Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Organophosphorus Synthesis beyond P-Cl Bond: The Development of Shelf-stable Reagents for [RP] Transfer

Author(s): Vadim D. Romanenko*

Volume 28, Issue 19, 2024

Published on: 24 June, 2024

Page: [1483 - 1512] Pages: 30

DOI: 10.2174/0113852728323258240613061150

Price: $65

Abstract

The direct chlorine-free incorporation of P1 units into organic molecules has very important synthetical value owing to environmental considerations and the prospect of accessing unique compounds with fascinating structures and useful properties. This selective survey presents a panorama of phosphorus species that are synthetic equivalents of free singlet phosphinidenes [R-P] and highlights the state-of-art of the [RP]-transfer reactions with emphasis on the synthesis of molecular architectures difficult to reach using traditional methods. Among stabilized phosphinidene precursors capable of RP-transfer are terminal transition-metal phosphinidene and phosphinidenoid complexes, dibenzo-7λ3- phosphinobornadienes, phosphinidene-phosphoranes, inversely polarized phosphaalkenes, phosphaketenes, intramolecularly base-stabilized phosphinidenes, (cyclo)polyphosphines and diphosphenes.

[1]
Multiple Bonds and Low Coordination in Phosphorus Chemistry; Regitz, M.; Scherer, O., Eds.; Thieme Verlag: Stuttgart, 1990.
[2]
Lammertsma, K. Phosphinidenes. Top. Curr. Chem., 2003, 229, 95-119.
[http://dx.doi.org/10.1007/b11152]
[3]
Dostál, L. Quest for stable or masked pnictinidenes: Emerging and exciting class of group 15 compounds. Coord. Chem. Rev., 2017, 353, 142-158.
[http://dx.doi.org/10.1016/j.ccr.2017.10.009]
[4]
Mathey, F. Developing the chemistry of monovalent phosphorus. Dalton Trans., 2007, (19), 1861-1868.
[http://dx.doi.org/10.1039/b702063p] [PMID: 17702162]
[5]
Benkő, Z.; Streubel, R.; Nyulászi, L. Stability of phosphinidenes-Are they synthetically accessible? Dalton Trans., 2006, (36), 4321-4327.
[http://dx.doi.org/10.1039/B608276A] [PMID: 16967115]
[6]
Slootweg, J.C.; Lammertsma, K. Product class 1: Phosphinidenes and terminal phosphinidene complexes. In: Science of Synthesis; Thieme Verlag: Stuttgard, 2009; 42, pp. 15-36.
[http://dx.doi.org/10.1055/sos-SD-042-00002]
[7]
Gudat, D. Low-coordinate main group compounds – group 15. In: Comprehensive Inorganic Chemistry II; Elsevier, 2013; Vol. 1, pp. 587-621.
[http://dx.doi.org/10.1016/B978-0-08-097774-4.00123-6]
[8]
Aktaş, H.; Slootweg, J.C.; Lammertsma, K. Nucleophilic phosphinidene complexes: Access and applicability. Angew. Chem. Int. Ed., 2010, 49(12), 2102-2113.
[http://dx.doi.org/10.1002/anie.200905689] [PMID: 20157897]
[9]
Waterman, R. Metal-phosphido and -phosphinidene complexes in P–E bond-forming reactions. Dalton Trans., 2009, (1), 18-26.
[http://dx.doi.org/10.1039/B813332H] [PMID: 19081965]
[10]
Protasiewicz, J.D.; Hering‐Junghans, C. Phosphanylidenephosphoranes. Encyclopedia of Inorganic and Bioinorganic Chemistry; Wiley & Sons, 2022, pp. 1-27.
[http://dx.doi.org/10.1002/9781119951438.eibc2795]
[11]
Mathey, F. Chemistry of 3-membered carbon-phosphorus heterocycles. Chem. Rev., 1990, 90(6), 997-1025.
[http://dx.doi.org/10.1021/cr00104a004]
[12]
Li, X.; Lei, D.; Chiang, M.Y.; Gaspar, P.P. General approaches to phosphinidenes via retroadditions. Phosphorus Sulfur Silicon Relat. Elem., 1993, 76(1-4), 71-74.
[http://dx.doi.org/10.1080/10426509308032361]
[13]
Gilliard, R.J.; Kieser, J.M.; Protasiewicz, J.D. Synthons for the Development of New Organophosphorus Functional Materials. Main Group Strategies towards Functional Hybrid Materials. Baumgartner, T; Jakle, F., Ed.; Wiley & Sons: New York, 2018, pp. 357-382.
[14]
Romanenko, V.D. New trends in the development of C-P bond forming reactions. Curr. Org. Chem., 2021, 25(17), 1937-1976.
[http://dx.doi.org/10.2174/1385272825666210610153954]
[15]
Lu, B.; Zeng, X. Phosphinidenes: Fundamental properties and reactivity. Chemistry, 2024, 30(15), e202303283.
[http://dx.doi.org/10.1002/chem.202303283] [PMID: 38108540]
[16]
Ehlers, A.W.; Baerends, E.J.; Lammertsma, K. Nucleophilic or electrophilic phosphinidene complexes MLn=PH what makes the difference? J. Am. Chem. Soc., 2002, 124(11), 2831-2838.
[http://dx.doi.org/10.1021/ja017445n] [PMID: 11890835]
[17]
Frison, G.; Mathey, F.; Sevin, A. Theoretical study of electrophilic versus nucleophilic character of transition metal complexes of phosphinidene. J. Organomet. Chem., 1998, 570(2), 225-234.
[http://dx.doi.org/10.1016/S0022-328X(98)00875-4]
[18]
Borst, M.L.G.; Bulo, R.E.; Winkel, C.W.; Gibney, D.J.; Ehlers, A.W.; Schakel, M.; Lutz, M.; Spek, A.L.; Lammertsma, K. Phosphepines: Convenient access to phosphinidene complexes. J. Am. Chem. Soc., 2005, 127(16), 5800-5801.
[http://dx.doi.org/10.1021/ja050817y] [PMID: 15839673]
[19]
Borst, M.L.G.; Bulo, R.E.; Gibney, D.J.; Alem, Y.; de Kanter, F.J.J.; Ehlers, A.W.; Schakel, M.; Lutz, M.; Spek, A.L.; Lammertsma, K. 3H-benzophosphepine complexes: Versatile phosphinidene precursors. J. Am. Chem. Soc., 2005, 127(48), 16985-16999.
[http://dx.doi.org/10.1021/ja054885w] [PMID: 16316245]
[20]
Streubel, R.; Kusenberg, A.; Jeske, J.; Jones, P.G. Thermally induced ring cleavage of a 2 H ‐1,2‐azaphosphirene tungsten complex. Angew. Chem. Int. Ed. Engl., 1995, 33(23-24), 2427-2428.
[http://dx.doi.org/10.1002/anie.199424271]
[21]
Phosphorus−Carbon Heterocyclic Chemistry: The Rise of a New Domain; Mathey, F., Ed.; Pergamon: Amsterdam, 2001.
[22]
Marinetti, A.; Mathey, F.; Fischer, J.; Mitschler, A. Generation and trapping of terminal phosphinidene complexes. Synthesis and X-ray crystal structure of stable phosphirene complexes. J. Am. Chem. Soc., 1982, 104(16), 4484-4485.
[http://dx.doi.org/10.1021/ja00380a029]
[23]
Marinetti, A.; Mathey, F. The carbene-like behavior of terminal phosphinidene complexes toward olefins. A new access to the phosphirane ring. Organometallics, 1984, 3(3), 456-461.
[http://dx.doi.org/10.1021/om00081a021]
[24]
Ng, Y.X.; Mathey, F. The reaction of terminal phosphinidene complexes [RP–W(CO)5] with vinylboronic acids: Cycloaddition vs. P–C bond formation. Eur. J. Inorg. Chem., 2016, 2016(5), 616-619.
[http://dx.doi.org/10.1002/ejic.201500594]
[25]
Slootweg, J.C.; Schakel, M.; de Kanter, F.J.J.; Ehlers, A.W.; Kozhushkov, S.I.; de Meijere, A.; Lutz, M.; Spek, A.L.; Lammertsma, K. Branched Phospha[7]triangulanes. J. Am. Chem. Soc., 2004, 126(10), 3050-3051.
[http://dx.doi.org/10.1021/ja031648p] [PMID: 15012125]
[26]
Lammertsma, K.; Ehlers, A.W.; McKee, M.L. Copper(I) chloride initiated decomposition of 7-phosphanorbornadiene. Evidence for a solvent-assisted catalytic mechanism. J. Am. Chem. Soc., 2003, 125(48), 14750-14759.
[http://dx.doi.org/10.1021/ja0349958] [PMID: 14640650]
[27]
Krill, S.; Wang, B.; Hung, J.T.; Horan, C.J.; Gray, G.M.; Lammertsma, K. 2-Alkylidenephosphiranes. J. Am. Chem. Soc., 1997, 119(36), 8432-8437.
[http://dx.doi.org/10.1021/ja971340w]
[28]
Huy, N.H.T.; Salemkour, R.; Bartes, N.; Ricard, L.; Mathey, F. Conversion of 2-alkylidenephosphiranes into 1,4-diphosphaspiropentanes. Tetrahedron, 2002, 58(35), 7191-7193.
[http://dx.doi.org/10.1016/S0040-4020(02)00732-9]
[29]
Komen, C.M.D.; Horan, C.J.; Krill, S.; Gray, G.M.; Lutz, M.; Spek, A.L.; Ehlers, A.W.; Lammertsma, K. Phospha[3]radialenes. Syntheses, structures, strain energies, and reactions. J. Am. Chem. Soc., 2000, 122(50), 12507-12516.
[http://dx.doi.org/10.1021/ja002437c]
[30]
Deschamps, B.; Mathey, F. Données complémentaires sur la synthèse, les proprietés spectroscopiques et la chimie du complexe [méthylènechlorophosphine]pentacarbonyltungstène. J. Organomet. Chem., 1988, 354(1), 83-90.
[http://dx.doi.org/10.1016/0022-328X(88)80641-7]
[31]
Wang, J.; Wei, D.; Duan, Z.; Mathey, F. Cleavage of the inert C(sp2)–Ar σ-bond of alkenes by a spatial constrained interaction with phosphinidene. J. Am. Chem. Soc., 2020, 142(50), 20973-20978.
[http://dx.doi.org/10.1021/jacs.0c11195] [PMID: 33284022]
[32]
Streubel, R.; Huy, N.H.T.; Mathey, F. The reaction of terminal phosphinidene complexes with phosphaalkenes: Thermal symmetrisation of diphosphiranes with asymmetric substitution patterns. Synthesis, 1993, 1993(8), 763-764.
[http://dx.doi.org/10.1055/s-1993-25932]
[33]
Kalinina, I.; Mathey, F. Generating phosphinidene−N-methylimidazole adducts under mild conditions. Organometallics, 2006, 25(21), 5031-5034.
[http://dx.doi.org/10.1021/om060460m]
[34]
Ng, Y.X.; Mathey, F. Using monovalent phosphorus compounds to form P-C bonds. Angew. Chem. Int. Ed., 2013, 52(52), 14140-14142.
[http://dx.doi.org/10.1002/anie.201306643] [PMID: 24255010]
[35]
Li, H.; Tian, R.; Duan, Z. Intramolecular activation of enones by electrophilic phosphinidene complexes to construct 2-phosphafurans. Org. Lett., 2022, 24(2), 767-770.
[http://dx.doi.org/10.1021/acs.orglett.1c04281] [PMID: 35005968]
[36]
Streubel, R. Chemistry of λ3-2H-azaphosphirene metal complexes. Coord. Chem. Rev., 2002, 227(2), 175-192.
[http://dx.doi.org/10.1016/S0010-8545(02)00013-9]
[37]
Streubel, R.; Jeske, J.; Jones, P.G.; Herbst-Irmer, R. Synthesis of the first 2H ‐1‐aza‐2‐phosphirene complexes. Angew. Chem. Int. Ed. Engl., 1994, 33(1), 80-82.
[http://dx.doi.org/10.1002/anie.199400801]
[38]
Streubel, R.; Rohde, U.; Jeske, J.; Ruthe, F.; Jones, P.G. Phosphorus-bridged dinuclear tungsten amino(aryl)carbene complexes – New precursors for (2H-azaphosphirene)tungsten complexes bearing a σ-p-bonded Cp* group. Eur. J. Inorg. Chem., 1998, 1998(12), 2005-2012.
[http://dx.doi.org/10.1002/(SICI)1099-0682(199812)1998:12<2005::AID-EJIC2005>3.0.CO;2-C]
[39]
Streubel, R.; Bode, M.; Schiemann, U.; Wismach, C.; Jones, P.G.; Monsees, A. Synthesis of the first pentacarbonyltungsten(0) complexes with P‐pentamethyl‐cyclopentadienyl‐substituted 1H ‐phosphirene Ligands: Crystal structure of [(Me5C5PC(H)=CPhW(CO)5]. Z. Anorg. Allg. Chem., 2004, 630(8-9), 1215-1219.
[http://dx.doi.org/10.1002/zaac.200400045]
[40]
Streubel, R.; Wilkens, H.; Ostrowski, A.; Neumann, C.; Ruthe, F.; Jones, P.G. Formation of 2 H ‐1,2‐azaphosphole tungsten complexes by trapping reactions of nitrilium phosphane ylide complexes. Angew. Chem. Int. Ed. Engl., 1997, 36(13-14), 1492-1494.
[http://dx.doi.org/10.1002/anie.199714921]
[41]
Streubel, R.; Wilkens, H.; Jones, P.G. Photochemically generated nitrilium phosphane-ylid tungsten complexes and their reactivity towards alkyne and nitrile derivatives. Chem. Commun., 1999, 2127-2128(20), 2127-2128.
[http://dx.doi.org/10.1039/a905752h]
[42]
Streubel, R. Transient nitrilium phosphanylid complexes - New versatile building blocks in phosphorus chemistry. Top. Curr. Chem., 2003, 223, 91-109.
[http://dx.doi.org/10.1007/3-540-46100-0_4]
[43]
Streubel, R.; Schiemann, U.; Jones, P.G.; Tran Huy, N.H.; Mathey, F. New and facile entry to nitrilium phosphane ylide complex chemistry by using 7-phosphanorbornadiene complexes. Angew. Chem. Int. Ed., 2000, 39(20), 3686-3688.
[http://dx.doi.org/10.1002/1521-3773(20001016)39:20<3686::AID-ANIE3686>3.0.CO;2-I] [PMID: 11091440]
[44]
Streubel, R.; Schiemann, U.; Hoffmann, N.; Schiemann, Y.; Jones, P.G.; Gudat, D. Intra- and intermolecular [3+2] cycloaddition reactions of P -Cp*-substituted nitrilium phosphane-ylide tungsten complexes. Organometallics, 2000, 19(4), 475-481.
[http://dx.doi.org/10.1021/om990801e]
[45]
Wit, J.B.M.; van Eijkel, G.T.; de Kanter, F.J.J.; Schakel, M.; Ehlers, A.W.; Lutz, M.; Spek, A.L.; Lammertsma, K. Olefin cycloadditions of the electrophilic phosphinidene complex [iPr2N-P=Fe(CO)4]. Angew. Chem. Int. Ed., 1999, 38(17), 2596-2599.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19990903)38:17<2596::AID-ANIE2596>3.0.CO;2-I] [PMID: 10508351]
[46]
Wit, J.B.M.; de Jong, G.B.; Schakel, M.; Lutz, M.; Ehlers, A.W.; Slootweg, J.C.; Lammertsma, K. iPr2N–P═Fe(CO)4 in olefinic solvents: A reservoir of a transient phosphinidene complex capable of substrate hopping. Organometallics, 2016, 35(8), 1170-1176.
[http://dx.doi.org/10.1021/acs.organomet.6b00227]
[47]
Graham, T.W.; Udachin, K.A.; Zgierski, M.Z.; Carty, A.J. Synthesis and structural characterization of the first thermally stable, neutral, and electrophilic phosphinidene complexes of vanadium. Organometallics, 2011, 30(6), 1382-1388.
[http://dx.doi.org/10.1021/om100915v]
[48]
Waterman, R.; Hillhouse, G.L. Group transfer from nickel imido, phosphinidene, and carbene complexes to ethylene with formation of aziridine, phosphirane, and cyclopropane products. J. Am. Chem. Soc., 2003, 125(44), 13350-13351.
[http://dx.doi.org/10.1021/ja0381914] [PMID: 14583018]
[49]
Waterman, R.; Hillhouse, G.L. Formation of phosphirenes by phosphinidene group-transfer reactions from (dtbpe)NiP(dmp) to alkynes. Organometallics, 2003, 22(25), 5182-5184.
[http://dx.doi.org/10.1021/om0341754]
[50]
Sterenberg, B.T.; Carty, A.J. Terminal chloroaminophosphido and aminophosphinidene complexes of molybdenum. J. Organomet. Chem., 2001, 617-618, 696-701.
[http://dx.doi.org/10.1016/S0022-328X(00)00709-9]
[51]
Sterenberg, B.T.; Udachin, K.A.; Carty, A.J. Terminal aminophosphinidene complexes of iron, ruthenium, and osmium. Organometallics, 2003, 22(19), 3927-3932.
[http://dx.doi.org/10.1021/om030386x]
[52]
Graham, T.W.; Cariou, R.P.Y.; Sánchez-Nieves, J.; Allen, A.E.; Udachin, K.A.; Regragui, R.; Carty, A.J. Reactivity of terminal electrophilic phosphinidene complexes: Synthesis of the first rhenium phosphinidene, [Re(CO)5(η1-PNiPr2)][AlCl4], and novel reactions with azobenzene. Organometallics, 2005, 24(9), 2023-2026.
[http://dx.doi.org/10.1021/om0401307]
[53]
Sterenberg, B.T.; Udachin, K.A.; Carty, A.J. Electrophilic “Fischer Type” phosphinidene complexes of molybdenum, tungsten, and ruthenium. Organometallics, 2001, 20(13), 2657-2659.
[http://dx.doi.org/10.1021/om010225y]
[54]
Sterenberg, B.T.; Udachin, K.A.; Carty, A.J. Reactivity of electrophilic terminal phosphinidene complexes: P−P bond forming reactions with phosphines and diphosphines. Organometallics, 2001, 20(22), 4463-4465.
[http://dx.doi.org/10.1021/om010640q]
[55]
Sánchez-Nieves, J.; Sterenberg, B.T.; Udachin, K.A.; Carty, A.J. A thermally stable and sterically unprotected terminal electrophilic phosphinidene complex of cobalt and its conversion to an η(1)-phosphirene. J. Am. Chem. Soc., 2003, 125(9), 2404-2405.
[http://dx.doi.org/10.1021/ja028303b] [PMID: 12603123]
[56]
Vaheesar, K.; Kuntz, C.M.; Sterenberg, B.T. Formation of phosphorus heterocycles using a cationic electrophilic phosphinidene complex. J. Organomet. Chem., 2013, 745-746, 347-355.
[http://dx.doi.org/10.1016/j.jorganchem.2013.07.076]
[57]
Cummins, C.C.; Schrock, R.R.; Davis, W.M. Phosphinidenetantalum(V) complexes of the type [(N3N)Ta=PR] as phospha‐wittig reagents. Angew. Chem. Int. Ed. Engl., 1993, 32(5), 756-759.
[http://dx.doi.org/10.1002/anie.199307561]
[58]
Ho, J.; Rousseau, R.; Stephan, D.W. Synthesis, structure, and bonding in zirconocene primary phosphido (PHR-), phosphinidene (PR2-), and phosphide (P3-) derivatives. Organometallics, 1994, 13(5), 1918-1926.
[http://dx.doi.org/10.1021/om00017a056]
[59]
Stephan, D.W. Zirconium - phosphorus chemistry: Strategies in syntheses, reactivity, catalysis, and utility. Angew. Chem. Int. Ed., 2000, 39(2), 314-329.
[http://dx.doi.org/10.1002/(SICI)1521-3773(20000117)39:2<314::AID-ANIE314>3.0.CO;2-D] [PMID: 10649398]
[60]
Breen, T.L.; Stephan, D.W. Phosphinidene transfer reactions of the terminal phosphinidene complex Cp2Zr(:PC6H2-2,4,6-t-Bu3)(PMe3). J. Am. Chem. Soc., 1995, 117(48), 11914-11921.
[http://dx.doi.org/10.1021/ja00153a013]
[61]
Goumans, T.P.M.; Ehlers, A.W.; Lammertsma, K. Toward the catalytic synthesis of phosphiranes. A computational study. J. Organomet. Chem., 2005, 690(24-25), 5517-5524.
[http://dx.doi.org/10.1016/j.jorganchem.2005.05.040]
[62]
Urnezius, E.; Lam, K.C.; Rheingold, A.L.; Protasiewicz, J.D. Triphosphane formation from the terminal zirconium phosphinidene complex [Cp2Zr=PDmp(PMe3)] (Dmp=2,6-Mes2C6H3) and crystal structure of DmpP(PPh2)2. J. Organomet. Chem., 2001, 630(2), 193-197.
[http://dx.doi.org/10.1016/S0022-328X(01)00863-4]
[63]
Wen, Q.; Feng, B.; Chen, Y. Rare-earth metal phosphinidene complexes: A trip from bridging one to terminal one. Acc. Chem. Res., 2023, 56(23), 3343-3357.
[http://dx.doi.org/10.1021/acs.accounts.3c00429] [PMID: 37963205]
[64]
Wicker, B.F.; Scott, J.; Andino, J.G.; Gao, X.; Park, H.; Pink, M.; Mindiola, D.J. Phosphinidene complexes of scandium: Powerful PAr group-transfer vehicles to organic and inorganic substrates. J. Am. Chem. Soc., 2010, 132(11), 3691-3693.
[http://dx.doi.org/10.1021/ja100214e] [PMID: 20196541]
[65]
Masuda, J.D.; Jantunen, K.C.; Ozerov, O.V.; Noonan, K.J.T.; Gates, D.P.; Scott, B.L.; Kiplinger, J.L. A lanthanide phosphinidene complex: Synthesis, structure, and phospha-Wittig reactivity. J. Am. Chem. Soc., 2008, 130(8), 2408-2409.
[http://dx.doi.org/10.1021/ja7105306] [PMID: 18232691]
[66]
Termaten, A.T.; Aktas, H.; Schakel, M.; Ehlers, A.W.; Lutz, M.; Spek, A.L.; Lammertsma, K. Terminal phosphinidene complexes CpR(L)MPAr of the group 9 transition metals cobalt, rhodium, and iridium. Synthesis, structures, and properties. Organometallics, 2003, 22(9), 1827-1834.
[http://dx.doi.org/10.1021/om0208624]
[67]
Termaten, A.T.; Nijbacker, T.; Schakel, M.; Lutz, M.; Spek, A.L.; Lammertsma, K. Synthesis of novel terminal iridium phosphinidene complexes. Organometallics, 2002, 21(15), 3196-3202.
[http://dx.doi.org/10.1021/om020062t]
[68]
Özbolat, A.; von Frantzius, G.; Pérez, J.M.; Nieger, M.; Streubel, R. Strong evidence for a transient phosphinidenoid complex. Angew. Chem. Int. Ed., 2007, 46(48), 9327-9330.
[http://dx.doi.org/10.1002/anie.200701962] [PMID: 17985334]
[69]
Albrecht, C.; Bode, M.; Pérez, J.M.; Daniels, J.; Schnakenburg, G.; Streubel, R. First examples of oxaphosphirane pentacarbonylchromium(0) and -molybdenum(0) complexes: Synthesis, structures and reactions. Dalton Trans., 2011, 40(11), 2654-2665.
[http://dx.doi.org/10.1039/c0dt01509a] [PMID: 21308136]
[70]
Streubel, R.; Klein, M.; Schnakenburg, G. Probing the group tolerance of a Li/Cl phosphinidenoid complex using alkenyl-substituted aldehydes. Organometallics, 2012, 31(13), 4711-4715.
[http://dx.doi.org/10.1021/om300177c]
[71]
Pérez, J.M.; Klein, M.; Kyri, A.W.; Schnakenburg, G.; Streubel, R. First examples of spirooxaphosphirane complexes. Organometallics, 2011, 30(21), 5636-5640.
[http://dx.doi.org/10.1021/om200431f]
[72]
Streubel, R.; Schneider, E.; Schnakenburg, G. Novel spirooxaphosphirane complexes. Organometallics, 2012, 31(13), 4707-4710.
[http://dx.doi.org/10.1021/om300152y]
[73]
Fankel, S.; Helten, H.; von Frantzius, G.; Schnakenburg, G.; Daniels, J.; Chu, V.; Müller, C.; Streubel, R. Novel access to azaphosphiridine complexes and first applications using Brønsted acid-induced ring expansion reactions. Dalton Trans., 2010, 39(14), 3472-3481.
[http://dx.doi.org/10.1039/b922166b] [PMID: 20379537]
[74]
Streubel, R.; Franco, J.M.V.; Schnakenburg, G.; Ferao, A.E. Reactivity of terminal phosphinidene versus Li–Cl phosphinidenoid complexes in cycloaddition chemistry. Chem. Commun., 2012, 48(48), 5986-5988.
[http://dx.doi.org/10.1039/c2cc31851b] [PMID: 22576103]
[75]
Villalba Franco, J.M.; Sasamori, T.; Schnakenburg, G.; Espinosa Ferao, A.; Streubel, R. Going for strain: Synthesis of the first 3-imino-azaphosphiridine complexes and their conversion into oxaphosphirane complex valence isomers. Chem. Commun., 2015, 51(18), 3878-3881.
[http://dx.doi.org/10.1039/C4CC10266E] [PMID: 25655239]
[76]
Kyri, A.W.; Nesterov, V.; Schnakenburg, G.; Streubel, R. Synthesis and reaction of the first 1,2-oxaphosphetane complexes. Angew. Chem. Int. Ed., 2014, 53(40), 10809-10812.
[http://dx.doi.org/10.1002/anie.201404877] [PMID: 25164241]
[77]
Kyri, A.W.; Schnakenburg, G.; Streubel, R. C -trifluoromethyl-substituted 1,2-oxaphosphetane complexes: Synthetic and structural study. Organometallics, 2016, 35(4), 563-568.
[http://dx.doi.org/10.1021/acs.organomet.5b00974]
[78]
Kyri, A.W.; Brehm, P.; Schnakenburg, G.; Streubel, R. Ring opening of a sterically crowded 1,2-oxaphosphetane complex. Dalton Trans., 2017, 46(9), 2904-2909.
[http://dx.doi.org/10.1039/C7DT00136C] [PMID: 28194464]
[79]
Biskup, D.; Schnakenburg, G.; Boeré, R.T.; Espinosa Ferao, A.; Streubel, R.K. Challenging an old paradigm by demonstrating transition metal-like chemistry at a neutral nonmetal center. Nat. Commun., 2023, 14(1), 6456.
[http://dx.doi.org/10.1038/s41467-023-42127-3] [PMID: 37833259]
[80]
Streubel, R.; Kyri, A.W.; Duan, L.; Schnakenburg, G. Synthesis of Li/OR phosphinidenoid complexes: On the evidence for intramolecular O–Li donation and the effect of cation encapsulation. Dalton Trans., 2014, 43(5), 2088-2097.
[http://dx.doi.org/10.1039/C3DT52269E] [PMID: 24281552]
[81]
Duan, L.; Schnakenburg, G.; Daniels, J.; Streubel, R. P-OR functional phosphanido and/or Li/OR phosphinidenoid complexes? Eur. J. Inorg. Chem., 2012, 2012(21), 3490-3499.
[http://dx.doi.org/10.1002/ejic.201200368]
[82]
Majhi, P.K.; Kyri, A.W.; Schmer, A.; Schnakenburg, G.; Streubel, R. Synthesis and deprotonation of aminophosphane complexes: First K/N(H)R phosphinidenoid complexes and access to a complex with a P2N‐ring ligand. Chemistry, 2016, 22(43), 15413-15419.
[http://dx.doi.org/10.1002/chem.201600850] [PMID: 27607194]
[83]
Streubel, R.; Schmer, A.; Kyri, A.W.; Schnakenburg, G. 1,1′-bifunctional aminophosphane complexes via N–H bond insertions of a Li/Cl phosphinidenoid complex and first studies on N/P mono functionalizations. Organometallics, 2017, 36(8), 1488-1495.
[http://dx.doi.org/10.1021/acs.organomet.7b00073]
[84]
Kyri, A.W.; Kunzmann, R.; Schnakenburg, G.; Qu, Z.W.; Grimme, S.; Streubel, R. Synthesis of a monomolecular anionic FLP complex. Chem. Commun., 2016, 52(91), 13361-13364.
[http://dx.doi.org/10.1039/C6CC07081G] [PMID: 27782248]
[85]
Nesterov, V.; Schnakenburg, G.; Espinosa, A.; Streubel, R. Synthesis and reactions of the first room temperature stable Li/Cl phosphinidenoid complex. Inorg. Chem., 2012, 51(22), 12343-12349.
[http://dx.doi.org/10.1021/ic301652u] [PMID: 23134468]
[86]
Junker, P.; Qu, Z.W.; Kalisch, T.; Schnakenburg, G.; Espinosa Ferao, A.; Streubel, R. A case study on the conversion of Li/Cl phosphinidenoid into phosphinidene complexes. Dalton Trans., 2021, 50(2), 739-745.
[http://dx.doi.org/10.1039/D0DT03884A] [PMID: 33346304]
[87]
Schmer, A.; Terschüren, T.; Schnakenburg, G.; Espinosa Ferao, A.; Streubel, R. Access to 1,1′‐bifunctional phosphane iron(0) complexes via P–N bond‐forming reactions and selective p‐functionalizations. Eur. J. Inorg. Chem., 2019, 2019(11-12), 1604-1611.
[http://dx.doi.org/10.1002/ejic.201801065]
[88]
Biskup, D.; Schnakenburg, G.; Boeré, R.T.; Espinosa Ferao, A.; Streubel, R. A novel access to phosphanylidene–phosphorane complexes via P-donor substitution and a detailed bonding analysis. Dalton Trans., 2023, 52(38), 13781-13786.
[http://dx.doi.org/10.1039/D3DT02304D] [PMID: 37721045]
[89]
Biskup, D.; Schnakenburg, G.; Espinosa Ferao, A.; Streubel, R. Access to ligand-stabilized PH-containing phosphenium complexes. Dalton Trans., 2024, 53(6), 2517-2525.
[http://dx.doi.org/10.1039/D3DT03869F] [PMID: 38226484]
[90]
Schmer, A.; Junker, P.; Espinosa Ferao, A.; Streubel, R. M/X phosphinidenoid metal complex chemistry. Acc. Chem. Res., 2021, 54(7), 1754-1765.
[http://dx.doi.org/10.1021/acs.accounts.1c00017] [PMID: 33734678]
[91]
Velian, A.; Cummins, C.C. Facile synthesis of dibenzo-7λ3-phosphanor-bornadiene derivatives using magnesium anthracene. J. Am. Chem. Soc., 2012, 134(34), 13978-13981.
[http://dx.doi.org/10.1021/ja306902j] [PMID: 22894133]
[92]
Transue, W.J.; Velian, A.; Nava, M.; García-Iriepa, C.; Temprado, M.; Cummins, C.C. Mechanism and scope of phosphinidene transfer from dibenzo-7-phosphanorbornadiene compounds. J. Am. Chem. Soc., 2017, 139(31), 10822-10831.
[http://dx.doi.org/10.1021/jacs.7b05464] [PMID: 28703579]
[93]
Szkop, K.M.; Geeson, M.B.; Stephan, D.W.; Cummins, C.C. Synthesis of acyl(chloro)phosphines enabled by phosphinidene transfer. Chem. Sci., 2019, 10(12), 3627-3631.
[http://dx.doi.org/10.1039/C8SC05657A] [PMID: 30996956]
[94]
Xin, T.; Cummins, C.C. Synthesis of phosphet-2-one derivatives via phosphinidene transfer to cyclopropenones. J. Am. Chem. Soc., 2023, 145(48), 25989-25994.
[http://dx.doi.org/10.1021/jacs.3c11263] [PMID: 38009595]
[95]
Velian, A.; Nava, M.; Temprado, M.; Zhou, Y.; Field, R.W.; Cummins, C.C. A retro Diels-Alder route to diphosphorus chemistry: molecular precursor synthesis, kinetics of P2 transfer to 1,3-dienes, and detection of P2 by molecular beam mass spectrometry. J. Am. Chem. Soc., 2014, 136(39), 13586-13589.
[http://dx.doi.org/10.1021/ja507922x] [PMID: 25198657]
[96]
Transue, W.J.; Velian, A.; Nava, M.; Martin-Drumel, M.A.; Womack, C.C.; Jiang, J.; Hou, G.L.; Wang, X.B.; McCarthy, M.C.; Field, R.W.; Cummins, C.C. A molecular precursor to phosphaethyne and its application in synthesis of the aromatic 1,2,3,4-phosphatriazolate anion. J. Am. Chem. Soc., 2016, 138(21), 6731-6734.
[http://dx.doi.org/10.1021/jacs.6b03910] [PMID: 27171847]
[97]
Transue, W.J.; Yang, J.; Nava, M.; Sergeyev, I.V.; Barnum, T.J.; McCarthy, M.C.; Cummins, C.C. Synthetic and spectroscopic investigations enabled by modular synthesis of molecular phosphaalkyne precursors. J. Am. Chem. Soc., 2018, 140(51), 17985-17991.
[http://dx.doi.org/10.1021/jacs.8b09845] [PMID: 30485736]
[98]
Kim, H.; Stephan, D.W. Reactive FLP–alkyne addition products: A route to anionic and zwitterionic phosphines. Dalton Trans., 2023, 52(16), 5023-5027.
[http://dx.doi.org/10.1039/D3DT00607G] [PMID: 37017137]
[99]
Courtemanche, M.A.; Transue, W.J.; Cummins, C.C. Phosphinidene reactivity of a transient vanadium P≡N complex. J. Am. Chem. Soc., 2016, 138(50), 16220-16223.
[http://dx.doi.org/10.1021/jacs.6b10545] [PMID: 27958729]
[100]
Eckhardt, A.K.; Riu, M.L.Y.; Ye, M.; Müller, P.; Bistoni, G.; Cummins, C.C. Taming phosphorus mononitride. Nat. Chem., 2022, 14(8), 928-934.
[http://dx.doi.org/10.1038/s41557-022-00958-5] [PMID: 35697930]
[101]
Geeson, M.B.; Transue, W.J.; Cummins, C.C. Organoiron- and fluoride-catalyzed phosphinidene transfer to styrenic olefins in a stereoselective synthesis of unprotected phosphiranes. J. Am. Chem. Soc., 2019, 141(34), 13336-13340.
[http://dx.doi.org/10.1021/jacs.9b07069] [PMID: 31408599]
[102]
Xin, T.; Geeson, M.B.; Zhu, H.; Qu, Z.W.; Grimme, S.; Cummins, C.C. Synthesis of phosphiranes via organoiron-catalyzed phosphinidene transfer to electron-deficient olefins. Chem. Sci., 2022, 13(43), 12696-12702.
[http://dx.doi.org/10.1039/D2SC05011K] [PMID: 36519032]
[103]
Marinetti, A.; Mathey, F. A novel entry to the pc‐double bond: the “phospha‐wittig” reaction. Angew. Chem. Int. Ed. Engl., 1988, 27(10), 1382-1384.
[http://dx.doi.org/10.1002/anie.198813821]
[104]
Marinetti, A.; Bauer, S.; Ricard, L.; Mathey, F. The “phospha-Wittig” reaction: A new method for building phosphorus-carbon double and single bonds from carbonyl compounds. Organometallics, 1990, 9(3), 793-798.
[http://dx.doi.org/10.1021/om00117a040]
[105]
Ellis, B.D.; Macdonald, C.L.B. Stable compounds containing heavier group 15 elements in the +1 oxidation state. Coord. Chem. Rev., 2007, 251(7-8), 936-973.
[http://dx.doi.org/10.1016/j.ccr.2006.07.007]
[106]
Protasiewicz, J.D. Coordination‐like chemistry of phosphinidenes by phosphanes. Eur. J. Inorg. Chem., 2012, 2012(29), 4539-4549.
[http://dx.doi.org/10.1002/ejic.201200273]
[107]
Shah, S.; Protasiewicz, J.D. ‘Phospha-variations’ on the themes of staudinger and wittig: Phosphorus analogs of wittig reagents. Coord. Chem. Rev., 2000, 210(1), 181-201.
[http://dx.doi.org/10.1016/S0010-8545(00)00311-8]
[108]
Mai, J.; Ott, S. The fascinating world of phosphanylphosphonates: From acetylenic phosphaalkenes to reductive aldehyde couplings. Synlett, 2019, 30(16), 1867-1885.
[http://dx.doi.org/10.1055/s-0039-1690129]
[109]
Fritz, G.; Vaahs, T.; Fleischer, H.; Matern, E. Detection of the phosphino‐phosphinidene (Me3C)2P=P in the conversion of [(Me3C)2P]2PLi with 1,2-dibromoethane via trapping reactions. Z. Anorg. Allg. Chem., 1989, 570(1), 54-66.
[http://dx.doi.org/10.1002/zaac.19895700104]
[110]
Fritz, G.; Scheer, P. Silylphosphanes: Developments in phosphorus chemistry. Chem. Rev., 2000, 100(9), 3341-3402.
[http://dx.doi.org/10.1021/cr940303+] [PMID: 11777427]
[111]
Matern, E.; Olkowska-Oetzel, J.; Pikies, J.; Fritz, G. Die Reaktionen vontBu2P-P=P(Me)tBu2 und (Me3Si)tBuP-P=P(Me)tBu2 mit PR3. Z. Anorg. Allg. Chem., 2001, 627(8), 1767-1770.
[http://dx.doi.org/10.1002/1521-3749(200108)627:8<1767::AID-ZAAC1767>3.0.CO;2-4]
[112]
Kovacs, I.; Matern, E.; Sattler, E.; Fritz, G. Reaktionen von tBu2P-P=P(Br)tBu2 mit Phosphanen. Ein Weg zu unterschiedlich substituierten phosphinophosphiniden‐phosphoranen. Z. Anorg. Allg. Chem., 1996, 622(11), 1819-1822.
[http://dx.doi.org/10.1002/zaac.19966221104]
[113]
Hansmann, M.M.; Jazzar, R.; Bertrand, G. Singlet (phosphino)phosphinidenes are electrophilic). J. Am. Chem. Soc., 2016, 138(27), 8356-8359.
[http://dx.doi.org/10.1021/jacs.6b04232] [PMID: 27340902]
[114]
Hansmann, M.M.; Bertrand, G. Transition-metal-like behavior of main group elements: Ligand exchange at a phosphinidene. J. Am. Chem. Soc., 2016, 138(49), 15885-15888.
[http://dx.doi.org/10.1021/jacs.6b11496] [PMID: 27960331]
[115]
Shah, S.; Protasiewicz, J.D. ‘Phospha-Wittig’ reactions using isolable phosphoranylidenephosphines (ArP=PR3 (Ar = 2,6-Mes2C6H3 or 2,4,6-tBu3C6H2). Chem. Commun., 1998, 1585-1586(15), 1585-1586.
[http://dx.doi.org/10.1039/a802722f]
[116]
Shah, S.; Simpson, M.C.; Smith, R.C.; Protasiewicz, J.D. Three different fates for phosphinidenes generated by photocleavage of phospha-Wittig reagents Arp=PMe3. J. Am. Chem. Soc., 2001, 123(28), 6925-6926.
[http://dx.doi.org/10.1021/ja015767l] [PMID: 11448199]
[117]
Gupta, P.; Siewert, J.E.; Wellnitz, T.; Fischer, M.; Baumann, W.; Beweries, T.; Hering-Junghans, C. Reactivity of phospha–Wittig reagents towards NHCs and NHOs. Dalton Trans., 2021, 50(5), 1838-1844.
[http://dx.doi.org/10.1039/D1DT00071C] [PMID: 33471018]
[118]
Takeuchi, K.; Taguchi, H.; Tanigawa, I.; Tsujimoto, S.; Matsuo, T.; Tanaka, H.; Yoshizawa, K.; Ozawa, F. A square‐planar complex of platinum(0). Angew. Chem. Int. Ed., 2016, 55(49), 15347-15350.
[http://dx.doi.org/10.1002/anie.201609515] [PMID: 27860032]
[119]
Dankert, F.; Siewert, J.E.; Gupta, P.; Weigend, F.; Hering-Junghans, C. metal‐free N−H bond activation by phospha‐wittig reagents. Angew. Chem. Int. Ed., 2022, 61(32), e202207064.
[http://dx.doi.org/10.1002/anie.202207064] [PMID: 35594171]
[120]
Fischer, M.; Hering-Junghans, C. On 1,3-phosphaazaallenes and their diverse reactivity. Chem. Sci., 2021, 12(30), 10279-10289.
[http://dx.doi.org/10.1039/D1SC02947A] [PMID: 34377415]
[121]
Fischer, M.; Nees, S.; Kupfer, T.; Goettel, J.T.; Braunschweig, H.; Hering-Junghans, C. Isolable phospha- and arsaalumenes. J. Am. Chem. Soc., 2021, 143(11), 4106-4111.
[http://dx.doi.org/10.1021/jacs.1c00204] [PMID: 33691065]
[122]
Nees, S.; Beer, H.; Just, P.; Teichmeier, L.M.; Christoffer, L.E.; Guljam, A.; Kushik; Braunschweig, H.; Hering-Junghans, C. On the reactivity of Mes*P(PMe3) towards Aluminum(I) compounds – Evidence for the intermediate formation of phosphaalumenes. ChemPlusChem, 2023, 88(8), e202300078.
[http://dx.doi.org/10.1002/cplu.202300078] [PMID: 36824017]
[123]
Taeufer, T.; Dankert, F.; Michalik, D.; Pospech, J.; Bresien, J.; Hering-Junghans, C. Photochemical formation and reversible base-induced cleavage of a phosphagallene. Chem. Sci., 2023, 14(11), 3018-3023.
[http://dx.doi.org/10.1039/D2SC06292E] [PMID: 36937589]
[124]
Reveley, M.J.; Feld, J.; Temerova, D.; Yang, E.S.; Goicoechea, J.M. Hydroelementation and phosphinidene transfer: Reactivity of phosphagermenes and phosphastannenes towards small molecule substrates. Chemistry, 2023, 29(68), e202301542.
[http://dx.doi.org/10.1002/chem.202301542] [PMID: 37589485]
[125]
Fischer, M.; Roy, M.M.D.; Wales, L.L.; Ellwanger, M.A.; Heilmann, A.; Aldridge, S. Structural snapshots in reversible phosphinidene transfer: Synthetic, structural, and reaction chemistry of a Sn═P double bond. J. Am. Chem. Soc., 2022, 144(20), 8908-8913.
[http://dx.doi.org/10.1021/jacs.2c03302] [PMID: 35536684]
[126]
Fischer, M.; Reiß, F.; Hering-Junghans, C. Titanocene pnictinidene complexes. Chem. Commun., 2021, 57(46), 5626-5629.
[http://dx.doi.org/10.1039/D1CC01305J] [PMID: 33989372]
[127]
Royla, P.; Schwedtmann, K.; Han, Z.; Fidelius, J.; Gates, D.P.; Gomila, R.M.; Frontera, A.; Weigand, J.J. Cationic phosphinidene as a versatile P 1 building block: [L C –P] + transfer from phosphonio–phosphanides [L C –P–PR 3] + and subsequent L C replacement reactions (L C = N-heterocyclic carbene). J. Am. Chem. Soc., 2023, 145(18), 10364-10375.
[http://dx.doi.org/10.1021/jacs.3c02256] [PMID: 37105536]
[128]
Borys, A.M.; Rice, E.F.; Nichol, G.S.; Cowley, M.J. The phospha-bora-wittig reaction. J. Am. Chem. Soc., 2021, 143(35), 14065-14070.
[http://dx.doi.org/10.1021/jacs.1c06228] [PMID: 34437805]
[129]
Schmidpeter, A.; Willhalm, A.; Kroner, J.; Day, R.O.; Holmes, J.M.; Holmes, R.R. 2-phospha-allylic systems. Phosphorus. Sulfur Relat. Elem., 1987, 30(1-2), 495-498.
[http://dx.doi.org/10.1080/03086648708080628]
[130]
Schmidpeter, A. 2-Phosphaallylic cations. Multiple Bonds and Low Coordination in Phosphorus Chemistry; Scherer, O., Ed.; Thieme Verlag: Stuttgart, 1990, pp. 149-154.
[131]
Krachko, T.; Bispinghoff, M.; Tondreau, A.M.; Stein, D.; Baker, M.; Ehlers, A.W.; Slootweg, J.C.; Grützmacher, H. Facile phenylphosphinidene transfer reactions from carbene–phosphinidene zinc complexes. Angew. Chem. Int. Ed., 2017, 56(27), 7948-7951.
[http://dx.doi.org/10.1002/anie.201703672] [PMID: 28505382]
[132]
Chernega, A.N.; Ruban, A.V.; Romanenko, V.D.; Markovski, L.N.; Korkin, A.A.; Antipin, M.Y.; Struchkov, Y.T. Peculiarities of p-p conjugation in aminosubstituted phosphaalkenes. Heteroatom Chem., 1991, 2(2), 229-241.
[http://dx.doi.org/10.1002/hc.520020205]
[133]
Weber, L. Phosphaalkenes with inverse electron density. Eur. J. Inorg. Chem., 2000, 2000(12), 2425-2441.
[http://dx.doi.org/10.1002/1099-0682(200012)2000:12<2425::AID-EJIC2425>3.0.CO;2-A]
[134]
Weber, L.; Lassahn, U.; Stammler, H.G.; Neumann, B. Inversely polarized phosphaalkenes as phosphinidene- and carbene-transfer reagents. Eur. J. Inorg. Chem., 2005, 2005(22), 4590-4597.
[http://dx.doi.org/10.1002/ejic.200500454]
[135]
Markovskii, L.N.; Romanenko, V.D.; Pidvarko, T.V. Phosphadienes with two-coordinate phosphorus atom. Zh. Obshch. Khim, 1983, 53, 1672-1673.
[136]
Weber, L. Phospha‐ and arsaalkenes RE=C(NMe2)2(E=P,As) as novel phosphinidene‐ and arsinidene‐transfer reagents. Eur. J. Inorg. Chem., 2007, 2007(26), 4095-4117.
[http://dx.doi.org/10.1002/ejic.200700483]
[137]
Weber, L.; Noveski, G.; Braun, T.; Stammler, H.G.; Neumann, B. Synthesis of the η2‐1‐phosphaallene complexes [(η5‐C5H5)(CO)(NO)Wη2‐R1P=C=C(R2)H] (R1=tBu, Cy; R2=Ph, H) from [(η5‐C5H5)(CO)(NO) W=C=C(R2)H] (R2=Ph, H) and inversely polarized phosphaalkenes R1P=C(NMe2)2(R1=tBu, Cy), and their structure. Eur. J. Inorg. Chem., 2007, 2007(4), 562-567.
[http://dx.doi.org/10.1002/ejic.200600922]
[138]
Romanenko, V.D.; Sarina, T.V.; Kolotilo, N.V.; Markovskii, L.N. C,C-Bis(dialkylamino)methylenephosphines. Zh. Obshch. Khim, 1985, 55, 1188-1190.
[139]
Hansen, K.; Szilvási, T.; Blom, B.; Inoue, S.; Epping, J.; Driess, M. A fragile zwitterionic phosphasilene as a transfer agent of the elusive parent phosphinidene (:PH). J. Am. Chem. Soc., 2013, 135(32), 11795-11798.
[http://dx.doi.org/10.1021/ja4072699] [PMID: 23895437]
[140]
Hansen, K.; Szilvási, T.; Blom, B.; Irran, E.; Driess, M. A donor-stabilized zwitterionic “half-parent” phosphasilene and its unusual reactivity towards small molecules. Chemistry, 2014, 20(7), 1947-1956.
[http://dx.doi.org/10.1002/chem.201303906] [PMID: 24436015]
[141]
Tondreau, A.M.; Benkő, Z.; Harmer, J.R.; Grützmacher, H. Sodium phosphaethynolate, Na(OCP), as a “P” transfer reagent for the synthesis of N-heterocyclic carbene supported P3 and PAsP radicals. Chem. Sci., 2014, 5(4), 1545-1554.
[http://dx.doi.org/10.1039/C3SC53140F]
[142]
Becker, G.; Schwarz, W.; Seidler, N.; Westerhausen, M. Acyl‐ und alkylidenphosphane. XXXIII. Lithoxy‐methylidenphosphan · DME und ‐methylidinphosphan · 2 DME - Synthese und struktur. Z. Anorg. Allg. Chem., 1992, 612(6), 72-82.
[http://dx.doi.org/10.1002/zaac.19926120113]
[143]
Goicoechea, J.M.; Grützmacher, H. The chemistry of the 2‐phosphaethynolate anion. Angew. Chem. Int. Ed., 2018, 57(52), 16968-16994.
[http://dx.doi.org/10.1002/anie.201803888] [PMID: 29770548]
[144]
Weber, L. 2‐phospha‐ and 2‐arsaethynolates – versatile building blocks in modern synthetic chemistry. Eur. J. Inorg. Chem., 2018, 2018(20-21), 2175-2227.
[http://dx.doi.org/10.1002/ejic.201800179]
[145]
Liu, L.; Ruiz, D.A.; Munz, D.; Bertrand, G. A singlet phosphinidene stable at room temperature. Chem, 2016, 1(1), 147-153.
[http://dx.doi.org/10.1016/j.chempr.2016.04.001]
[146]
Li, Z.; Chen, X.; Bergeler, M.; Reiher, M.; Su, C.Y.; Grützmacher, H. A stable phosphanyl phosphaketene and its reactivity. Dalton Trans., 2015, 44(14), 6431-6438.
[http://dx.doi.org/10.1039/C4DT04012K] [PMID: 25747929]
[147]
Hinz, A.; Goicoechea, J.M. Limitations of steric bulk: Towards phospha‐germynes and phospha‐stannynes. Chemistry, 2018, 24(29), 7358-7363.
[http://dx.doi.org/10.1002/chem.201801329] [PMID: 29573494]
[148]
Li, C.; Hinz, A. Photolysis of phosphaketenyltetrylenes with a carbazolyl substituent. Chem. Asian J., 2023, 18(21), e202300698.
[http://dx.doi.org/10.1002/asia.202300698] [PMID: 37702378]
[149]
Krachko, T.; Ehlers, A.W.; Nieger, M.; Lutz, M.; Slootweg, J.C. Synthesis and reactivity of the phosphorus analogues of cyclopentadienone, tricyclopentanone, and housene. Angew. Chem. Int. Ed., 2018, 57(6), 1683-1687.
[http://dx.doi.org/10.1002/anie.201711838] [PMID: 29243886]
[150]
Del Rio, N.; Baceiredo, A.; Saffon-Merceron, N.; Hashizume, D.; Lutters, D.; Müller, T.; Kato, T. A stable heterocyclic amino(phosphanylidene‐σ 4 ‐phosphorane) germylene. Angew. Chem. Int. Ed., 2016, 55(15), 4753-4758.
[http://dx.doi.org/10.1002/anie.201511956] [PMID: 26954722]
[151]
Yang, W.; Krantz, K.E.; Dickie, D.A.; Molino, A.; Wilson, D.J.D.; Gilliard, R.J.Jr. Crystalline BP‐doped phenanthryne via photolysis of the elusive boraphosphaketene. Angew. Chem. Int. Ed., 2020, 59(10), 3971-3975.
[http://dx.doi.org/10.1002/anie.201916362] [PMID: 31912624]
[152]
Wilson, D.W.N.; Franco, M.P.; Myers, W.K.; McGrady, J.E.; Goicoechea, J.M. Base induced isomerisation of a phosphaethynolato-borane: mechanistic insights into boryl migration and decarbonylation to afford a triplet phosphinidene. Chem. Sci., 2020, 11(3), 862-869.
[http://dx.doi.org/10.1039/C9SC05969E] [PMID: 34123064]
[153]
Hagspiel, S.; Fantuzzi, F.; Dewhurst, R.D.; Gärtner, A.; Lindl, F.; Lamprecht, A.; Braunschweig, H. Adducts of the parent boraphosphaketene H2 BPCO and their decarbonylative insertion chemistry. Angew. Chem. Int. Ed., 2021, 60(24), 13666-13670.
[http://dx.doi.org/10.1002/anie.202103521] [PMID: 33843132]
[154]
Wilson, D.W.N.; Feld, J.; Goicoechea, J.M. A phosphanyl‐phosphagallene that functions as a frustrated Lewis pair. Angew. Chem. Int. Ed., 2020, 59(47), 20914-20918.
[http://dx.doi.org/10.1002/anie.202008207] [PMID: 32615007]
[155]
Sharma, M.K.; Wölper, C.; Haberhauer, G.; Schulz, S. Multi‐talented gallaphosphene for ga−p−ga heteroallyl cation generation, CO2 storage, and C(sp 3)−H bond activation. Angew. Chem. Int. Ed., 2021, 60(12), 6784-6790.
[http://dx.doi.org/10.1002/anie.202014381] [PMID: 33368922]
[156]
Sharma, M.K.; Wölper, C.; Haberhauer, G.; Schulz, S. Reversible and irreversible [2+2] cycloaddition reactions of heteroallenes to a gallaphosphene. Angew. Chem. Int. Ed., 2021, 60(40), 21784-21788.
[http://dx.doi.org/10.1002/anie.202108370] [PMID: 34324782]
[157]
Sharma, M.K.; Dhawan, P.; Helling, C.; Wölper, C.; Schulz, S.; Bis‐Phosphaketenes, L.M. bis‐phosphaketenes LM(PCO)2(M=Ga, In): A new class of reactive group 13 metal‐phosphorus compounds. Chemistry, 2022, 28(22), e202200444.
[http://dx.doi.org/10.1002/chem.202200444] [PMID: 35226777]
[158]
Wilson, D.W.N.; Myers, W.K.; Goicoechea, J.M. Synthesis and decarbonylation chemistry of gallium phosphaketenes. Dalton Trans., 2020, 49(43), 15249-15255.
[http://dx.doi.org/10.1039/D0DT03174G] [PMID: 33084675]
[159]
Timofeeva, V.; Baeza, J.M.L.; Nougué, R.; Syroeshkin, M.; Segundo Rojas Guerrero, R.; Saffon-Merceron, N.; Altınbaş Özpınar, G.; Rathjen, S.; Müller, T.; Baceiredo, A.; Kato, T. Reductive elimination at Pb(II) center of an (Amino)plumbylene‐substituted phosphaketene: New pathway for phosphinidene synthesis. Chemistry, 2022, 28(44), e202201615.
[http://dx.doi.org/10.1002/chem.202201615] [PMID: 35638144]
[160]
Feld, J.; Goicoechea, J.M. Metal‐mediated decarbonylation of phosphanyl‐phosphaketenes to afford phosphanyl‐phosphinidine complexes. Z. Anorg. Allg. Chem., 2022, 648(19), e202200134.
[http://dx.doi.org/10.1002/zaac.202200134]
[161]
Niecke, E.; Streubel, R.; Nieger, M.; Stalke, D. Synthesis and structure of a 1 H ‐diphosphirene. Angew. Chem. Int. Ed. Engl., 1989, 28(12), 1673-1674.
[http://dx.doi.org/10.1002/anie.198916731]
[162]
Treubel, R.; Niecke, E. Halogen(Silyl)phosphane – Synthese und eigenschaften. Chem. Ber., 1990, 123(6), 1245-1251.
[http://dx.doi.org/10.1002/cber.19901230606]
[163]
Streubel, R.; Niecke, E.; Paetzold, P. Azaphosphaboriridine und azadiphosphiridine durch phosphandiyl‐transfer. Chem. Ber., 1991, 124(4), 765-767.
[http://dx.doi.org/10.1002/cber.19911240415]
[164]
Niecke, E.; Rüger, R.; Lysek, M.; Schoeller, W.W. Aminophosphinidene derivatives. Phosphorus Sulfur, 1983, 18, 35-38.
[http://dx.doi.org/10.1080/03086648308075961]
[165]
Surgenor, B.A.; Bühl, M.; Slawin, A.M.Z.; Woollins, J.D.; Kilian, P. Isolable phosphanylidene phosphorane with a sterically accessible two-coordinate phosphorus atom. Angew. Chem. Int. Ed., 2012, 51(40), 10150-10153.
[http://dx.doi.org/10.1002/anie.201204998] [PMID: 22951931]
[166]
Lüdtke, K.P.; Suhrbier, T.; Bresien, J.; Villinger, A.; Schulz, A. On the reactivity of a masked N‐heterocyclic phosphinidene towards carbonyls and isonitriles. Eur. J. Inorg. Chem., 2024, 27(6), e202300651.
[http://dx.doi.org/10.1002/ejic.202300651]
[167]
Baradzenka, A.G.; Pilkington, M.; Dmitrienko, A.; Nikonov, G.I. Small molecule activation on a base‐stabilized phosphinidene. Chemistry, 2023, 29(30), e202300523.
[http://dx.doi.org/10.1002/chem.202300523] [PMID: 36848593]
[168]
Šimon, P.; de Proft, F.; Jambor, R.; Růžička, A.; Dostál, L. Monomeric organoantimony(I) and organobismuth(I) compounds stabilized by an NCN chelating ligand: Syntheses and structures. Angew. Chem. Int. Ed., 2010, 49(32), 5468-5471.
[http://dx.doi.org/10.1002/anie.201002209] [PMID: 20602393]
[169]
Kremláček, V.; Hyvl, J.; Yoshida, W.Y.; Růžička, A.; Rheingold, A.L.; Turek, J.; Hughes, R.P.; Dostál, L.; Cain, M.F. Heterocycles derived from generating monovalent pnictogens within NCN pincers and bidentate NC chelates: Hypervalency versus bell-clappers versus static aromatics. Organometallics, 2018, 37(15), 2481-2490.
[http://dx.doi.org/10.1021/acs.organomet.8b00290]
[170]
Hyvl, J.; Yoshida, W.Y.; Rheingold, A.L.; Hughes, R.P.; Cain, M.F. A masked phosphinidene trapped in a fluxional NCN pincer. Chemistry, 2016, 22(49), 17562-17565.
[http://dx.doi.org/10.1002/chem.201604415] [PMID: 27654835]
[171]
Nguyen, M.T.; Gabidullin, B.; Nikonov, G.I. Imino-stabilised phosphinidene (or azaphosphole?) and some of its derivatives. Dalton Trans., 2018, 47(47), 17011-17019.
[http://dx.doi.org/10.1039/C8DT03465F] [PMID: 30460954]
[172]
Chinen, B.L.; Hyvl, J.; Brayton, D.F.; Riek, M.M.; Yoshida, W.Y.; Chapp, T.W.; Rheingold, A.L.; Cain, M.F. Trimerization and cyclization of reactive P-functionalities confined within OCO pincers. RSC Advances, 2021, 11(46), 28602-28613.
[http://dx.doi.org/10.1039/D1RA05926B] [PMID: 35478534]
[173]
Nguyen, M.T.; Spasyuk, D.; White, B.; Dudding, T.; Nikonov, G.I. Generation and reactivity of an elusive base-stabilised phosphinidene. Dalton Trans., 2021, 50(45), 16613-16619.
[http://dx.doi.org/10.1039/D1DT03181C] [PMID: 34748621]
[174]
Frenette, B.L.; Trach, J.; Ferguson, M.J.; Rivard, E. Frustrated lewis pair adduct of atomic P(−1) as a source of phosphinidenes (PR), diphosphorus (P2), and indium phosphide. Angew. Chem. Int. Ed., 2023, 62(10), e202218587.
[http://dx.doi.org/10.1002/anie.202218587] [PMID: 36625676]
[175]
Arduengo, A.J., III; Dias, H.V.R.; Calabrese, J.C. A carbene•phosphinidene adduct: “Phosphaalkene”. Chem. Lett., 1997, 26(2), 143-144.
[http://dx.doi.org/10.1246/cl.1997.143]
[176]
Arduengo, A.J., III; Carmalt, C.J.; Clyburne, J.A.C.; Cowley, A.H.; Pyati, R. Nature of the bonding in a carbene–phosphinidene: A main group analogue of a Fischer carbene complex? Isolation and characterisation of a bis(borane) adduct. Chem. Commun., 1997, 78(10), 981-982.
[http://dx.doi.org/10.1039/a700296c]
[177]
Arduengo, A.J., III; Calabrese, J.C.; Cowley, A.H.; Dias, H.V.R.; Goerlich, J.R.; Marshall, W.J.; Riegel, B. Carbene-pnictinidene adducts. Inorg. Chem., 1997, 36(10), 2151-2158.
[http://dx.doi.org/10.1021/ic970174q] [PMID: 11669837]
[178]
Wellnitz, T.; Hering-Junghans, C. Synthesis and reactivity of monocyclic homoleptic oligophosphanes. Eur. J. Inorg. Chem., 2021, 2021(1), 8-21.
[http://dx.doi.org/10.1002/ejic.202000878]
[179]
Siewert, J.E.; Puerta Lombardi, B.M.; Jannsen, N.; Roesler, R.; Hering-Junghans, C. Synthesis and ligand properties of chelating bis(N -heterocyclic carbene)-stabilized bis(phosphinidenes). Inorg. Chem., 2023, 62(41), 16832-16841.
[http://dx.doi.org/10.1021/acs.inorgchem.3c02264] [PMID: 37782848]
[180]
Adhikari, A.K.; Grell, T.; Lönnecke, P.; Hey-Hawkins, E. Formation of a carbene–phosphinidene adduct by nhc‐induced p–p bond cleavage in sodium tetramesityltetraphosphanediide. Eur. J. Inorg. Chem., 2016, 2016(5), 620-622.
[http://dx.doi.org/10.1002/ejic.201500952]
[181]
Hayakawa, N.; Sadamori, K.; Tsujimoto, S.; Hatanaka, M.; Wakabayashi, T.; Matsuo, T. Cleavage of a P=P double bond mediated by N‐heterocyclic carbenes. Angew. Chem. Int. Ed., 2017, 56(21), 5765-5769.
[http://dx.doi.org/10.1002/anie.201701201] [PMID: 28429503]
[182]
Dhara, D.; Kalita, P.; Mondal, S.; Narayanan, R.S.; Mote, K.R.; Huch, V.; Zimmer, M.; Yildiz, C.B.; Scheschkewitz, D.; Chandrasekhar, V.; Jana, A. Reactivity enhancement of a diphosphene by reversible N-heterocyclic carbene coordination. Chem. Sci., 2018, 9(18), 4235-4243.
[http://dx.doi.org/10.1039/C8SC00348C] [PMID: 29780553]
[183]
Weetman, C. Main group multiple bonds for bond activations and catalysis. Chemistry, 2021, 27(6), 1941-1954.
[http://dx.doi.org/10.1002/chem.202002939] [PMID: 32757381]
[184]
Graham, C.M.E.; Millet, C.R.P.; Price, A.N.; Valjus, J.; Cowley, M.J.; Tuononen, H.M.; Ragogna, P.J. Preparation and characterization of P2BCh ring systems (Ch=S, Se) and their reactivity with n‐heterocyclic carbenes. Chemistry, 2018, 24(3), 672-680.
[http://dx.doi.org/10.1002/chem.201704337] [PMID: 29119625]
[185]
Sharma, M.K.; Weinert, H.M.; Wölper, C.; Schulz, S.; Gallaphosphene, L. Gallaphosphene L(Cl)GaPGaL: A novel phosphinidene transfer reagent. Chemistry, 2024, 30(18), e202400110.
[http://dx.doi.org/10.1002/chem.202400110] [PMID: 38235843]
[186]
Clendenning, S.B.; Hitchcock, P.B.; Lappert, M.F.; Merle, P.G.; Nixon, J.F.; Nyulászi, L. Synthesis of the 2,4,5-tri-tert-butyl-1,3-diphospholide anion by phosphinidene elimination from 2,4,6-tri-tert-butyl-1,3,5-triphosphabenzene on treatment with the amide Li[NPh(SiMe3)]. Chemistry, 2007, 13(25), 7121-7128.
[http://dx.doi.org/10.1002/chem.200601626] [PMID: 17562533]
[187]
Riu, M.L.Y.; Eckhardt, A.K.; Cummins, C.C. Reactions of tri- tert -butylphosphatetrahedrane as a spring-loaded phosphinidene synthon featuring nickel-catalyzed transfer to unactivated alkenes. J. Am. Chem. Soc., 2022, 144(17), 7578-7582.
[http://dx.doi.org/10.1021/jacs.2c02236] [PMID: 35437987]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy