Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Advances in Self-healing Polymer Materials: Routes and Strategies

Author(s): Zhonglin Cao* and Jinbao Xu

Volume 28, Issue 19, 2024

Published on: 20 February, 2024

Page: [1513 - 1541] Pages: 29

DOI: 10.2174/0113852728277993240126114403

Price: $65

Abstract

The most intriguing area of scientific study and engineering applications is to synthetize materials that can autonomously heal damage similar to biological tissues. Since the concept of self-healing materials was established, several variations of self-healing polymer materials have been developed based on distinct healing techniques. This review outlines the most recent breakthroughs in self-healing polymers and utilizes the opportunity to categories the descriptions of self-healing technologies in the literatures according to extrinsic and intrinsic routes (noncovalent bonds, physical interaction, and covalent bonds). The major focus is on the routes and strategies used to generate self-healing polymer materials. In addition, the strengths and weaknesses of polymer materials with different self-healing routes and strategies in terms of mechanical and self-healing properties were summarized. Furthermore, we also reviewed the progress of the development from a single self-healing mechanism to multiple self-healing mechanisms to achieve balanced comprehensive performance. Finally, the future trajectory of self-healing polymers is envisioned.

[1]
Terryn, S.; Langenbach, J.; Roels, E.; Brancart, J.; Bakkali-Hassani, C.; Poutrel, Q.A.; Georgopoulou, A.; George Thuruthel, T.; Safaei, A.; Ferrentino, P.; Sebastian, T.; Norvez, S.; Iida, F.; Bosman, A.W.; Tournilhac, F.; Clemens, F.; Van Assche, G.; Vanderborght, B. A review on self-healing polymers for soft robotics. Mater. Today, 2021, 47, 187-205.
[http://dx.doi.org/10.1016/j.mattod.2021.01.009]
[2]
Ramesh, M.; Kumar, L.R.; Khan, A.; Asiri, A.M. Self-healing polymer composites and its chemistry. In: Self-healing composite materials; Khan, A.; Jawaid, M.; Raveendran, S.N.; Asiri, A.M.A., Eds.; Elsevier, 2020; pp. 415-427.
[http://dx.doi.org/10.1016/B978-0-12-817354-1.00022-3]
[3]
Ramesh, M.; Rajeshkumar, L.; Balaji, D.; Bhuvaneswari, V.; Sivalingam, S. Self-healable conductive materials. In: Self‐Healing Smart Materials and Allied Applications; Wiley, 2021.
[http://dx.doi.org/10.1002/9781119710219.ch11]
[4]
Ramesh, M.; Bhuvaneswari, V.; Balaji, D.; Rajeshkumar, L. Self-healable conductive and polymeric composite materials. In: Aerospace Polymeric Materials; Wiley, 2022.
[http://dx.doi.org/10.1002/9781119905264.ch10]
[5]
Utrera-Barrios, S.; Verdejo, R.; López-Manchado, M.A.; Hernández Santana, M. Evolution of self-healing elastomers, from extrinsic to combined intrinsic mechanisms: A review. Mater. Horiz., 2020, 7(11), 2882-2902.
[http://dx.doi.org/10.1039/D0MH00535E]
[6]
Agrawal, N.; Arora, B. Self-healing polymers and composites: Extrinsic routes. Mini Rev. Org. Chem., 2022, 19(4), 496-512.
[http://dx.doi.org/10.2174/1570193X18666210802110810]
[7]
Lee, M.W.; An, S.; Yoon, S.S.; Yarin, A.L. Advances in self-healing materials based on vascular networks with mechanical self-repair characteristics. Adv. Colloid Interface Sci., 2018, 252, 21-37.
[http://dx.doi.org/10.1016/j.cis.2017.12.010] [PMID: 29329666]
[8]
Althaqafi, K.A.; Satterthwaite, J.; Silikas, N. A review and current state of autonomic self-healing microcapsules-based dental resin composites. Dent. Mater., 2020, 36(3), 329-342.
[http://dx.doi.org/10.1016/j.dental.2019.12.005] [PMID: 31883618]
[9]
An, S.; Lee, M.W.; Yarin, A.L.; Yoon, S.S. A review on corrosion-protective extrinsic self-healing: Comparison of microcapsule-based systems and those based on core-shell vascular networks. Chem. Eng. J., 2018, 344, 206-220.
[http://dx.doi.org/10.1016/j.cej.2018.03.040]
[10]
Ramesh, S.; Khan, S.; Park, Y.; Ford, E.; Menegatti, S.; Genzer, J. Self-healing and repair of fabrics: A comprehensive review of the application toolkit. Mater. Today, 2022, 54, 90-109.
[http://dx.doi.org/10.1016/j.mattod.2021.11.016]
[11]
Lugger, S.J.D.; Houben, S.J.A.; Foelen, Y.; Debije, M.G.; Schenning, A.P.H.J.; Mulder, D.J. Hydrogen-bonded supramolecular liquid crystal polymers: Smart materials with stimuli-responsive, self-healing, and recyclable properties. Chem. Rev., 2022, 122(5), 4946-4975.
[http://dx.doi.org/10.1021/acs.chemrev.1c00330] [PMID: 34428022]
[12]
Tonge, S.R.; Tighe, B.J. Responsive hydrophobically associating polymers: A review of structure and properties. Adv. Drug Deliv. Rev., 2001, 53(1), 109-122.
[http://dx.doi.org/10.1016/S0169-409X(01)00223-X] [PMID: 11733120]
[13]
Mohamadhoseini, M.; Mohamadnia, Z. Supramolecular self-healing materials via host-guest strategy between cyclodextrin and specific types of guest molecules. Coord. Chem. Rev., 2021, 432, 213711.
[http://dx.doi.org/10.1016/j.ccr.2020.213711]
[14]
Li, C.H.; Zuo, J.L. Self‐healing polymers based on coordination bonds. Adv. Mater., 2020, 32(27), 1903762.
[http://dx.doi.org/10.1002/adma.201903762] [PMID: 31599045]
[15]
Chen, L.J.; Yang, H.B. Construction of stimuli-responsive functional materials via hierarchical self-assembly involving coordination interactions. Acc. Chem. Res., 2018, 51(11), 2699-2710.
[http://dx.doi.org/10.1021/acs.accounts.8b00317] [PMID: 30285407]
[16]
Ratwani, C.R.; Kamali, A.R.; Abdelkader, A.M. Self-healing by Diels-Alder cycloaddition in advanced functional polymers: A review. Prog. Mater. Sci., 2023, 131, 101001.
[http://dx.doi.org/10.1016/j.pmatsci.2022.101001]
[17]
Cho, S.; Hwang, S.Y.; Oh, D.X.; Park, J. Recent progress in self-healing polymers and hydrogels based on reversible dynamic B-O bonds: Boronic/boronate esters, borax, and benzoxaborole. J. Mater. Chem. A Mater. Energy Sustain., 2021, 9(26), 14630-14655.
[http://dx.doi.org/10.1039/D1TA02308J]
[18]
Malik, U.S.; Niazi, M.B.K.; Jahan, Z.; Zafar, M.I.; Vo, D.V.N.; Sher, F. Nano-structured dynamic Schiff base cues as robust self-healing polymers for biomedical and tissue engineering applications: A review. Environ. Chem. Lett., 2022, 20(1), 495-517.
[http://dx.doi.org/10.1007/s10311-021-01337-1]
[19]
Aguirresarobe, R.H.; Nevejans, S.; Reck, B.; Irusta, L.; Sardon, H.; Asua, J.M.; Ballard, N. Healable and self-healing polyurethanes using dynamic chemistry. Prog. Polym. Sci., 2021, 114, 101362.
[http://dx.doi.org/10.1016/j.progpolymsci.2021.101362]
[20]
Zheng, N.; Xu, Y.; Zhao, Q.; Xie, T. Dynamic covalent polymer networks: A molecular platform for designing functions beyond chemical recycling and self-healing. Chem. Rev., 2021, 121(3), 1716-1745.
[http://dx.doi.org/10.1021/acs.chemrev.0c00938] [PMID: 33393759]
[21]
White, S.R.; Sottos, N.R.; Geubelle, P.H.; Moore, J.S.; Kessler, M.R.; Sriram, S.R.; Brown, E.N.; Viswanathan, S. Autonomic healing of polymer composites. Nature, 2001, 409(6822), 794-797.
[http://dx.doi.org/10.1038/35057232] [PMID: 11236987]
[22]
Zhang, H.; Xiao, K.; Lin, Z.; Shi, S. Epoxy microcapsules for high-performance self-healing materials using a novel method via integrating electrospraying and interfacial polymerization. J. Mater. Sci. Technol., 2022, 112, 59-67.
[http://dx.doi.org/10.1016/j.jmst.2021.09.045]
[23]
Haddadi, S.A.; Ramazani, S.A.A.; Mahdavian, M.; Taheri, P.; Mol, J.M.C.; Gonzalez-Garcia, Y. Self-healing epoxy nanocomposite coatings based on dual-encapsulation of nano-carbon hollow spheres with film-forming resin and curing agent. Compos., Part B Eng., 2019, 175, 107087.
[http://dx.doi.org/10.1016/j.compositesb.2019.107087]
[24]
Zhou, J.; Liu, H.; Sun, Y.; Wang, C.; Chen, K. Self‐healing titanium dioxide nanocapsules‐graphene/multi‐branched polyurethane hybrid flexible film with multifunctional properties toward wearable electronics. Adv. Funct. Mater., 2021, 31(29), 2011133.
[http://dx.doi.org/10.1002/adfm.202011133]
[25]
Zhang, H.; Zhang, X.; Bao, C.; Li, X.; Sun, D.; Duan, F.; Friedrich, K.; Yang, J. Direct microencapsulation of pure polyamine by integrating microfluidic emulsion and interfacial polymerization for practical self-healing materials. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6(47), 24092-24099.
[http://dx.doi.org/10.1039/C8TA08324J]
[26]
Hu, H.; Zhang, L.; Yu, R.; Yuan, L.; Yang, Y.; He, X.; Wang, J.; Li, Z. Microencapsulation of ethylenediamine and its application in binary self-healing system using dual-microcapsule. Mater. Des., 2020, 189, 108535.
[http://dx.doi.org/10.1016/j.matdes.2020.108535]
[27]
Sima, W.; Shao, Q.; Sun, P.; Liang, C.; Yang, M.; Yin, Z.; Deng, Q. Magnetically gradient-distributed microcapsule/epoxy composites: Low capsule load and highly targeted self-healing performance. Chem. Eng. J., 2021, 405, 126908.
[http://dx.doi.org/10.1016/j.cej.2020.126908]
[28]
Diesendruck, C.E.; Sottos, N.R.; Moore, J.S.; White, S.R. Biomimetic self‐healing. Angew. Chem. Int. Ed., 2015, 54(36), 10428-10447.
[http://dx.doi.org/10.1002/anie.201500484] [PMID: 26216654]
[29]
Shu, B.; Wu, S.; Dong, L.; Norambuena-Contreras, J.; Li, Y.; Li, C.; Yang, X.; Liu, Q.; Wang, Q.; Wang, F.; Barbieri, D.M.; Yuan, M.; Bao, S.; Zhou, M.; Zeng, G. Self-healing capability of asphalt mixture containing polymeric composite fibers under acid and saline-alkali water solutions. J. Clean. Prod., 2020, 268, 122387.
[http://dx.doi.org/10.1016/j.jclepro.2020.122387]
[30]
Ji, X.; Wang, W.; Zhao, X.; Wang, L.; Ma, F.; Wang, Y.; Duan, J.; Hou, B. Poly(dimethyl siloxane) anti-corrosion coating with wide pH-responsive and self-healing performance based on core-shell nanofiber containers. J. Mater. Sci. Technol., 2022, 101, 128-145.
[http://dx.doi.org/10.1016/j.jmst.2021.06.014]
[31]
Trask, R.S.; Bond, I.P. Biomimetic self-healing of advanced composite structures using hollow glass fibres. Smart Mater. Struct., 2006, 15(3), 704-710.
[http://dx.doi.org/10.1088/0964-1726/15/3/005]
[32]
Hickenboth, C.R.; Moore, J.S.; White, S.R.; Sottos, N.R.; Baudry, J.; Wilson, S.R. Biasing reaction pathways with mechanical force. Nature, 2007, 446(7134), 423-427.
[http://dx.doi.org/10.1038/nature05681] [PMID: 17377579]
[33]
Postiglione, G.; Alberini, M.; Leigh, S.; Levi, M.; Turri, S. Effect of 3D-printed microvascular network design on the self-healing behavior of cross-linked polymers. ACS Appl. Mater. Interfaces, 2017, 9(16), 14371-14378.
[http://dx.doi.org/10.1021/acsami.7b01830] [PMID: 28387500]
[34]
Gergely, R.C.R.; Santa Cruz, W.A.; Krull, B.P.; Pruitt, E.L.; Wang, J.; Sottos, N.R.; White, S.R. Restoration of impact damage in polymers via a hybrid microcapsule-microvascular self‐healing system. Adv. Funct. Mater., 2018, 28(2), 1704197.
[http://dx.doi.org/10.1002/adfm.201704197]
[35]
Chen, X.; Dam, M.A.; Ono, K.; Mal, A.; Shen, H.; Nutt, S.R.; Sheran, K.; Wudl, F. A thermally re-mendable cross-linked polymeric material. Science, 2002, 295(5560), 1698-1702.
[http://dx.doi.org/10.1126/science.1065879] [PMID: 11872836]
[36]
Hou, R.; Li, G.Q.; Zhang, Y.; Li, M.J.; Zhou, G.M.; Chai, X.M. Self-healing polymers materials based on dynamic supramolecular motifs. Huaxue Jinzhan, 2019, 31, 690-698.
[37]
Wu, J.; Wu, Z.; Ding, H.; Wei, Y.; Yang, X.; Li, Z.; Yang, B.R.; Liu, C.; Qiu, L.; Wang, X. Multifunctional and high-sensitive sensor capable of detecting humidity, temperature, and flow stimuli using an integrated microheater. ACS Appl. Mater. Interfaces, 2019, 11(46), 43383-43392.
[http://dx.doi.org/10.1021/acsami.9b16336] [PMID: 31709789]
[38]
Rowan, S.J.; Suwanmala, P.; Sivakova, S. Nucleobase‐induced supramolecular polymerization in the solid state. J. Poly. Sci. Part A Poly. Chem., 2003, 41(22), 3589-3596.
[http://dx.doi.org/10.1002/pola.10967]
[39]
Nair, K.P.; Breedveld, V.; Weck, M. Complementary hydrogen-bonded thermoreversible polymer networks with tunable properties. Macromolecules, 2008, 41(10), 3429-3438.
[http://dx.doi.org/10.1021/ma800279w]
[40]
De Lucca Freitas, L.L.; Stadler, R. Thermoplastic elastomers by hydrogen bonding. 3. Interrelations between molecular parameters and rheological properties. Macromolecules, 1987, 20(10), 2478-2485.
[http://dx.doi.org/10.1021/ma00176a027]
[41]
Hentschel, J.; Kushner, A.M.; Ziller, J.; Guan, Z. Self-healing supramolecular block copolymers. Angew. Chem. Int. Ed., 2012, 51(42), 10561-10565.
[http://dx.doi.org/10.1002/anie.201204840] [PMID: 22987779]
[42]
Tamate, R.; Hashimoto, K.; Horii, T.; Hirasawa, M.; Li, X.; Shibayama, M.; Watanabe, M. Self‐healing micellar ion gels based on multiple hydrogen bonding. Adv. Mater., 2018, 30(36), 1802792.
[http://dx.doi.org/10.1002/adma.201802792] [PMID: 30066342]
[43]
Zhang, E.; Liu, X.; Liu, Y.; Shi, J.; Li, X.; Xiong, X.; Xu, C.; Wu, K.; Lu, M. Highly stretchable, bionic self-healing waterborne polyurethane elastic film enabled by multiple hydrogen bonds for flexible strain sensors. J. Mater. Chem. A Mater. Energy Sustain., 2021, 9(40), 23055-23071.
[http://dx.doi.org/10.1039/D1TA05148B]
[44]
Li, R.; Fan, T.; Chen, G.; Xie, H.; Su, B.; He, M. Highly transparent, self-healing conductive elastomers enabled by synergistic hydrogen bonding interactions. Chem. Eng. J., 2020, 393, 124685.
[http://dx.doi.org/10.1016/j.cej.2020.124685]
[45]
Zhao, X.; Liang, Y.; Huang, Y.; He, J.; Han, Y.; Guo, B. Physical double‐network hydrogel adhesives with rapid shape adaptability, fast self‐healing, antioxidant and NIR/pH stimulus‐responsiveness for multidrug‐resistant bacterial infection and removable wound dressing. Adv. Funct. Mater., 2020, 30(17), 1910748.
[http://dx.doi.org/10.1002/adfm.201910748]
[46]
Fan, H.; Wang, J.; Jin, Z. Tough, swelling-resistant, self-healing, and adhesive dual-cross-linked hydrogels based on polymer-tannic acid multiple hydrogen bonds. Macromolecules, 2018, 51(5), 1696-1705.
[http://dx.doi.org/10.1021/acs.macromol.7b02653]
[47]
Du, R.; Xu, Z.; Zhu, C.; Jiang, Y.; Yan, H.; Wu, H.C.; Vardoulis, O.; Cai, Y.; Zhu, X.; Bao, Z.; Zhang, Q.; Jia, X. A highly stretchable and self‐healing supramolecular elastomer based on sliding crosslinks and hydrogen bonds. Adv. Funct. Mater., 2020, 30(7), 1907139.
[http://dx.doi.org/10.1002/adfm.201907139]
[48]
Xu, J.; Chen, P.; Wu, J.; Hu, P.; Fu, Y.; Jiang, W.; Fu, J. Notch-insensitive, ultrastretchable, efficient self-healing supramolecular polymers constructed from multiphase active hydrogen bonds for electronic applications. Chem. Mater., 2019, 31(19), 7951-7961.
[http://dx.doi.org/10.1021/acs.chemmater.9b02136]
[49]
Eom, Y.; Kim, S.M.; Lee, M.; Jeon, H.; Park, J.; Lee, E.S.; Hwang, S.Y.; Park, J.; Oh, D.X. Mechano-responsive hydrogen-bonding array of thermoplastic polyurethane elastomer captures both strength and self-healing. Nat. Commun., 2021, 12(1), 621.
[http://dx.doi.org/10.1038/s41467-021-20931-z] [PMID: 33504800]
[50]
Davydovich, D.; Urban, M.W. Water accelerated self-healing of hydrophobic copolymers. Nat. Commun., 2020, 11(1), 5743.
[http://dx.doi.org/10.1038/s41467-020-19405-5] [PMID: 33184268]
[51]
Meng, L.; Shao, C.; Cui, C.; Xu, F.; Lei, J.; Yang, J. Autonomous self-healing silk fibroin injectable hydrogels formed via surfactant-free hydrophobic association. ACS Appl. Mater. Interfaces, 2020, 12(1), 1628-1639.
[http://dx.doi.org/10.1021/acsami.9b19415] [PMID: 31800210]
[52]
Clarke, D.E.; Pashuck, E.T.; Bertazzo, S.; Weaver, J.V.M.; Stevens, M.M. Self-healing, self-assembled β-sheet peptide-poly(γ-glutamic acid) hybrid hydrogels. J. Am. Chem. Soc., 2017, 139(21), 7250-7255.
[http://dx.doi.org/10.1021/jacs.7b00528] [PMID: 28525280]
[53]
Eisenberg, A.; Rinaudo, M. Polyelectrolytes and ionomers. Polym. Bull., 1990, 24(6), 671-671.
[http://dx.doi.org/10.1007/BF00300165]
[54]
Ikura, R.; Park, J.; Osaki, M.; Yamaguchi, H.; Harada, A.; Takashima, Y. Design of self-healing and self-restoring materials utilizing reversible and movable crosslinks. NPG Asia Mater., 2022, 14(1), 10.
[http://dx.doi.org/10.1038/s41427-021-00349-1]
[55]
Bose, R.K.; Hohlbein, N.; Garcia, S.J.; Schmidt, A.M.; van der Zwaag, S. Relationship between the network dynamics, supramolecular relaxation time and healing kinetics of cobalt poly(butyl acrylate) ionomers. Polymer, 2015, 69, 228-232.
[http://dx.doi.org/10.1016/j.polymer.2015.03.049]
[56]
Mai, D.; Mo, J.; Shan, S.; Lin, Y.; Zhang, A. Self-Healing, self-adhesive strain sensors made with carbon nanotubes/polysiloxanes based on unsaturated carboxyl-amine ionic interactions. ACS Appl. Mater. Interfaces, 2021, 13(41), 49266-49278.
[http://dx.doi.org/10.1021/acsami.1c12438] [PMID: 34634200]
[57]
Jing, H.; Feng, J.; Shi, J.; He, L.; Guo, P.; Guan, S.; Fu, H.; Ao, Y. Ultra-stretchable, self-recovering, self-healing cationic guar gum/poly(stearyl methacrylate-co-acrylic acid) hydrogels. Carbohydr. Polym., 2021, 256, 117563.
[http://dx.doi.org/10.1016/j.carbpol.2020.117563] [PMID: 33483064]
[58]
Sun, H.; Liu, X.; Liu, S.; Yu, B.; Ning, N.; Tian, M.; Zhang, L. Silicone dielectric elastomer with improved actuated strain at low electric field and high self-healing efficiency by constructing supramolecular network. Chem. Eng. J., 2020, 384, 123242.
[http://dx.doi.org/10.1016/j.cej.2019.123242]
[59]
Zhang, L.; Xiong, H.; Wu, Q.; Peng, Y.; Zhu, Y.; Wang, H.; Yang, Y.; Liu, X.; Huang, G.; Wu, J. Constructing hydrophobic protection for ionic interactions toward water, acid, and base-resistant self-healing elastomers and electronic devices. Sci. China Mater., 2021, 64(7), 1780-1790.
[http://dx.doi.org/10.1007/s40843-020-1558-6]
[60]
Nomimura, S.; Osaki, M.; Park, J.; Ikura, R.; Takashima, Y.; Yamaguchi, H.; Harada, A. Self-healing alkyl acrylate-based supramolecular elastomers cross-linked via host-guest interactions. Macromolecules, 2019, 52(7), 2659-2668.
[http://dx.doi.org/10.1021/acs.macromol.9b00471]
[61]
Jia, Y.G.; Jin, J.; Liu, S.; Ren, L.; Luo, J.; Zhu, X.X. Self-healing hydrogels of low molecular weight poly(vinyl alcohol) assembled by host–guest recognition. Biomacromolecules, 2018, 19(2), 626-632.
[http://dx.doi.org/10.1021/acs.biomac.7b01707] [PMID: 29341595]
[62]
Liu, X.; Ren, Z.; Liu, F.; Zhao, L.; Ling, Q.; Gu, H. Multifunctional self-healing dual network hydrogels constructed via host–guest interaction and dynamic covalent bond as wearable strain sensors for monitoring human and organ motions. ACS Appl. Mater. Interfaces, 2021, 13(12), 14612-14622.
[http://dx.doi.org/10.1021/acsami.1c03213] [PMID: 33723988]
[63]
Wang, Z.; Ren, Y.; Zhu, Y.; Hao, L.; Chen, Y.; An, G.; Wu, H.; Shi, X.; Mao, C. A rapidly self‐healing host-guest supramolecular hydrogel with high mechanical strength and excellent biocompatibility. Angew. Chem. Int. Ed., 2018, 57(29), 9008-9012.
[http://dx.doi.org/10.1002/anie.201804400] [PMID: 29774645]
[64]
Deng, Z.; Guo, Y.; Zhao, X.; Ma, P.X.; Guo, B. Multifunctional stimuli-responsive hydrogels with self-healing, high conductivity, and rapid recovery through host-guest interactions. Chem. Mater., 2018, 30(5), 1729-1742.
[http://dx.doi.org/10.1021/acs.chemmater.8b00008]
[65]
Li, X.; Zhang, H.; Zhang, P.; Yu, Y. A sunlight-degradable autonomous self-healing supramolecular elastomer for flexible electronic devices. Chem. Mater., 2018, 30(11), 3752-3758.
[http://dx.doi.org/10.1021/acs.chemmater.8b00832]
[66]
Zhang, L.; Wang, H.; Zhu, Y.; Xiong, H.; Wu, Q.; Gu, S.; Liu, X.; Huang, G.; Wu, J. Electron-donating effect enabled simultaneous improvement on the mechanical and self-healing properties of bromobutyl rubber ionomers. ACS Appl. Mater. Interfaces, 2020, 12(47), 53239-53246.
[http://dx.doi.org/10.1021/acsami.0c14901] [PMID: 33197169]
[67]
Jing, X.; Mi, H.Y.; Napiwocki, B.N.; Peng, X.F.; Turng, L.S. Mussel-inspired electroactive chitosan/graphene oxide composite hydrogel with rapid self-healing and recovery behavior for tissue engineering. Carbon, 2017, 125, 557-570.
[http://dx.doi.org/10.1016/j.carbon.2017.09.071]
[68]
Tong, X.; Du, L.; Xu, Q. Tough, adhesive and self-healing conductive 3D network hydrogel of physically linked functionalized-boron nitride/clay/poly(N-isopropylacrylamide). J. Mater. Chem. A Mater. Energy Sustain., 2018, 6(7), 3091-3099.
[http://dx.doi.org/10.1039/C7TA10898B]
[69]
Shi, L.; Ding, P.; Wang, Y.; Zhang, Y.; Ossipov, D.; Hilborn, J. Self‐healing polymeric hydrogel formed by metal–ligand coordination assembly: Design, fabrication, and biomedical applications. Macromol. Rapid Commun., 2019, 40(7), 1800837.
[http://dx.doi.org/10.1002/marc.201800837]
[70]
Wang, J.; Dai, T.; Wu, H.; Ye, M.; Yuan, G.; Jia, H. Tannic acid-Fe3+ activated rapid polymerization of ionic conductive hydrogels with high mechanical properties, self-healing, and self-adhesion for flexible wearable sensors. Compos. Sci. Technol., 2022, 221, 109345.
[http://dx.doi.org/10.1016/j.compscitech.2022.109345]
[71]
Shao, C.; Chang, H.; Wang, M.; Xu, F.; Yang, J. High-strength, tough, and self-healing nanocomposite physical hydrogels based on the synergistic effects of dynamic hydrogen bond and dual coordination bonds. ACS Appl. Mater. Interfaces, 2017, 9(34), 28305-28318.
[http://dx.doi.org/10.1021/acsami.7b09614] [PMID: 28771308]
[72]
Feng, H.; Wang, W.; Wang, T.; Zhang, L.; Li, W.; Hou, J.; Chen, S. Preparation of dynamic polyurethane networks with UV-triggered photothermal self-healing properties based on hydrogen and ion bonds for antibacterial applications. J. Mater. Sci. Technol., 2023, 133, 89-101.
[http://dx.doi.org/10.1016/j.jmst.2022.06.019]
[73]
Lai, J.C.; Jia, X.Y.; Wang, D.P.; Deng, Y.B.; Zheng, P.; Li, C.H.; Zuo, J.L.; Bao, Z. Thermodynamically stable whilst kinetically labile coordination bonds lead to strong and tough self-healing polymers. Nat. Commun., 2019, 10(1), 1164.
[http://dx.doi.org/10.1038/s41467-019-09130-z] [PMID: 30858371]
[74]
Wu, Y.; Zeng, Y.; Chen, Y.; Li, C.; Qiu, R.; Liu, W. Photocurable 3D printing of high toughness and self‐healing hydrogels for customized wearable flexible sensors. Adv. Funct. Mater., 2021, 31(52), 2107202.
[http://dx.doi.org/10.1002/adfm.202107202]
[75]
Wang, T.; Wang, W.; Feng, H.; Sun, T.; Ma, C.; Cao, L.; Qin, X.; Lei, Y.; Piao, J.; Feng, C.; Cheng, Q.; Chen, S. Photothermal nanofiller-based polydimethylsiloxane anticorrosion coating with multiple cyclic self-healing and long-term self-healing performance. Chem. Eng. J., 2022, 446, 137077.
[http://dx.doi.org/10.1016/j.cej.2022.137077]
[76]
Owusu-Nkwantabisah, S.; Gillmor, J.; Switalski, S.; Mis, M.R.; Bennett, G.; Moody, R.; Antalek, B.; Gutierrez, R.; Slater, G. Synergistic thermoresponsive optical properties of a composite self-healing hydrogel. Macromolecules, 2017, 50(9), 3671-3679.
[http://dx.doi.org/10.1021/acs.macromol.7b00355]
[77]
Huang, X.; Ge, G.; She, M.; Ma, Q.; Lu, Y.; Zhao, W.; Shen, Q.; Wang, Q.; Shao, J. Self-healing hydrogel with multiple dynamic interactions for multifunctional epidermal sensor. Appl. Surf. Sci., 2022, 598, 153803.
[http://dx.doi.org/10.1016/j.apsusc.2022.153803]
[78]
He, X.; Dong, J.; Zhang, X.; Bai, X.; Zhang, C.; Wei, D. Self-healing, anti-fatigue, antimicrobial ionic conductive hydrogels based on choline-amino acid polyionic liquids for multi-functional sensors. Chem. Eng. J., 2022, 435, 135168.
[http://dx.doi.org/10.1016/j.cej.2022.135168]
[79]
Wang, S.; Urban, M.W. Self-healing polymers. Nat. Rev. Mater., 2020, 5(8), 562-583.
[http://dx.doi.org/10.1038/s41578-020-0202-4]
[80]
Ghosh, B.; Chellappan, K.V.; Urban, M.W. Self-healing inside a scratch of oxetane-substituted chitosan-polyurethane (OXE-CHI-PUR) networks. J. Mater. Chem., 2011, 21(38), 14473-14486.
[http://dx.doi.org/10.1039/c1jm12321a]
[81]
Fu, K.; Lu, C.; Liu, Y.; Zhang, H.; Zhang, B.; Zhang, H.; Zhou, F.; Zhang, Q.; Zhu, B. Mechanically robust, self-healing superhydrophobic anti-icing coatings based on a novel fluorinated polyurethane synthesized by a two-step thiol click reaction. Chem. Eng. J., 2021, 404, 127110.
[http://dx.doi.org/10.1016/j.cej.2020.127110]
[82]
Li, X.; Li, B.; Li, Y.; Sun, J. Nonfluorinated, transparent, and spontaneous self-healing superhydrophobic coatings enabled by supramolecular polymers. Chem. Eng. J., 2021, 404, 126504.
[http://dx.doi.org/10.1016/j.cej.2020.126504]
[83]
Ni, X.; Gao, Y.; Zhang, X.; Lei, Y.; Sun, G.; You, B. An eco-friendly smart self-healing coating with NIR and pH dual-responsive superhydrophobic properties based on biomimetic stimuli-responsive mesoporous polydopamine microspheres. Chem. Eng. J., 2021, 406, 126725.
[http://dx.doi.org/10.1016/j.cej.2020.126725]
[84]
Yu, R.; Li, M.; Li, Z.; Pan, G.; Liang, Y.; Guo, B. Supramolecular thermo‐contracting adhesive hydrogel with self‐removability simultaneously enhancing noninvasive wound closure and mrsa‐infected wound healing. Adv. Healthc. Mater., 2022, 11(13), 2102749.
[http://dx.doi.org/10.1002/adhm.202102749] [PMID: 35426232]
[85]
Zhu, D.Y.; Chen, X.J.; Hong, Z.P.; Zhang, L.Y.; Zhang, L.; Guo, J.W.; Rong, M.Z.; Zhang, M.Q. Repeatedly intrinsic self-healing of millimeter-scale wounds in polymer through rapid volume expansion aided host-guest interaction. ACS Appl. Mater. Interfaces, 2020, 12(20), 22534-22542.
[http://dx.doi.org/10.1021/acsami.0c03523] [PMID: 32338869]
[86]
Cheng, Y.; Ren, K.; Huang, C.; Wei, J. Self-healing graphene oxide-based nanocomposite hydrogels serve as near-infrared light-driven valves. Sens. Actuators B Chem., 2019, 298, 126908.
[http://dx.doi.org/10.1016/j.snb.2019.126908]
[87]
Yang, Y.; Dang, Z.M.; Li, Q.; He, J. Self‐healing of electrical damage in polymers. Adv. Sci., 2020, 7(21), 2002131.
[http://dx.doi.org/10.1002/advs.202002131] [PMID: 33173739]
[88]
Yang, C.; Zhu, D.; Sun, C.; Chen, B.; Li, Y.; Pulidindi, I.N.; Zheng, Z.; Wang, X. Electrothermally responsive self-healing for carbon fiber/epoxy interphase based on Diels-Alder adducts. Compos. Sci. Technol., 2021, 208, 108767.
[http://dx.doi.org/10.1016/j.compscitech.2021.108767]
[89]
Pu, W.; Fu, D.; Wang, Z.; Gan, X.; Lu, X.; Yang, L.; Xia, H. Realizing crack diagnosing and self‐healing by electricity with a dynamic crosslinked flexible polyurethane composite. Adv. Sci., 2018, 5(5), 1800101.
[http://dx.doi.org/10.1002/advs.201800101] [PMID: 29876226]
[90]
Yang, Y.; He, J.; Li, Q.; Gao, L.; Hu, J.; Zeng, R.; Qin, J.; Wang, S.X.; Wang, Q. Self-healing of electrical damage in polymers using superparamagnetic nanoparticles. Nat. Nanotechnol., 2019, 14(2), 151-155.
[http://dx.doi.org/10.1038/s41565-018-0327-4] [PMID: 30598524]
[91]
Huang, J.; Cao, L.; Yuan, D.; Chen, Y. Design of novel self-healing thermoplastic vulcanizates utilizing thermal/magnetic/light-triggered shape memory effects. ACS Appl. Mater. Interfaces, 2018, 10(48), 40996-41002.
[http://dx.doi.org/10.1021/acsami.8b18212] [PMID: 30456940]
[92]
Habault, D.; Zhang, H.; Zhao, Y. Light-triggered self-healing and shape-memory polymers. Chem. Soc. Rev., 2013, 42(17), 7244-7256.
[http://dx.doi.org/10.1039/c3cs35489j] [PMID: 23440057]
[93]
Xuan, H.; Guan, Q.; Zhang, L.; You, Z. Thermoplastic photoheating polymer enables 3D‐printed self‐healing light‐propelled smart devices. Adv. Funct. Mater., 2021, 31(14), 2009568.
[http://dx.doi.org/10.1002/adfm.202009568]
[94]
Li, Z.; Davidson-Rozenfeld, G.; Vázquez-González, M.; Fadeev, M.; Zhang, J.; Tian, H.; Willner, I. Multi-triggered supramolecular dna/bipyridinium dithienylethene hydrogels driven by light, redox, and chemical stimuli for shape-memory and self-healing applications. J. Am. Chem. Soc., 2018, 140(50), 17691-17701.
[http://dx.doi.org/10.1021/jacs.8b10481] [PMID: 30452256]
[95]
Wu, K.; Wu, X.; Zhang, Y.; Chen, S.; Qiao, Z.; Wei, D.; Sun, J.; Fan, H. Semiconvertible hyaluronic hydrogel enabled red-light-responsive reversible mechanics, adhesion, and self-healing. Biomacromolecules, 2022, 23(3), 1030-1040.
[http://dx.doi.org/10.1021/acs.biomac.1c01395] [PMID: 35029368]
[96]
Peng, B.; Li, H.; Li, Y.; Lv, Z.; Wu, M.; Zhao, C. A photoresponsive azopyridine-based supramolecular elastomer for self-healing strain sensors. Chem. Eng. J., 2020, 395, 125079.
[http://dx.doi.org/10.1016/j.cej.2020.125079]
[97]
Li, Q.T.; Jiang, M.J.; Wu, G.; Chen, L.; Chen, S.C.; Cao, Y.X.; Wang, Y.Z. Photothermal conversion triggered precisely targeted healing of epoxy resin based on thermoreversible diels–alder network and amino-functionalized carbon nanotubes. ACS Appl. Mater. Interfaces, 2017, 9(24), 20797-20807.
[http://dx.doi.org/10.1021/acsami.7b01954] [PMID: 28553703]
[98]
Turkenburg, D.H.; Durant, Y.; Fischer, H.R. Bio-based self-healing coatings based on thermo-reversible Diels-Alder reaction. Prog. Org. Coat., 2017, 111, 38-46.
[http://dx.doi.org/10.1016/j.porgcoat.2017.05.006]
[99]
Xiang, H.; Yin, J.; Lin, G.; Liu, X.; Rong, M.; Zhang, M. Photo-crosslinkable, self-healable and reprocessable rubbers. Chem. Eng. J., 2019, 358, 878-890.
[http://dx.doi.org/10.1016/j.cej.2018.10.103]
[100]
Liu, M.; Zhong, J.; Li, Z.; Rong, J.; Yang, K.; Zhou, J.; Shen, L.; Gao, F.; Huang, X.; He, H. A high stiffness and self-healable polyurethane based on disulfide bonds and hydrogen bonding. Eur. Polym. J., 2020, 124, 109475.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.109475]
[101]
Turkenburg, D.H.; Fischer, H.R. Diels-Alder based, thermo-reversible cross-linked epoxies for use in self-healing composites. Polymer, 2015, 79, 187-194.
[http://dx.doi.org/10.1016/j.polymer.2015.10.031]
[102]
Li, D.; Wang, S.; Meng, Y.; Guo, Z.; Cheng, M.; Li, J. Fabrication of self-healing pectin/chitosan hybrid hydrogel via Diels-Alder reactions for drug delivery with high swelling property, pH-responsiveness, and cytocompatibility. Carbohydr. Polym., 2021, 268, 118244.
[http://dx.doi.org/10.1016/j.carbpol.2021.118244] [PMID: 34127224]
[103]
Chen, F.; Xiao, H.; Peng, Z.Q.; Zhang, Z.P.; Rong, M.Z.; Zhang, M.Q. Thermally conductive glass fiber reinforced epoxy composites with intrinsic self-healing capability. Adv. Compos. Hybrid Mater., 2021, 4(4), 1048-1058.
[http://dx.doi.org/10.1007/s42114-021-00303-3]
[104]
Wan, T.; Chen, D. Synthesis and properties of self-healing waterborne polyurethanes containing disulfide bonds in the main chain. J. Mater. Sci., 2017, 52(1), 197-207.
[http://dx.doi.org/10.1007/s10853-016-0321-x]
[105]
Sun, N.; Wang, Z.; Ma, X.; Zhang, K.; Wang, Z.; Guo, Z.; Chen, Y.; Sun, L.; Lu, W.; Liu, Y.; Di, M. Preparation and characterization of lignin-containing self-healing polyurethane elastomers with hydrogen and disulfide bonds. Ind. Crops Prod., 2021, 174, 114178.
[http://dx.doi.org/10.1016/j.indcrop.2021.114178]
[106]
Li, X.; Yu, R.; He, Y.; Zhang, Y.; Yang, X.; Zhao, X.; Huang, W. Self-healing polyurethane elastomers based on a disulfide bond by digital light processing 3D printing. ACS Macro Lett., 2019, 8(11), 1511-1516.
[http://dx.doi.org/10.1021/acsmacrolett.9b00766] [PMID: 35651184]
[107]
Zeng, Y.; Zhu, C.; Tao, L. Stimuli‐responsive multifunctional phenylboronic acid polymers via multicomponent reactions: From synthesis to application. Macromol. Rapid Commun., 2021, 42(18), 2100022.
[http://dx.doi.org/10.1002/marc.202100022] [PMID: 33713503]
[108]
Guo, R.; Su, Q.; Zhang, J.; Dong, A.; Lin, C.; Zhang, J. Facile access to multisensitive and self-healing hydrogels with reversible and dynamic boronic ester and disulfide linkages. Biomacromolecules, 2017, 18(4), 1356-1364.
[http://dx.doi.org/10.1021/acs.biomac.7b00089] [PMID: 28323415]
[109]
Yang, K.; Zhou, X.; Li, Z.; Wang, Z.; Luo, Y.; Deng, L.; He, D. Ultrastretchable, self-healable, and tissue-adhesive hydrogel dressings involving nanoscale tannic acid/ferric ion complexes for combating bacterial infection and promoting wound healing. ACS Appl. Mater. Interfaces, 2022, 14(38), 43010-43025.
[http://dx.doi.org/10.1021/acsami.2c13283] [PMID: 36108772]
[110]
Zhao, Z.H.; Wang, D.P.; Zuo, J.L.; Li, C.H. A tough and self-healing polymer enabled by promoting bond exchange in boronic esters with neighboring hydroxyl groups. ACS Mater. Lett., 2021, 3(9), 1328-1338.
[http://dx.doi.org/10.1021/acsmaterialslett.1c00314]
[111]
Wu, D.; Wang, W.; Diaz-Dussan, D.; Peng, Y.Y.; Chen, Y.; Narain, R.; Hall, D.G. In situ forming, dual-crosslink network, self-healing hydrogel enabled by a bioorthogonal nopoldiol–benzoxaborolate click reaction with a wide ph range. Chem. Mater., 2019, 31(11), 4092-4102.
[http://dx.doi.org/10.1021/acs.chemmater.9b00769]
[112]
Gao, H.; Yu, C.; Li, Q.; Cao, X. Injectable DMEM-induced phenylboronic acid-modified hyaluronic acid self-crosslinking hydrogel for potential applications in tissue repair. Carbohydr. Polym., 2021, 258, 117663.
[http://dx.doi.org/10.1016/j.carbpol.2021.117663] [PMID: 33593547]
[113]
Chen, Y.; Diaz-Dussan, D.; Wu, D.; Wang, W.; Peng, Y.Y.; Asha, A.B.; Hall, D.G.; Ishihara, K.; Narain, R. Bioinspired self-healing hydrogel based on benzoxaborole-catechol dynamic covalent chemistry for 3D cell encapsulation. ACS Macro Lett., 2018, 7(8), 904-908.
[http://dx.doi.org/10.1021/acsmacrolett.8b00434] [PMID: 35650963]
[114]
Du, Y.; Yu, G.; Dai, X.; Wang, X.; Yao, B.; Kong, J. Highly stretchable, self-healable, ultrasensitive strain and proximity sensors based on skin-inspired conductive film for human motion monitoring. ACS Appl. Mater. Interfaces, 2020, 12(46), 51987-51998.
[http://dx.doi.org/10.1021/acsami.0c15578] [PMID: 33142058]
[115]
Li, S.; Pei, M.; Wan, T.; Yang, H.; Gu, S.; Tao, Y.; Liu, X.; Zhou, Y.; Xu, W.; Xiao, P. Self-healing hyaluronic acid hydrogels based on dynamic Schiff base linkages as biomaterials. Carbohydr. Polym., 2020, 250, 116922.
[http://dx.doi.org/10.1016/j.carbpol.2020.116922] [PMID: 33049836]
[116]
Guo, H.; Huang, S.; Yang, X.; Wu, J.; Kirk, T.B.; Xu, J.; Xu, A.; Xue, W. Injectable and self-healing hydrogels with double-dynamic bond tunable mechanical, gel-sol transition and drug delivery properties for promoting periodontium regeneration in periodontitis. ACS Appl. Mater. Interfaces, 2021, 13(51), 61638-61652.
[http://dx.doi.org/10.1021/acsami.1c18701] [PMID: 34908393]
[117]
Zhang, X.; Tan, B.; Wu, Y.; Zhang, M.; Xie, X.; Liao, J. An injectable, self-healing carboxymethylated chitosan hydrogel with mild photothermal stimulation for wound healing. Carbohydr. Polym., 2022, 293, 119722.
[http://dx.doi.org/10.1016/j.carbpol.2022.119722] [PMID: 35798421]
[118]
Zhang, H.; Wang, D.; Wu, N.; Li, C.; Zhu, C.; Zhao, N.; Xu, J. Recyclable, self-healing, thermadapt triple-shape memory polymers based on dual dynamic bonds. ACS Appl. Mater. Interfaces, 2020, 12(8), 9833-9841.
[http://dx.doi.org/10.1021/acsami.9b22613] [PMID: 31989812]
[119]
Peng, S.; Wang, Z.; Lin, J.; Miao, J. T.; Zheng, L.; Yang, Z.; Weng, Z.; Wu, L. Tailored and highly stretchable sensor prepared by crosslinking an enhanced 3D printed UV‐curable sacrificial mold. Adv. Funct. Mater., 2020, 31, 20008729.1-20008729.9.
[120]
Zhang, Y.; Ying, H.; Hart, K.R.; Wu, Y.; Hsu, A.J.; Coppola, A.M.; Kim, T.A.; Yang, K.; Sottos, N.R.; White, S.R.; Cheng, J. Malleable and recyclable poly(urea‐urethane) thermosets bearing hindered urea bonds. Adv. Mater., 2016, 28(35), 7646-7651.
[http://dx.doi.org/10.1002/adma.201601242] [PMID: 27374855]
[121]
Zhang, Q.; Wang, S.; Rao, B.; Chen, X.; Ma, L.; Cui, C.; Zhong, Q.; Li, Z.; Cheng, Y.; Zhang, Y. Hindered urea bonds for dynamic polymers: An overview. React. Funct. Polym., 2021, 159, 104807.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2020.104807]
[122]
Zechel, S.; Geitner, R.; Abend, M.; Siegmann, M.; Enke, M.; Kuhl, N.; Klein, M.; Vitz, J.; Gräfe, S.; Dietzek, B.; Schmitt, M.; Popp, J.; Schubert, U.S.; Hager, M.D. Intrinsic self-healing polymers with a high E-modulus based on dynamic reversible urea bonds. NPG Asia Mater., 2017, 9(8), e420.
[http://dx.doi.org/10.1038/am.2017.125]
[123]
Wang, Z.; Gangarapu, S.; Escorihuela, J.; Fei, G.; Zuilhof, H.; Xia, H. Dynamic covalent urea bonds and their potential for development of self-healing polymer materials. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7(26), 15933-15943.
[http://dx.doi.org/10.1039/C9TA02054C]
[124]
Liu, S.; Chen, S.; Shi, W.; Peng, Z.; Luo, K.; Xing, S.; Li, J.; Liu, Z.; Liu, L. Self‐healing, robust, and stretchable electrode by direct printing on dynamic polyurea surface at slightly elevated temperature. Adv. Funct. Mater., 2021, 31(26), 2102225.
[http://dx.doi.org/10.1002/adfm.202102225]
[125]
Wang, S.; Fu, D.; Wang, X.; Pu, W.; Martone, A.; Lu, X.; Lavorgna, M.; Wang, Z.; Amendola, E.; Xia, H. High performance dynamic covalent crosslinked polyacylsemicarbazide composites with self-healing and recycling capabilities. J. Mater. Chem. A Mater. Energy Sustain., 2021, 9(7), 4055-4065.
[http://dx.doi.org/10.1039/D0TA11251H]
[126]
Zhou, Z.; Wang, X.; Yu, H.; Yu, C.; Zhang, F. Dynamic cross-linked polyurea/polydopamine nanocomposites for photoresponsive self-healing and photoactuation. Macromolecules, 2022, 55(6), 2193-2201.
[http://dx.doi.org/10.1021/acs.macromol.1c02534]
[127]
Lehn, J.M. Dynamers: Dynamic molecular and supramolecular polymers. Aust. J. Chem., 2010, 63(4), 611-623.
[http://dx.doi.org/10.1071/CH10035]
[128]
Li, S.; Dong, Q.; Peng, X.; Chen, Y.; Yang, H.; Xu, W.; Zhao, Y.; Xiao, P.; Zhou, Y. Self-healing hyaluronic acid nanocomposite hydrogels with platelet-rich plasma impregnated for skin regeneration. ACS Nano, 2022, 16(7), 11346-11359.
[http://dx.doi.org/10.1021/acsnano.2c05069] [PMID: 35848721]
[129]
An, H.; Yang, Y.; Zhou, Z.; Bo, Y.; Wang, Y.; He, Y.; Wang, D.; Qin, J. Pectin-based injectable and biodegradable self-healing hydrogels for enhanced synergistic anticancer therapy. Acta Biomater., 2021, 131, 149-161.
[http://dx.doi.org/10.1016/j.actbio.2021.06.029] [PMID: 34171460]
[130]
Chen, M.; Tian, J.; Liu, Y.; Cao, H.; Li, R.; Wang, J.; Wu, J.; Zhang, Q. Dynamic covalent constructed self-healing hydrogel for sequential delivery of antibacterial agent and growth factor in wound healing. Chem. Eng. J., 2019, 373, 413-424.
[http://dx.doi.org/10.1016/j.cej.2019.05.043]
[131]
Kaur, G.; Johnston, P.; Saito, K. Photo-reversible dimerisation reactions and their applications in polymeric systems. Polym. Chem., 2014, 5(7), 2171-2186.
[http://dx.doi.org/10.1039/C3PY01234D]
[132]
Wong, C.S.; Hassan, N.I.; Su’ait, M.S.; Pelach Serra, M.A.; Mendez Gonzalez, J.A.; Granda, L.A.; Badri, K.H. Photo-activated self-healing bio-based polyurethanes. Ind. Crops Prod., 2019, 140, 111613.
[http://dx.doi.org/10.1016/j.indcrop.2019.111613]
[133]
Xiang, S.L.; Hua, Q.X.; Zhao, P.J.; Gong, W.L.; Li, C.; Zhu, M.Q. Photoplastic self-healing polyurethane springs and actuators. Chem. Mater., 2019, 31(14), 5081-5088.
[http://dx.doi.org/10.1021/acs.chemmater.9b00983]
[134]
Liu, X.; Wu, J.; Tang, Z.; Wu, J.; Huang, Z.; Yin, X.; Du, J.; Lin, X.; Lin, W.; Yi, G. Photoreversible bond-based shape memory polyurethanes with light-induced self-healing, recyclability, and 3D fluorescence encryption. ACS Appl. Mater. Interfaces, 2022, 14(29), 33829-33841.
[http://dx.doi.org/10.1021/acsami.2c07767] [PMID: 35830501]
[135]
Sinha Roy, P.; Mention, M.M.; Turner, M.A.P.; Brunissen, F.; Stavros, V.G.; Garnier, G.; Allais, F.; Saito, K. Bio-based photo-reversible self-healing polymer designed from lignin. Green Chem., 2021, 23(24), 10050-10061.
[http://dx.doi.org/10.1039/D1GC02957F]
[136]
Zou, C.; Chen, C. Polar‐functionalized, crosslinkable, self‐healing, and photoresponsive polyolefins. Angew. Chem. Int. Ed., 2020, 59(1), 395-402.
[http://dx.doi.org/10.1002/anie.201910002] [PMID: 31602746]
[137]
Li, Y.; Li, Z.; Wang, W.; Sun, J. Self-healing and highly elastic fluorine-free proton exchange membranes comprised of poly(vinyl alcohol) derivative and phytic acid for durable fuel cells. Sci. China Mater., 2020, 63(7), 1235-1246.
[http://dx.doi.org/10.1007/s40843-020-1308-y]
[138]
Yang, R.; Liu, X.; Ren, Y.; Xue, W.; Liu, S.; Wang, P.; Zhao, M.; Xu, H.; Chi, B. Injectable adaptive self-healing hyaluronic acid/poly (γ-glutamic acid) hydrogel for cutaneous wound healing. Acta Biomater., 2021, 127, 102-115.
[http://dx.doi.org/10.1016/j.actbio.2021.03.057] [PMID: 33813093]
[139]
Song, P.; Qin, H.; Gao, H.L.; Cong, H.P.; Yu, S.H. Self-healing and superstretchable conductors from hierarchical nanowire assemblies. Nat. Commun., 2018, 9(1), 2786.
[http://dx.doi.org/10.1038/s41467-018-05238-w] [PMID: 30018323]
[140]
Ding, X.; Li, G.; Zhang, P.; Xiao, C. Constructing thermally reversible dynamic hydrogels via catalysis-free knoevenagel condensation. ACS Macro Lett., 2020, 9(6), 830-835.
[http://dx.doi.org/10.1021/acsmacrolett.0c00330] [PMID: 35648514]
[141]
Ding, X.; Li, G.; Zhang, P.; Jin, E.; Xiao, C.; Chen, X. Injectable self‐healing hydrogel wound dressing with cysteine‐specific on‐demand dissolution property based on tandem dynamic covalent bonds. Adv. Funct. Mater., 2021, 31(19), 2011230.
[http://dx.doi.org/10.1002/adfm.202011230]
[142]
Wang, C.; Zhao, N.; Yuan, W. NIR/thermoresponsive injectable self-healing hydrogels containing polydopamine nanoparticles for efficient synergistic cancer thermochemotherapy. ACS Appl. Mater. Interfaces, 2020, 12(8), 9118-9131.
[http://dx.doi.org/10.1021/acsami.9b23536] [PMID: 32009384]
[143]
Tang, D.; Zhang, L.; Zhang, X.; Xu, L.; Li, K.; Zhang, A. Bio-mimetic actuators of a photothermal-responsive vitrimer liquid crystal elastomer with robust, self-healing, shape memory, and reconfigurable properties. ACS Appl. Mater. Interfaces, 2022, 14(1), 1929-1939.
[http://dx.doi.org/10.1021/acsami.1c19595] [PMID: 34964343]
[144]
Hoeben, F.J.M.; Jonkheijm, P.; Meijer, E.W.; Schenning, A.P.H.J. About supramolecular assemblies of π-conjugated systems. Chem. Rev., 2005, 105(4), 1491-1546.
[http://dx.doi.org/10.1021/cr030070z] [PMID: 15826018]
[145]
Xia, N.N.; Xiong, X.M.; Rong, M.Z.; Zhang, M.Q.; Kong, F. Self-healing of polymer in acidic water toward strength restoration through the synergistic effect of hydrophilic and hydrophobic interactions. ACS Appl. Mater. Interfaces, 2017, 9(42), 37300-37309.
[http://dx.doi.org/10.1021/acsami.7b11230] [PMID: 28984125]
[146]
Jeong, D.; Joo, S.W.; Shinde, V.V.; Jung, S. Triple-crosslinkedβ-cyclodextrin oligomer self-healing hydrogel showing high mechanical strength, enhanced stability and pH responsiveness. Carbohydr. Polym., 2018, 198, 563-574.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.117] [PMID: 30093035]
[147]
Ribas-Arino, J.; Shiga, M.; Marx, D. Unravelling the mechanism of force-induced ring-opening of benzocyclobutenes. Chemistry, 2009, 15(48), 13331-13335.
[http://dx.doi.org/10.1002/chem.200902573] [PMID: 19938022]
[148]
Wang, X.T.; Deng, X.; Zhang, T.D.; Zhang, X.; Shi, W.P.; Lai, J.; Zhou, H.; Ye, Y.J.; Zhang, C.Y.; Yin, D.C. Biocompatible self-healing hydrogels based on boronic acid-functionalized polymer and laponite nanocomposite for water pollutant removal. Environ. Chem. Lett., 2022, 20(1), 81-90.
[http://dx.doi.org/10.1007/s10311-021-01350-4]
[149]
Xu, Y.; Lu, G.; Chen, M.; Wang, P.; Li, Z.; Han, X.; Liang, J.; Sun, Y.; Fan, Y.; Zhang, X. Redox and pH dual-responsive injectable hyaluronan hydrogels with shape-recovery and self-healing properties for protein and cell delivery. Carbohydr. Polym., 2020, 250, 116979.
[http://dx.doi.org/10.1016/j.carbpol.2020.116979] [PMID: 33049867]
[150]
Liang, Y.; Li, M.; Yang, Y.; Qiao, L.; Xu, H.; Guo, B. pH/glucose dual responsive metformin release hydrogel dressings with adhesion and self-healing via dual-dynamic bonding for athletic diabetic foot wound healing. ACS Nano, 2022, 16(2), 3194-3207.
[http://dx.doi.org/10.1021/acsnano.1c11040] [PMID: 35099927]
[151]
Li, C.; Wang, P.; Zhang, D.; Wang, S. Near-infrared responsive smart superhydrophobic coating with self-healing and robustness enhanced by disulfide-bonded polyurethane. ACS Appl. Mater. Interfaces, 2022, 14(40), 45988-46000.
[http://dx.doi.org/10.1021/acsami.2c08496] [PMID: 36135324]
[152]
Guo, H.; Huang, S.; Xu, A.; Xue, W. Injectable adhesive self-healing multiple-dynamic-bond crosslinked hydrogel with photothermal antibacterial activity for infected wound healing. Chem. Mater., 2022, 34(6), 2655-2671.
[http://dx.doi.org/10.1021/acs.chemmater.1c03944]
[153]
Ren, Z.; Ke, T.; Ling, Q.; Zhao, L.; Gu, H. Rapid self-healing and self-adhesive chitosan-based hydrogels by host-guest interaction and dynamic covalent bond as flexible sensor. Carbohydr. Polym., 2021, 273, 118533.
[http://dx.doi.org/10.1016/j.carbpol.2021.118533] [PMID: 34560946]
[154]
Fan, W.; Jin, Y.; Shi, L.; Du, W.; Zhou, R.; Lai, S.; Shen, Y.; Li, Y. Achieving fast self-healing and reprocessing of supertough water-dispersed “living” supramolecular polymers containing dynamic ditelluride bonds under visible light. ACS Appl. Mater. Interfaces, 2020, 12(5), 6383-6395.
[http://dx.doi.org/10.1021/acsami.9b18985] [PMID: 31903744]
[155]
Zhang, L.; Guan, Q.; Shen, A.; Neisiany, R.E.; You, Z.; Zhu, M. Supertough spontaneously self-healing polymer based on septuple dynamic bonds integrated in one chemical group. Sci. China Chem., 2022, 65(2), 363-372.
[http://dx.doi.org/10.1007/s11426-021-1157-9]
[156]
Soltani, S.; Emadi, R.; Javanmard, S.H.; Kharaziha, M.; Rahmati, A. Shear-thinning and self-healing nanohybrid alginate-graphene oxide hydrogel based on guest-host assembly. Int. J. Biol. Macromol., 2021, 180, 311-323.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.03.086] [PMID: 33737186]
[157]
Wang, X.; Liang, D.; Cheng, B. Preparation and research of intrinsic self-healing elastomers based on hydrogen and ionic bond. Compos. Sci. Technol., 2020, 193, 108127.
[http://dx.doi.org/10.1016/j.compscitech.2020.108127]
[158]
Yu, R.; Yang, Y.; He, J.; Li, M.; Guo, B. Novel supramolecular self-healing silk fibroin-based hydrogel via host–guest interaction as wound dressing to enhance wound healing. Chem. Eng. J., 2021, 417, 128278.
[http://dx.doi.org/10.1016/j.cej.2020.128278]
[159]
Deng, Z.; Lin, B.; Wang, W.; Bai, L.; Chen, H.; Yang, L.; Yang, H.; Wei, D. Stretchable, rapid self-healing guar gum-poly(acrylic acid) hydrogels as wearable strain sensors for human motion detection based on Janus graphene oxide. Int. J. Biol. Macromol., 2021, 191, 627-636.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.09.051] [PMID: 34536475]
[160]
Song, F.; Li, Z.; Jia, P.; Zhang, M.; Bo, C.; Feng, G.; Hu, L.; Zhou, Y. Tunable “soft and stiff”, self-healing, recyclable, thermadapt shape memory biomass polymers based on multiple hydrogen bonds and dynamic imine bonds. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7(21), 13400-13410.
[http://dx.doi.org/10.1039/C9TA03872H]
[161]
Jiang, X.; Zeng, F.; Yang, X.; Jian, C.; Zhang, L.; Yu, A.; Lu, A. Injectable self-healing cellulose hydrogel based on host-guest interactions and acylhydrazone bonds for sustained cancer therapy. Acta Biomater., 2022, 141, 102-113.
[http://dx.doi.org/10.1016/j.actbio.2021.12.036] [PMID: 34990813]
[162]
Lu, C.; Wang, C.; Wang, J.; Yong, Q.; Chu, F. Integration of hydrogen bonding interaction and Schiff-base chemistry toward self-healing, anti-freezing, and conductive elastomer. Chem. Eng. J., 2021, 425, 130652.
[http://dx.doi.org/10.1016/j.cej.2021.130652]
[163]
Yang, S.; Wang, S.; Du, X.; Du, Z.; Cheng, X.; Wang, H. Mechanically robust self-healing and recyclable flame-retarded polyurethane elastomer based on thermoreversible crosslinking network and multiple hydrogen bonds. Chem. Eng. J., 2020, 391, 123544.
[http://dx.doi.org/10.1016/j.cej.2019.123544]
[164]
Zhang, J.; Zhang, C.; Song, F.; Shang, Q.; Hu, Y.; Jia, P.; Liu, C.; Hu, L.; Zhu, G.; Huang, J.; Zhou, Y. Castor-oil-based, robust, self-healing, shape memory, and reprocessable polymers enabled by dynamic hindered urea bonds and hydrogen bonds. Chem. Eng. J., 2022, 429, 131848.
[http://dx.doi.org/10.1016/j.cej.2021.131848]
[165]
Patrick, J.F.; Robb, M.J.; Sottos, N.R.; Moore, J.S.; White, S.R. Polymers with autonomous life-cycle control. Nature, 2016, 540(7633), 363-370.
[http://dx.doi.org/10.1038/nature21002] [PMID: 27974778]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy