Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Innovations in Synthetic Methodologies and Patent Landscape of Quinoline Analogues: A Comprehensive Review

Author(s): Tanvi Rajiv Goel, Salahuddin*, Kavita Rana, Avijit Mazumder, Rajnish Kumar, Mohamed Jawed Ahsan, Mohammad Sarafroz, Pankaj Kumar Tyagi and Saurabh Singh

Volume 28, Issue 19, 2024

Published on: 24 June, 2024

Page: [1471 - 1482] Pages: 12

DOI: 10.2174/0113852728311152240529082035

Price: $65

Abstract

Quinoline is a general group of heterocyclic compounds that have garnered much interest in medicinal chemistry and drug development due to their wide range of pharmacological effects. Pyridine ring fused with benzene defines the class of chemical compounds known as quinolines. Quinoline is a weak tertiary base, also known as 1-aza-naphthalene. Numerous patents have been filed for the synthesis of quinoline-based compounds, discussing about their derivatives and uses. Here, we have discussed the methods of quinoline synthesis, structural alterations, and patents showing its importance in various industries. Quinolines have been investigated as antimalarial substances, with substances, like quinine and chloroquine, serving as notable examples, and they have also been investigated to possess anti-inflammatory, anti-tumor, and CNS activity. The synthesis of quinoline is also subjected to several recognized procedures. The variations in the ring system and various synthetic approaches are the key highlights of the article, and it includes the various catalysts that could be recycled and reused by the assisted technique, which increases the yield and requires less time for the synthesis (ultrasound-promoted synthesis, one-pot reaction, and microwave and photocatalytic reactions). The development of synthetic procedures can help in the sustainable synthesis of quinoline derivatives.

Next »
[1]
Wu, Y.J. Heterocycles and medicine: A survey of the heterocyclic drugs approved by the US FDA from 2000 to present. J. Heterocycl. Chem., 2012, 24, 1-53.
[2]
Boratyński, P.J.; Zielińska-Błajet, M.; Skarżewski, J. Cinchona alkaloids derivatives and applications. Alkaloids Chem. Biol., 2019, 82, 29-145.
[http://dx.doi.org/10.1016/bs.alkal.2018.11.001] [PMID: 30850032]
[3]
Kacprzak, K.M. Chemistry and biology of Cinchona alkaloids. J. Nat. Prod., 2013, 1, 605-641.
[4]
Wijnsma, R.; Verpoorte, R. Quinoline alkaloids of Cinchona. In: Phytochemicals in Plant Cell Cultures; Academic Press, 1988; pp. 335-355.
[http://dx.doi.org/10.1016/B978-0-12-715005-5.50026-1]
[5]
Ashley, E.A.; Lwin, K.M.; McGready, R.; Simon, W.H.; Phaiphun, L.; Proux, S.; Wangseang, N.; Taylor, W.; Stepniewska, K.; Nawamaneerat, W.; Thwai, K.L. An open label randomized comparison of mefloquine–artesunate as separate tablets vs. a new co‐formulated combination for the treatment of uncomplicated multidrug‐resistant falciparum malaria in Thailand. Trop. Med. Int. Health, 2006, 11(11), 1653-1660.
[6]
Martins, P.; Jesus, J.; Santos, S.; Raposo, L.; Roma-Rodrigues, C.; Baptista, P.; Fernandes, A. Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules, 2015, 20(9), 16852-16891.
[http://dx.doi.org/10.3390/molecules200916852] [PMID: 26389876]
[7]
Kumar, A.; Katiyar, S.; Agarwal, A.; Chauhan, P. Perspective in antimalarial chemotherapy. Curr. Med. Chem., 2003, 10(13), 1137-1150.
[http://dx.doi.org/10.2174/0929867033457494] [PMID: 12678807]
[8]
Shah, P.M. The need for new therapeutic agents: What is in the pipeline? Clin. Microbiol. Infect., 2005, 11(Suppl. 3), 36-42.
[http://dx.doi.org/10.1111/j.1469-0691.2005.01141.x] [PMID: 15900655]
[9]
Patil, V.; Barragan, E.; Patil, S.A.; Patil, S.A.; Bugarin, A. Direct synthesis and antimicrobial evaluation of structurally complex chalcones. ChemistrySelect, 2016, 1(13), 3647-3650.
[http://dx.doi.org/10.1002/slct.201600703]
[10]
Gupta, V.; Kant, V. A review on biological activity of imidazole and thiazole moieties and their derivatives. Sci. Int., 2013, 1(7), 253-260.
[http://dx.doi.org/10.17311/sciintl.2013.253.260]
[11]
Schwabb, C.W. Veterinary medicine and human health, 2nd ed; Williams & Wilkins Company, 1969, p. 713.
[12]
Ajani, O.O.; Iyaye, K.T.; Ademosun, O.T. Recent advances in chemistry and therapeutic potential of functionalized quinoline motifs – A review. RSC Advances, 2022, 12(29), 18594-18614.
[http://dx.doi.org/10.1039/D2RA02896D] [PMID: 35873320]
[13]
Vostrikova, T.V.; Kalaev, V.N.; Potapov, A.Y.; Manakhelokhe, G.M.; Shikhaliev, K.S. Use of new compounds of the quinoline series as growth and yield stimulants of agricultural crop. Periód. Tchê Quím., 2021, 18(38), 123-136.
[http://dx.doi.org/10.52571/PTQ.v18.n38.2021.9_VOSTRIKOVA_pgs_123_136.pdf]
[14]
Ilina, K.; Henary, M. Cyanine dyes containing quinoline moieties: History, synthesis, optical properties, and applications. Chemistry, 2021, 27(13), 4230-4248.
[http://dx.doi.org/10.1002/chem.202003697] [PMID: 33137212]
[15]
Concilio, S.; Pfister, P.M.; Tirelli, N.; Kocher, C.; Suter, U.W. Processable fully aromatic quinoline-based polymers. Macromolecules, 2001, 34(11), 3607-3614.
[http://dx.doi.org/10.1021/ma001603y]
[16]
Rbaa, M.; Jabli, S.; Lakhrissi, Y.; Ouhssine, M.; Almalki, F.; Ben Hadda, T.; Messgo-Moumene, S.; Zarrouk, A.; Lakhrissi, B. Synthesis, antibacterial properties and bioinformatics computational analyses of novel 8-hydroxyquinoline derivatives. Heliyon, 2019, 5(10), e02689.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02689] [PMID: 31687516]
[17]
Guo, Z.; Yan, C.; Zhu, W.H. High‐performance quinoline‐malononitrile core as a building block for the diversity‐oriented synthesis of aiegens. Angew. Chem. Int. Ed., 2020, 59(25), 9812-9825.
[http://dx.doi.org/10.1002/anie.201913249] [PMID: 31725932]
[18]
O’Donnell, F.; Smyth, T.J.P.; Ramachandran, V.N.; Smyth, W.F. A study of the antimicrobial activity of selected synthetic and naturally occurring quinolines. Int. J. Antimicrob. Agents, 2010, 35(1), 30-38.
[http://dx.doi.org/10.1016/j.ijantimicag.2009.06.031] [PMID: 19748233]
[19]
Mukherjee, S.; Pal, M. Medicinal chemistry of quinolines as emerging anti-inflammatory agents: An overview. Curr. Med. Chem., 2013, 20(35), 4386-4410.
[http://dx.doi.org/10.2174/09298673113209990170] [PMID: 23862618]
[20]
Supong, K.; Thawai, C.; Supothina, S.; Auncharoen, P.; Pittayakhajonwut, P. Antimicrobial and anti-oxidant activities of quinoline alkaloids from Pseudomonas aeruginosa BCC76810. Phytochem. Lett., 2016, 17, 100-106.
[http://dx.doi.org/10.1016/j.phytol.2016.07.007]
[21]
Keri, R.S.; Patil, S.A. Quinoline: A promising antitubercular target. Biomed. Pharmacother., 2014, 68(8), 1161-1175.
[http://dx.doi.org/10.1016/j.biopha.2014.10.007] [PMID: 25458785]
[22]
Foley, M.; Tilley, L. Quinoline antimalarials: Mechanisms of action and resistance. Int. J. Parasitol., 1997, 27(2), 231-240.
[http://dx.doi.org/10.1016/S0020-7519(96)00152-X] [PMID: 9088993]
[23]
Malghani, Z.; Khan, A.U.; Faheem, M.; Danish, M.Z.; Nadeem, H.; Ansari, S.F.; Maqbool, M. Molecular docking, antioxidant, anticancer and antileishmanial effects of newly synthesized quinoline derivatives. Anticancer. Agents Med. Chem., 2020, 20(13), 1516-1529.
[24]
Dorababu, A. Quinoline: A promising scaffold in recent antiprotozoal drug discovery. ChemistrySelect, 2021, 6(9), 2164-2177.
[http://dx.doi.org/10.1002/slct.202100115]
[25]
Chokkar, N.; Kalra, S.; Chauhan, M.; Kumar, R. A review on quinoline derived scaffolds as anti-hiv agents. Mini Rev. Med. Chem., 2019, 19(6), 510-526.
[http://dx.doi.org/10.2174/1389557518666181018163448] [PMID: 30338737]
[26]
Shah, P.; Naik, D.; Jariwala, N.; Bhadane, D.; Kumar, S.; Kulkarni, S.; Bhutani, K.K.; Singh, I.P. Synthesis of C-2 and C-3 substituted quinolines and their evaluation as anti-HIV-1 agents. Bioorg. Chem., 2018, 80, 591-601.
[http://dx.doi.org/10.1016/j.bioorg.2018.07.016] [PMID: 30036815]
[27]
(a) Shiro, T.; Fukaya, T.; Tobe, M. The chemistry and biological activity of heterocycle-fused quinolinone derivatives: A review. Eur. J. Med. Chem., 2015, 97, 397-408.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.004] [PMID: 25532473];
(b) Dib, M. Recent developments of quinoline derivatives and their potential biological activities. Curr. Org. Synth., 2021, 18(3), 248-269.
[http://dx.doi.org/10.2174/1570179417666201216162055] [PMID: 33327918]
[28]
Ukrainets, I. Creation of new local anesthetics based on quinoline derivatives and related heterocycles. In: Pain Management-current Issues and Opinions; R. Gabor and NE Carl, InTech, 2012; pp. 63-80.
[29]
Matada, B.S.; Pattanashettar, R.; Yernale, N.G. A comprehensive review on the biological interest of quinoline and its derivatives. Bioorg. Med. Chem., 2021, 32, 115973.
[http://dx.doi.org/10.1016/j.bmc.2020.115973] [PMID: 33444846]
[30]
Mura, M.G. Synthesis of substituted quinolines via a cross-dehydrogenative coupling of alcohols and aminoarenes. Hydrogen Transfer Methods in Org. Synth, 125.
[31]
Musiol, R.; Malarz, K.; Mularski, J. Quinoline alkaloids against neglected tropical diseases. Curr. Org. Chem., 2017, 21(18), 1896-1906.
[http://dx.doi.org/10.2174/1385272821666170207103634]
[32]
Griffin, W.J.; Lin, G.D. Chemotaxonomy and geographical distribution of tropane alkaloids. Phytochemistry, 2000, 53(6), 623-637.
[http://dx.doi.org/10.1016/S0031-9422(99)00475-6] [PMID: 10746874]
[33]
Lin, C.T.; Malak, M.; Vanderkooi, G.; Mason, W.R. Solvent effects on the photophysical properties of dibucaine: A quinoline analogue. Photochem. Photobiol., 1987, 45(S1), 749-755.
[http://dx.doi.org/10.1111/j.1751-1097.1987.tb07877.x]
[34]
Da Motta Neto, J.D.; De Alencastro, R.B. Theoretical studies on local anesthetics: Procaine, lidocaine, tetracaine, bupivacaine, and dibucaine?neutral and monoprotonated. Int. J. Quantum Chem., 1997, 61(6), 959-980.
[http://dx.doi.org/10.1002/(SICI)1097-461X(1997)61:6<959::AID-QUA9>3.0.CO;2-V]
[35]
Swain, S.S.; Pati, S.; Hussain, T. Quinoline heterocyclic containing plant and marine candidates against drug-resistant Mycobacterium tuberculosis: A systematic drug-ability investigation. Eur. J. Med. Chem., 2022, 232, 114173.
[http://dx.doi.org/10.1016/j.ejmech.2022.114173] [PMID: 35168150]
[36]
Zaheer, Z.; Shaikh, S.I.; Mokale, S.N.; Lokwani, D.K. Synthesis, biological evaluation and computational study of new quinoline hybrids as antitubercular agent. Lett. Drug Des. Discov., 2018, 15(9), 914-922.
[http://dx.doi.org/10.2174/1570180814666171026155930]
[37]
Huang, H.W.; Bow, Y.D.; Wang, C.Y.; Chen, Y.C.; Fu, P.R.; Chang, K.F.; Wang, T.W.; Tseng, C.H.; Chen, Y.L.; Chiu, C.C. DFIQ, a novel quinoline derivative, shows anticancer potential by inducing apoptosis and autophagy in NSCLC cell and in vivo zebrafish xenograft models. Cancers, 2020, 12(5), 1348.
[http://dx.doi.org/10.3390/cancers12051348] [PMID: 32466291]
[38]
Li, Y.L.; Qin, Q.P.; An, Y.F.; Liu, Y.C.; Huang, G.B.; Luo, X.J.; Zhang, G.H. Study on potential antitumor mechanism of quinoline-based silver(I) complexes: Synthesis, structural characterization, cytotoxicity, cell cycle and caspase-initiated apoptosis. Inorg. Chem. Commun., 2014, 40, 73-77.
[http://dx.doi.org/10.1016/j.inoche.2013.11.014]
[39]
Kaminsky, D.; Meltzer, R.I. Quinoline antibacterial agents. Oxolinic acid and related compounds. J. Med. Chem., 1968, 11(1), 160-163.
[http://dx.doi.org/10.1021/jm00307a041] [PMID: 5637164]
[40]
Kannappan, N.; Reddy, B.S.R.; Sen, S.; Nagarajan, R.; Dashpute, S. Synthesis and chemical characterization of quinoline Imine derivatives. JACR, 2009, 9, 59-68.
[41]
Reddy, P.L.; Khan, S.I.; Ponnan, P.; Tripathi, M.; Rawat, D.S. Design, synthesis and evaluation of 4-aminoquinoline-purine hybrids as potential antiplasmodial agents. Eur. J. Med. Chem., 2017, 126, 675-686.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.057] [PMID: 27936446]
[42]
Maurya, S.S.; Khan, S.I.; Bahuguna, A.; Kumar, D.; Rawat, D.S. Synthesis, antimalarial activity, heme binding and docking studies of N -substituted 4-aminoquinoline-pyrimidine molecular hybrids. Eur. J. Med. Chem., 2017, 129, 175-185.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.024] [PMID: 28222317]
[43]
Singh, A.; Gut, J.; Rosenthal, P.J.; Kumar, V. 4-Aminoquinoline-ferrocenyl-chalcone conjugates: Synthesis and anti-plasmodial evaluation. Eur. J. Med. Chem., 2017, 125, 269-277.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.044] [PMID: 27688182]
[44]
Afzal, O.; Kumar, S.; Haider, M.R.; Ali, M.R.; Kumar, R.; Jaggi, M.; Bawa, S. A review on anticancer potential of bioactive heterocycle quinoline. Eur. J. Med. Chem., 2015, 97, 871-910.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.044] [PMID: 25073919]
[45]
Mazier, D.; Beaudoin, R.L.; Mellouk, S.; Druilhe, P.; Texier, B.; Trosper, J.; Miltgen, F.; Landau, I.; Paul, C.; Brandicourt, O.; Guguen-Guillouzo, C.; Langlois, P.; Gentilini, M. Complete development of hepatic stages of Plasmodium falciparum in vitro. Science, 1985, 227(4685), 440-442.
[http://dx.doi.org/10.1126/science.3880923] [PMID: 3880923]
[46]
White, N.J. The treatment of malaria. N. Engl. J. Med., 1996, 335(11), 800-806.
[http://dx.doi.org/10.1056/NEJM199609123351107] [PMID: 8703186]
[47]
Cui, L.; Mharakurwa, S.; Ndiaye, D.; Rathod, P.K.; Rosenthal, P.J. Antimalarial drug resistance: Literature review and activities and findings of the ICEMR network. Am. J. Trop. Med. Hyg., 2015, 93(3)(Suppl.), 57-68.
[http://dx.doi.org/10.4269/ajtmh.15-0007] [PMID: 26259943]
[48]
Amit, C.; Payal, C.; Kuldeep, K.; Mansimran, S.; Poonam, S.; Kuldeep, S. A review: Chemistry of antimicrobial and anticancer quinolines. Can. Open Pharm. J., 2014, 1(1), 1-12.
[49]
Epifano, F.; Curini, M.; Carla Marcotullio, M.; Genovese, S. Searching for novel cancer chemopreventive plants and their products: The genus Zanthoxylum. Curr. Drug Targets, 2011, 12(13), 1895-1902.
[http://dx.doi.org/10.2174/138945011798184128] [PMID: 21158710]
[50]
Okagu, I.U.; Ndefo, J.C.; Aham, E.C.; Udenigwe, C.C. Zanthoxylum species: A review of traditional uses, phytochemistry and pharmacology in relation to cancer, infectious diseases and sickle cell anemia. Front. Pharmacol., 2021, 12, 713090.
[http://dx.doi.org/10.3389/fphar.2021.713090] [PMID: 34603027]
[51]
Qin, F.; Wang, C.Y.; Wang, C.G.; Chen, Y.; Li, J.J.; Li, M.S.; Zhu, Y.K.; Lee, S.K.; Wang, H.S. Undescribed isoquinolines from Zanthoxylum nitidum and their antiproliferative effects against human cancer cell lines. Phytochemistry, 2023, 205, 113476.
[http://dx.doi.org/10.1016/j.phytochem.2022.113476] [PMID: 36265658]
[52]
Olateju, O.A.; Babalola, C.P.; Olubiyi, O.O.; Kotila, O.A.; Kwasi, D.A.; Oaikhena, A.O.; Okeke, I.N. Quinoline antimalarials increase the antibacterial activity of ampicillin. Front. Microbiol., 2021, 12, 556550.
[http://dx.doi.org/10.3389/fmicb.2021.556550] [PMID: 34149629]
[53]
Sharma, V.; Das, R.; Sharma, D.; Mujwar, S.; Mehta, D.K. Green chemistry approach towards Piperazine: Anticancer agents. J. Mol. Struct., 2023, 1292, 136089.
[http://dx.doi.org/10.1016/j.molstruc.2023.136089]
[54]
Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; Paterson, D.L.; Rice, L.B.; Stelling, J.; Struelens, M.J.; Vatopoulos, A.; Weber, J.T.; Monnet, D.L. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect., 2012, 18(3), 268-281.
[http://dx.doi.org/10.1111/j.1469-0691.2011.03570.x] [PMID: 21793988]
[55]
Payne, D.J.; Gwynn, M.N.; Holmes, D.J.; Pompliano, D.L. Drugs for bad bugs: Confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov., 2007, 6(1), 29-40.
[http://dx.doi.org/10.1038/nrd2201] [PMID: 17159923]
[56]
Wiesner, J.; Ortmann, R.; Jomaa, H.; Schlitzer, M. New antimalarial drugs. Angew. Chem. Int. Ed., 2003, 42(43), 5274-5293.
[http://dx.doi.org/10.1002/anie.200200569] [PMID: 14613157]
[57]
Katritzky, A.R.; Weeds, S.M. The literature of heterocyclic chemistry. Adv. Heterocycl. Chem., 1967, 7, 225-299.
[http://dx.doi.org/10.1016/S0065-2725(08)60592-9]
[58]
Tumer, R.R.; Woodward, R.R. The chemistry of the Cinchona alkaloids. In: The Alkaloids; Manske, R.H.F., Ed.; Academic Press: New York, 1953; p. 16.
[59]
Kshirsagar, U.A. Recent developments in the chemistry of quinazolinone alkaloids. Org. Biomol. Chem., 2015, 13(36), 9336-9352.
[http://dx.doi.org/10.1039/C5OB01379H] [PMID: 26278395]
[60]
Salih Ağırtaş, M. Highly soluble phthalocyanines with hexadeca tert-butyl substituents. Dyes Pigments, 2008, 79(3), 247-251.
[http://dx.doi.org/10.1016/j.dyepig.2008.03.004]
[61]
Khan, I.; Ibrar, A.; Abbas, N.; Saeed, A. Recent advances in the structural library of functionalized quinazoline and quinazolinone scaffolds: Synthetic approaches and multifarious applications. Eur. J. Med. Chem., 2014, 76, 193-244.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.005] [PMID: 24583357]
[62]
Kouznetsov, V.; Méndez, L.; Gómez, C. Recent progress in the synthesis of quinolines. Curr. Org. Chem., 2005, 9(2), 141-161.
[http://dx.doi.org/10.2174/1385272053369196]
[63]
Gogoi, S.; Shekarrao, K.; Duarah, A.; Bora, T.C.; Gogoi, S.; Boruah, R.C. A microwave promoted solvent-free approach to steroidal quinolines and their in vitro evaluation for antimicrobial activities. Steroids, 2012, 77(13), 1438-1445.
[http://dx.doi.org/10.1016/j.steroids.2012.08.008] [PMID: 22960652]
[64]
Nainwal, L.M.; Tasneem, S.; Akhtar, W.; Verma, G.; Khan, M.F.; Parvez, S.; Shaquiquzzaman, M.; Akhter, M.; Alam, M.M. Green recipes to quinoline: A review. Eur. J. Med. Chem., 2019, 164, 121-170.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.026] [PMID: 30594028]
[65]
Safari, J.; Banitaba, S.H.; Samiei, S.S. One-pot synthesis of quinaldine derivatives by using microwave irradiation without any solvent — A green chemistry approach. J. Chem. Sci., 2009, 121(4), 481-484.
[http://dx.doi.org/10.1007/s12039-009-0057-0]
[66]
Ranu, B.C.; Hajra, A.; Jana, U. Microwave-assisted simple synthesis of quinolines from anilines and alkyl vinyl ketones on the surface of silica gel in the presence of indium(III)chloride. Tetrahedron Lett., 2000, 41(4), 531-533.
[http://dx.doi.org/10.1016/S0040-4039(99)02111-5]
[67]
Reddy, T.R.; Reddy, L.S.; Reddy, G.R.; Yarbagi, K.; Lingappa, Y.; Rambabu, D.; Krishna, G.R.; Reddy, C.M.; Kumar, K.S.; Pal, M. Construction of a quinoline ring via a 3-component reaction in water: Crystal structure analysis and H-bonding patterns of a 2-aryl quinoline. Green Chem., 2012, 14(7), 1870-1872.
[http://dx.doi.org/10.1039/c2gc35256g]
[68]
Vu, A.T.; Cohn, S.T.; Manas, E.S.; Harris, H.A.; Mewshaw, R.E. ERβ ligands. Part 4: Synthesis and structure–activity relationships of a series of 2-phenylquinoline derivatives. Bioorg. Med. Chem. Lett., 2005, 15(20), 4520-4525.
[http://dx.doi.org/10.1016/j.bmcl.2005.07.008] [PMID: 16098741]
[69]
Sarma, R.; Prajapati, D. Ionic liquid-an efficient recyclable system for the synthesis of 2, 4-disubstituted quinolines via Meyer-Schuster rearrangement. Synlett, 2008, 19, 3001-3005.
[70]
Upadhayaya, R.S.; Vandavasi, J.K.; Vasireddy, N.R.; Sharma, V.; Dixit, S.S.; Chattopadhyaya, J. Design, synthesis, biological evaluation and molecular modelling studies of novel quinoline derivatives against Mycobacterium tuberculosis. Bioorg. Med. Chem., 2009, 17(7), 2830-2841.
[http://dx.doi.org/10.1016/j.bmc.2009.02.026] [PMID: 19285414]
[71]
Li, A.H.; Ahmed, E.; Chen, X.; Cox, M.; Crew, A.P.; Dong, H.Q.; Jin, M.; Ma, L.; Panicker, B.; Siu, K.W.; Steinig, A.G.; Stolz, K.M.; Tavares, P.A.R.; Volk, B.; Weng, Q.; Werner, D.; Mulvihill, M.J. A highly effective one-pot synthesis of quinolines from o-nitroarylcarbaldehydes. Org. Biomol. Chem., 2007, 5(1), 61-64.
[http://dx.doi.org/10.1039/B613775J] [PMID: 17164907]
[72]
Motokura, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Multifunctional catalysis of a ruthenium-grafted hydrotalcite: One-pot synthesis of quinolines from 2-aminobenzyl alcohol and various carbonyl compounds via aerobic oxidation and aldol reaction. Tetrahedron Lett., 2004, 45(31), 6029-6032.
[http://dx.doi.org/10.1016/j.tetlet.2004.06.023]
[73]
Cai, S.X.; Zhou, Z.L.; Huang, J.C.; Whittemore, E.R.; Egbuwoku, Z.O.; Lü, Y.; Hawkinson, J.E.; Woodward, R.M.; Weber, E.; Keana, J.F.W. Synthesis and structure-activity relationships of 1,2,3,4-tetrahydroquinoline-2,3,4-trione 3-oximes: novel and highly potent antagonists for NMDA receptor glycine site. J. Med. Chem., 1996, 39(17), 3248-3255.
[http://dx.doi.org/10.1021/jm960214k] [PMID: 8765507]
[74]
Chen, Y.L.; Zhao, Y.L.; Lu, C.M.; Tzeng, C.C.; Wang, J.P. Synthesis, cytotoxicity, and anti-inflammatory evaluation of 2-(furan-2-yl)-4-(phenoxy)-quinoline derivatives. Part 4. Bioorg. Med. Chem., 2006, 14(13), 4373-4378.
[http://dx.doi.org/10.1016/j.bmc.2006.02.039] [PMID: 16524734]
[75]
Zhou, W.; Zhang, L.; Jiao, N. The tandem reaction combining radical and ionic processes: An efficient approach to substituted 3,4-dihydroquinolin-2-ones. Tetrahedron, 2009, 65(10), 1982-1987.
[http://dx.doi.org/10.1016/j.tet.2009.01.027]
[76]
Sanchez, J.P.; Domagala, J.M.; Hagen, S.E.; Heifetz, C.L.; Hutt, M.P.; Nichols, J.B.; Trehan, A.K. Quinolone antibacterial agents. Synthesis and structure-activity relationships of 8-substituted quinoline-3-carboxylic acids and 1,8-naphthyridine-3-carboxylic acids. J. Med. Chem., 1988, 31(5), 983-991.
[http://dx.doi.org/10.1021/jm00400a016] [PMID: 3361584]
[77]
Ma, X.; Zhou, W.; Brun, R. Synthesis, in vitro antitrypanosomal and antibacterial activity of phenoxy, phenylthio or benzyloxy substituted quinolones. Bioorg. Med. Chem. Lett., 2009, 19(3), 986-989.
[http://dx.doi.org/10.1016/j.bmcl.2008.11.078] [PMID: 19095449]
[78]
Li, X.; Mao, Z.; Wang, Y.; Chen, W.; Lin, X. Molecular iodine-catalyzed and air-mediated tandem synthesis of quinolines via three-component reaction of amines, aldehydes, and alkynes. Tetrahedron, 2011, 67(21), 3858-3862.
[http://dx.doi.org/10.1016/j.tet.2011.03.087]
[79]
Mitamura, T.; Ogawa, A. Synthesis of 2,4-diiodoquinolines via the photochemical cyclization of o-alkynylaryl isocyanides with iodine. J. Org. Chem., 2011, 76(4), 1163-1166.
[http://dx.doi.org/10.1021/jo1021772] [PMID: 21244063]
[80]
Selvam, K.; Swaminathan, M. Nano N-TiO2 mediated selective photocatalytic synthesis of quinaldines from nitrobenzenes. RSC Advances, 2012, 2(7), 2848-2855.
[http://dx.doi.org/10.1039/C2RA01178F] [PMID: 35532464]
[81]
Austin, M.; Egan, O.J.; Tully, R.; Pratt, A.C. Quinoline synthesis: Scope and regiochemistry of photocyclisation of substituted benzylidenecyclopentanone O-alkyl and O-acetyloximes. Org. Biomol. Chem., 2007, 5(23), 3778-3786.
[http://dx.doi.org/10.1039/b711620a] [PMID: 18004457]
[82]
Li, X.Y.; Liu, Y.; Chen, X.L.; Lu, X.Y.; Liang, X.X.; Zhu, S.S.; Wei, C-W.; Qu, L-B.; Yu, B. 6π-Electrocyclization in water: Microwave-assisted synthesis of polyheterocyclic-fused quinoline-2-thiones. Green Chem., 2020, 22(14), 4445-4449.
[http://dx.doi.org/10.1039/C9GC04445K]
[83]
Upadhyay, A.; Kushwaha, P.; Gupta, S.; Dodda, R.P.; Ramalingam, K.; Kant, R.; Goyal, N.; Sashidhara, K.V. Synthesis and evaluation of novel triazolyl quinoline derivatives as potential antileishmanial agents. Eur. J. Med. Chem., 2018, 154, 172-181.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.014] [PMID: 29793211]
[84]
Wezeman, T.; Zhong, S.; Nieger, M.; Bräse, S. Synthesis of highly functionalized 4-aminoquinolines. Angew. Chem. Int. Ed., 2016, 55(11), 3823-3827.
[http://dx.doi.org/10.1002/anie.201511385] [PMID: 26878996]
[85]
Xie, L.Y.; Peng, S.; Liu, F.; Chen, G.R.; Xia, W.; Yu, X.; Li, W.F.; Cao, Z.; He, W.M. Metal-free deoxygenative sulfonylation of quinoline N-oxides with sodium sulfinates via a dual radical coupling process. Org. Chem. Front., 2018, 5(17), 2604-2609.
[http://dx.doi.org/10.1039/C8QO00661J]
[86]
Du, B.; Qian, P.; Wang, Y.; Mei, H.; Han, J.; Pan, Y. Cu-catalyzed deoxygenative c2-sulfonylation reaction of quinoline N -oxides with sodium sulfinate. Org. Lett., 2016, 18(16), 4144-4147.
[http://dx.doi.org/10.1021/acs.orglett.6b02289] [PMID: 27509292]
[87]
Peng, S.; Song, Y.X.; He, J.Y.; Tang, S.S.; Tan, J.X.; Cao, Z.; Lin, Y.W.; He, W.M. TsCl-promoted sulfonylation of quinoline N-oxides with sodium sulfinates in water. Chin. Chem. Lett., 2019, 30(12), 2287-2290.
[http://dx.doi.org/10.1016/j.cclet.2019.08.002]
[88]
Xie, L.Y.; Fang, T.G.; Tan, J.X.; Zhang, B.; Cao, Z.; Yang, L-H.; He, W.M. Visible-light-induced deoxygenative C2-sulfonylation of quinoline N -oxides with sulfinic acids. Green Chem., 2019, 21(14), 3858-3863.
[http://dx.doi.org/10.1039/C9GC01175G]
[89]
Furitsu, H.; Suzuki, Y.; Eisai, R. Pharmaceutical compositions of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxide. U.S. Patent 8,969,379, 2015.
[90]
Bando, Quinoline derivative-containing pharmaceutical composition. CA Patent 2771403., 2015.
[91]
Westman, J.; Nekhotiaeva, N.; Wannberg, J.; Backman, U.; Malm, J. Quinoline derivatives and their use as tyrosine kinase inhibitors. U.S. Patent 8,957,092, 2015.
[92]
Qiao, J.X. Quinoline carboxamide inhibitors of endothelial lipase. U.S. Patent 8,946,430, 2015.
[93]
Min, S.J.; Cho, Y.S.; Pae, A.N.; Lim, E.J.; Kim, J.Y.; Son, M.H.; Lee, J.K. Korea advanced institute of science and technology KAIST, 2-(substituted ethynyl) quinoline derivatives as mGLUr5 antagonists. U.S. Patent 8,946,431, 2015.
[94]
Maeda, S. Method for producing optically active tetrahydroquinolines. U.S. Patent No. 2014/0228572, 2014.
[95]
Hadida-Ruah, S.S. Quinoline and quinazoline amides as modulators of sodium channels. U.S. Patent No. 2014/0228371, 2014.
[96]
Wallner, K.F. Quinolinone derivatives for use in the treatment of an autoimmune disease and/or an inflammatory disease. U.S. Patent No. 2014/0018384, 2014.
[97]
Babaoglu, k. 2-(tert-butoxy)-2-(7-methylquinolin-6-yl)acetic acid derivatives for treating aids. U.S. Patent No. 2015/0045374, 2015.
[98]
Freyne, E.J.E. 3-cyano-quinoline derivatives with antiproliferative activity. U.S. Patent No. 2013/0197022, 2013.
[99]
Ashikawa, M. 1-acyl-4-(phenoxy, benzyloxy, or phenylamino)-1,2,3,4-tetrahydroquinoline derivatives. U.S. Patent No. 2013/0172345, 2013.
[100]
Fuchss, T. Imidazole[4,5-C]quinolines as DNA-PK inhibitors. U.S. Patent No. 2013/0172337, 2013.
[101]
Gant, T.G.; Shahbaz, M.M. Teva Pharmaceutical Industries Ltd, 2-oxo-1, 2-dihydro-quinoline modulators of immune function. U.S. Patent 8,252,933, 2012.
[102]
Hagen, H.; Dupuis, J.; Arbogast, K. BASF SE, Preparation of 3-methylquinoline-8-carboxylic acid. U.S. Patent 5,130,434, 1992.
[103]
Küçükbay, H.; Gönül, Z.; Küçükbay, F.Z. Preparation, carbonic anhydrase enzyme inhibition and antioxidant activity of novel 7-amino-3, 4-dihydroquinolin-2 (1H)-one derivatives incorporating mono or dipeptide moiety. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1021-1026.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy