]
Sun, Y.; Liu, Z.; Liu, D.; Zhang, M.; Chen, L.; Chai, Z.; Chen, X.B.; Yu, F. Synthesis of 4-alkylated 1,4-dihydropyridines: Fe(II)-mediated oxidative cascade cyclization reaction of cyclic ethers with enaminones. J. Org. Chem., 2023, 88(16), 11627-11636.
[http://dx.doi.org/10.1021/acs.joc.3c00925] [PMID: 37556793]
[28]
Alberola, A.; González Ortega, A.; Luisa Sádaba, M.; Sañudo, C. Versatility of Weinreb amides in the Knorr pyrrole synthesis. Tetrahedron, 1999, 55(21), 6555-6566.
[http://dx.doi.org/10.1016/S0040-4020(99)00289-6]
[29]
Roomi, M.W.; MacDonald, S.F. The Hantzsch pyrrole synthesis. Can. J. Chem., 1970, 48(11), 1689-1697.
[http://dx.doi.org/10.1139/v70-279]
[30]
Vanden Eynde, J.J.; Mayence, A. Synthesis and aromatization of hantzsch 1,4-dihydropyridines under microwave irradiation. an overview. Molecules, 2003, 8(4), 381-391.
[http://dx.doi.org/10.3390/80400381]
[31]
Antonyraj, C.A.; Kannan, S. Hantzsch pyridine synthesis using hydrotalcites or hydrotalcite-like materials as solid base catalysts. Appl. Catal. A Gen., 2008, 338(1-2), 121-129.
[http://dx.doi.org/10.1016/j.apcata.2007.12.028]
[32]
Olyaei, A.; Sadeghpour, M. Recent advances in the synthesis and synthetic applications of Betti base (aminoalkylnaphthol) and bis-Betti base derivatives. RSC Adv., 2019, 9(32), 18467-18497.
[http://dx.doi.org/10.1039/C9RA02813G] [PMID: 35515249]
[33]
Mushtaq, A.; Zahoor, A.F.; Ahmad, S.; Parveen, B.; Ali, K.G. Novel synthetic methods toward the synthesis of Betti bases: An update. Chem. Zvesti, 2023, 77(9), 4751-4795.
[http://dx.doi.org/10.1007/s11696-023-02825-0]
[34]
Khan, D.; Mukhtar, S.; Alsharif, M.A.; Alahmdi, M.I.; Ahmed, N.PhI. (OAc) 2 mediated an efficient Knoevenagel reaction and their synthetic application for coumarin derivatives. Tetrahedron Lett., 2017, 58(32), 3183-3187.
[http://dx.doi.org/10.1016/j.tetlet.2017.07.018]
[35]
Borah, B.; Dwivedi, K.D.; Kumar, B.; Chowhan, L.R. Recent advances in the microwave- and ultrasound-assisted green synthesis of coumarin-heterocycles. Arab. J. Chem., 2022, 15(3), 103654.
[http://dx.doi.org/10.1016/j.arabjc.2021.103654]
[36]
Kahveci, B.; Menteşe, E. Microwave assisted synthesis of coumarins: A review from 2007 to 2018. Curr. Microw. Chem., 2019, 5(3), 162-178.
[http://dx.doi.org/10.2174/2213335606666181122101724]
[37]
Khaligh, N.G.; Mihankhah, T.; Johan, M.R. One-pot synthesis of coumarins using 1,1′-butylenebis (3-sulfo-3H-imidazol-1-ium) chloride as an efficient task-specific ionic liquid. Polycycl. Aromat. Compd., 2021, 41(8), 1712-1721.
[http://dx.doi.org/10.1080/10406638.2019.1695215]
[38]
Lončarić, M.; Sušjenka, M.; Molnar, M. An extensive study of coumarin synthesis via knoevenagel condensation in choline chloride based deep eutectic solvents. Curr. Org. Synth., 2020, 17(2), 98-108.
[http://dx.doi.org/10.2174/1570179417666200116155704] [PMID: 32418515]
[39]
Hiremath, P.B.; Kamanna, K. A microwave accelerated sustainable approach for the synthesis of 2-amino-4H-chromenes catalysed by WEPPA: A green strategy. Curr. Microw. Chem., 2019, 6(1), 30-43.
[http://dx.doi.org/10.2174/2213335606666190820091029]
[40]
Chatterjee, R.; Bhukta, S.; Dandela, R. Ionic liquid‐assisted synthesis of 2‐amino‐3‐cyano‐4H‐chromenes: A sustainable overview. J. Heterocycl. Chem., 2022, 59(4), 633-654.
[http://dx.doi.org/10.1002/jhet.4417]
[41]
Meera, G.; Rohit, K.R.; Saranya, S.; Anilkumar, G. Microwave assisted synthesis of five membered nitrogen heterocycles. RSC Adv., 2020, 10(59), 36031-36041.
[http://dx.doi.org/10.1039/D0RA05150K] [PMID: 35517065]
[42]
Yan, C.G.; Cai, X.M.; Wang, Q.F.; Wang, T.Y.; Zheng, M. Microwave-assisted four-component, one-pot condensation reaction: An efficient synthesis of annulated pyridines. Org. Biomol. Chem., 2007, 5(6), 945-951.
[http://dx.doi.org/10.1039/b617256c] [PMID: 17340010]
[43]
Khan, D. Shaily; Maurya, N. Microwave-assisted IBX-mediated one-pot four-component synthesis of 4-arylhexahydroquinoline derivatives from benzyl alcohols: A metal-free approach. Russ. J. Org. Chem., 2023, 59(4), 695-703.
[http://dx.doi.org/10.1134/S107042802304019X]
[44]
Maji, M.; Panja, D.; Borthakur, I.; Kundu, S. Recent advances in sustainable synthesis of N-heterocycles following acceptorless dehydrogenative coupling protocol using alcohols. Org. Chem. Front., 2021, 8(11), 2673-2709.
[http://dx.doi.org/10.1039/D0QO01577F]
[45]
Waiba, S.; Maji, B. Manganese catalyzed acceptorless dehydrogenative coupling reactions. ChemCatChem, 2020, 12(7), 1891-1902.
[http://dx.doi.org/10.1002/cctc.201902180]
[46]
Das, K.; Waiba, S.; Jana, A.; Maji, B. Manganese-catalyzed hydrogenation, dehydrogenation, and hydroelementation reactions. Chem. Soc. Rev., 2022, 51(11), 4386-4464.
[http://dx.doi.org/10.1039/D2CS00093H] [PMID: 35583150]
[47]
Filonenko, G.A.; van Putten, R.; Hensen, E.J.M.; Pidko, E.A. Catalytic (de)hydrogenation promoted by non-precious metals – Co, Fe and Mn: recent advances in an emerging field. Chem. Soc. Rev., 2018, 47(4), 1459-1483.
[http://dx.doi.org/10.1039/C7CS00334J] [PMID: 29334388]
[48]
Midya, S.P.; Landge, V.G.; Sahoo, M.K.; Rana, J.; Balaraman, E. Cobalt-catalyzed acceptorless dehydrogenative coupling of aminoalcohols with alcohols: direct access to pyrrole, pyridine and pyrazine derivatives. Chem. Commun., 2018, 54(1), 90-93.
[http://dx.doi.org/10.1039/C7CC07427A] [PMID: 29211066]
[49]
Hofmann, N.; Hultzsch, K.C. Borrowing hydrogen and acceptorless dehydrogenative coupling in the multicomponent synthesis of N‐Heterocycles: A comparison between base and noble metal catalysis. Eur. J. Org. Chem., 2021, 2021(46), 6206-6223.
[http://dx.doi.org/10.1002/ejoc.202100695]
[50]
Das, K.; Mondal, A.; Pal, D.; Srimani, D. Sustainable synthesis of quinazoline and 2-aminoquinoline via dehydrogenative coupling of 2-aminobenzyl alcohol and nitrile catalyzed by phosphine-free manganese pincer complex. Org. Lett., 2019, 21(9), 3223-3227.
[http://dx.doi.org/10.1021/acs.orglett.9b00939] [PMID: 31008616]
[51]
Wang, Z.; Lin, Q.; Ma, N.; Liu, S.; Han, M.; Yan, X.; Liu, Q.; Solan, G.A.; Sun, W.H. Direct synthesis of ring-fused quinolines and pyridines catalyzed by NNHY-ligated manganese complexes (Y = NR2 or SR). Catal. Sci. Technol., 2021, 11(24), 8026-8036.
[http://dx.doi.org/10.1039/D1CY01945G]
[52]
Maji, A.; Gupta, S.; Maji, M.; Kundu, S. Well-defined phosphine-free manganese(II)-complex-catalyzed synthesis of quinolines, pyrroles, and pyridines. J. Org. Chem., 2022, 87(13), 8351-8367.
[http://dx.doi.org/10.1021/acs.joc.2c00167] [PMID: 35726206]
[53]
Goswami, B.; Khatua, M.; Chatterjee, R. Kamal; Samanta, S. Amine functionalized pincer-like azo-aromatic complexes of cobalt and their catalytic activities in the synthesis of quinoline via acceptorless dehydrogenation of alcohols. Organometallics, 2023, 42(15), 1854-1868.
[http://dx.doi.org/10.1021/acs.organomet.3c00078]
[54]
Mishra, S.; Prakash, C.; Tripathi, B.P. Role of aurone ligands in microwave enhanced Mn (II) and Co (II) catalyzed dehydrogenative coupling reaction: An efficient ligand for the synthesis of quinoline, pyridine, and pyrrole. J. Heterocycl. Chem., 2024, 61(3), 407-420.
[http://dx.doi.org/10.1002/jhet.4769]
[55]
Khan, D.; Parveen, I. Chroman‐4‐one‐based amino bidentate ligand: An efficient ligand for suzuki‐miyaura and mizoroki‐heck coupling reactions in aqueous medium. Eur. J. Org. Chem., 2021, 2021(35), 4946-4957.
[http://dx.doi.org/10.1002/ejoc.202100866]
[56]
Yang, C.H.; Chen, X.; Li, H.; Wei, W.; Yang, Z.; Chang, J. Iodine catalyzed reduction of quinolines under mild reaction conditions. Chem. Commun. , 2018, 54(62), 8622-8625.
[http://dx.doi.org/10.1039/C8CC04262D] [PMID: 30019712]
[57]
Khan, D.; Parveen, I. Shaily; Sharma, S. Design, synthesis and characterization of aurone based α,β‐unsaturated carbonyl‐amino ligands and their application in microwave assisted suzuki, heck and buchwald reactions. Asian J. Org. Chem., 2022, 11(1), e202100638.
[http://dx.doi.org/10.1002/ajoc.202100638]
[58]
Kallmeier, F.; Dudziec, B.; Irrgang, T.; Kempe, R. Manganese‐catalyzed sustainable synthesis of pyrroles from alcohols and amino alcohols. Angew. Chem. Int. Ed., 2017, 56(25), 7261-7265.
[http://dx.doi.org/10.1002/anie.201702543] [PMID: 28510273]
[59]
Borghs, J.C.; Azofra, L.M.; Biberger, T.; Linnenberg, O.; Cavallo, L.; Rueping, M.; El-Sepelgy, O. Manganese‐catalyzed multicomponent synthesis of pyrroles through acceptorless dehydrogenation hydrogen autotransfer catalysis: experiment and computation. ChemSusChem, 2019, 12(13), 3083-3088.
[http://dx.doi.org/10.1002/cssc.201802416] [PMID: 30589227]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy