Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Review Article

An Overview of the Degradation and Removal of Pesticide Residues from Water and Agricultural Runoff using Nanoparticles and Nanocomposites

Author(s): Mahadi Danjuma Sani*, V.D.N.Kumar Abbaraju, Nutulapati V.S. Venugopal and Nura Umar Kura

Volume 14, Issue 3, 2024

Published on: 20 June, 2024

Article ID: e200624231118 Pages: 19

DOI: 10.2174/0122106812306532240607105242

Price: $65

Abstract

A high percentage of the applied chemicals on farmlands find their way into the water bodies and groundwater through agricultural runoff and leaching/percolation. Therefore, multiple remediation techniques need to be employed to deter the menace of pesticide residue contamination. Therefore, this review aimed to compute the most suitable degradation conditions for the removal of pesticide residue from water and agricultural runoff using nanomaterials. The review touches on the aspect of adsorption and photocatalytic degradation methods using nanomaterials and the most prominent factors that affect the degradation process. Information from recently published articles, book chapters, and conference proceedings were carefully studied and analyzed. It was revealed that heterogeneous photocatalysis shows the capability of complete mineralization of organic pollutants under optimum experimental conditions. Moreover, it is crucial to consider experimental conditions that could be applicable in the field to achieve a better result. It has been observed that integrating nanoremediation with other degradation methods to create a hybrid technique may play a crucial role in removing pesticide residues from agricultural runoff. However, the detrimental effects of the nanomaterials if any on the environmental matrices need to be taken under consideration to avoid the menace similar to plastic pollution as a result of extensive production and application of nanomaterials.

Graphical Abstract

[1]
Sharma, R.; Kumar, R.; Sharma, D.K.; Sarkar, M.; Mishra, B.K.; Puri, V.; Priyadarshini, I.; Thong, P.H.; Ngo, P.T.T.; Nhu, V-H. Water pollution examination through quality analysis of different rivers: A case study in India. Environ. Dev. Sustain., 2022, 24(6), 7471-7492.
[http://dx.doi.org/10.1007/s10668-021-01777-3]
[2]
Malla-Pradhan, R.; Suwunwong, T.; Phoungthong, K.; Joshi, T.P.; Pradhan, B.L. Microplastic pollution in urban Lake Phewa, Nepal: The first report on abundance and composition in surface water of lake in different seasons. Environ. Sci. Pollut. Res. Int., 2022, 29(26), 39928-39936.
[http://dx.doi.org/10.1007/s11356-021-18301-9] [PMID: 35112255]
[3]
Scott, S.B.; Sivakoff, F.S.; Gardiner, M.M. Exposure to urban heavy metal contamination diminishes bumble bee colony growth. Urban Ecosyst., 2022, 25(3), 989-997.
[http://dx.doi.org/10.1007/s11252-022-01206-x]
[4]
Nguyen, L.M.; Nguyen, N.T.T.; Nguyen, T.T.T.; Nguyen, T.T.; Nguyen, D.T.C.; Tran, T.V. Occurrence, toxicity and adsorptive removal of the chloramphenicol antibiotic in water: A review. Environ. Chem. Lett., 2022, 20(3), 1929-1963.
[http://dx.doi.org/10.1007/s10311-022-01416-x] [PMID: 35369683]
[5]
Yu, M.; Li, X.; Liu, B.; Li, Y.; Liu, L.; Wang, L.; Song, L.; Wang, Y.; Hu, L.; Mei, S. Organophosphate esters in children and adolescents in Liuzhou city, China: Concentrations, exposure assessment, and predictors. Environ. Sci. Pollut. Res. Int., 2022, 29(26), 39310-39322.
[http://dx.doi.org/10.1007/s11356-021-18334-0] [PMID: 35098472]
[6]
Devi, V.; Atique, M.M.; Raju, A.; Upreti, G.; Jigyasu, D.K.; Yadav, J.K.; Singh, S.; Kar, R.; Singh, M. Mercury transportation dynamics in the Ganga Alluvial Plain, India: Rainwater–groundwater–river water interaction study from hotspot region. Int. J. Environ. Sci. Technol., 2022, 19(6), 4891-4900.
[http://dx.doi.org/10.1007/s13762-021-03334-x]
[7]
Shah, Z.U.; Parveen, S. Pesticides pollution and risk assessment of river Ganga: A review. Heliyon, 2021, 7(8), e07726.
[http://dx.doi.org/10.1016/j.heliyon.2021.e07726] [PMID: 34430731]
[8]
Jadeja, N.B.; Banerji, T.; Kapley, A.; Kumar, R. Water pollution in India – Current scenario. Water Secur., 2022, 16, 100119.
[http://dx.doi.org/10.1016/j.wasec.2022.100119]
[9]
Hemalatha, D.; Nataraj, B.; Rangasamy, B.; Maharajan, K.; Ramesh, M. Exploring the sublethal genotoxic effects of class II organophosphorus insecticide quinalphos on freshwater fish Cyprinus carpio. J. Oceanol. Limnol., 2021, 39(2), 661-670.
[http://dx.doi.org/10.1007/s00343-019-9104-y]
[10]
Rajput, S.; Kumari, A.; Arora, S.; Kaur, R. Multi-residue pesticides analysis in water samples using reverse phase high performance liquid chromatography (RP-HPLC). MethodsX, 2018, 5, 744-751.
[http://dx.doi.org/10.1016/j.mex.2018.07.005] [PMID: 30109197]
[11]
Mohammed, R.; Ali, M.E.M.; Gomaa, E.; Mohsen, M. Copper sulfide and zinc oxide hybrid nanocomposite for wastewater decontamination of pharmaceuticals and pesticides. Sci. Rep., 2022, 12(1), 18153.
[http://dx.doi.org/10.1038/s41598-022-22795-9] [PMID: 36307472]
[12]
Patel, R.K.; Kumar, S.; Chawla, A.K.; Mondal, P.; Neelam.; Teychene, B.; Pandey, J.K Elimination of fluoride, arsenic, and nitrate from water through adsorption onto nano-adsorbent: A review. Curr. Nanosci., 2019, 15(6), 557-575.
[http://dx.doi.org/10.2174/1573413715666190101113651]
[13]
Xianchun, Zhu. H-M.H.; Pathakoti, K. Green synthesis of titanium dioxide and zinc oxide nanoparticles and their usage for antimicrobial applications and environmental remediation. In: Green Synthesis, Characterization and Applications of Nanoparticles; Elsevier, 2019, pp. 223-263.
[14]
Sharma, S.; Kumar, S.; Kumar, V.; Sharma, R. Pesticides and vegetables: Ecological and metabolic fate with their field and food significance. Int. J. Environ. Sci. Technol., 2023, 20(2), 2267-2292.
[http://dx.doi.org/10.1007/s13762-021-03716-1]
[15]
Hassaan, M.A.; El Nemr, A. Pesticides pollution: Classifications, human health impact, extraction and treatment techniques. Egypt. J. Aquat. Res., 2020, 46(3), 207-220.
[http://dx.doi.org/10.1016/j.ejar.2020.08.007]
[16]
Nie, J.; Sun, Y.; Zhou, Y.; Kumar, M.; Usman, M.; Li, J.; Shao, J.; Wang, L.; Tsang, D.C.W. Bioremediation of water containing pesticides by microalgae: Mechanisms, methods, and prospects for future research. Sci. Total Environ., 2020, 707, 136080.
[http://dx.doi.org/10.1016/j.scitotenv.2019.136080] [PMID: 31869621]
[17]
Tariq, A.; Akhtar, S. Determination of pesticide residues in sediments of River Ravi. IJIAS, 2022, 2(2), 123-131.
[http://dx.doi.org/10.47540/ijias.v2i2.500]
[18]
Tang, W.; Wang, D.; Wang, J. Pyrethroid pesticide residues in the global environment: An overview. Chemosphere, 2018, 191, 990-1007.
[http://dx.doi.org/10.1016/j.chemosphere.2017.10.115]
[19]
Bravo, N.; Garí, M.; Grimalt, J.O. Occupational and residential exposures to organophosphate and pyrethroid pesticides in a rural setting. Environ. Res., 2022, 214(Pt 4), 114186.
[http://dx.doi.org/10.1016/j.envres.2022.114186] [PMID: 36030920]
[20]
Lajmanovich, R.C.; Repetti, M.R.; Cuzziol Boccioni, A.P.; Michlig, M.P.; Demonte, L.; Attademo, A.M.; Peltzer, P.M. Cocktails of pesticide residues in prochilodus lineatus fish of the salado river (South America): First record of high concentrations of polar herbicides. Sci. Total Environ., 2023, 870, 162019.
[http://dx.doi.org/10.1016/j.scitotenv.2023.162019]
[21]
Degrendele, C.; Klánová, J.; Prokeš, R.; Příbylová, P.; Šenk, P.; Šudoma, M.; Röösli, M.; Dalvie, M.A.; Fuhrimann, S. Current use pesticides in soil and air from two agricultural sites in South Africa: Implications for environmental fate and human exposure. Sci. Total Environ., 2022, 807(Pt 1), 150455.
[http://dx.doi.org/10.1016/j.scitotenv.2021.150455] [PMID: 34634720]
[22]
Hüesker, F.; Lepenies, R. Why does pesticide pollution in water persist? Environ. Sci. Policy, 2022, 128, 185-193.
[http://dx.doi.org/10.1016/j.envsci.2021.11.016]
[23]
Chen, C.; Guo, W.; Ngo, H.H. Pesticides in stormwater runoff—A mini review. Front. Environ. Sci. Eng., 2019, 13(5), 72.
[http://dx.doi.org/10.1007/s11783-019-1150-3]
[24]
Lushchak, V.I.; Matviishyn, T.M.; Husak, V.V.; Storey, J.M. Pesticide toxicity: A mechanistic approach. EXCLI J., 2018, 17, 1101-1136.
[25]
Arthidoro de Castro, M.B.; Martinez, L.C.; Cossolin, J.F.S.; Serra, R.S.; Serrão, J.E. Cytotoxic effects on the midgut, hypopharyngeal, glands and brain of Apis mellifera honey bee workers exposed to chronic concentrations of lambda-cyhalothrin. Chemosphere, 2020, 248, 126075.
[http://dx.doi.org/10.1016/j.chemosphere.2020.126075] [PMID: 32028166]
[26]
Chaudhari, Y.S.; Kumar, P.; Soni, S.; Gacem, A.; Kumar, V.; Singh, S.; Yadav, V.K.; Dawane, V.; Piplode, S.; Jeon, B.H.; Ibrahium, H.A.; Hakami, R.A.; Alotaibi, M.T.; Abdellattif, M.H.; Cabral-Pinto, M.M.S.; Yadav, P.; Yadav, K.K. An inclusive outlook on the fate and persistence of pesticides in the environment and integrated eco-technologies for their degradation. Toxicol. Appl. Pharmacol., 2023, 466, 116449.
[http://dx.doi.org/10.1016/j.taap.2023.116449] [PMID: 36924898]
[27]
Ss, S.; v, M.; Jk, M.; Gn, K. Adsorption of lambda cyhalothrin on to athi river sediments: Apparent thermodynamic properties. Mod. Chem. Appl., 2017, 5(2), 213.
[http://dx.doi.org/10.4172/2329-6798.1000213]
[28]
Mac Loughlin, T.M.; Peluso, M.L.; Marino, D.J.G. Multiple pesticides occurrence, fate, and environmental risk assessment in a small horticultural stream of Argentina. Sci. Total Environ., 2022, 802, 149893.
[http://dx.doi.org/10.1016/j.scitotenv.2021.149893] [PMID: 34474294]
[29]
Ding, J.; Liu, Y.; Gao, Y.; Zhang, C.; Wang, Y.; Xu, B.; Yang, Y.; Wu, Q.; Huang, Z. Biodegradation of λ-cyhalothrin through cell surface display of bacterial carboxylesterase. Chemosphere, 2022, 289, 133130.
[http://dx.doi.org/10.1016/j.chemosphere.2021.133130] [PMID: 34863720]
[30]
Saleh, I.A.; Zouari, N.; Al-Ghouti, M.A. Removal of pesticides from water and wastewater: Chemical, physical and biological treatment approaches. Environ. Technol. Innov., 2020, 19, 101026.
[http://dx.doi.org/10.1016/j.eti.2020.101026]
[31]
Nguyen, T.T.; Rosello, C.; Bélanger, R.; Ratti, C. Fate of residual pesticides in Fruit and Vegetable Waste (FVW) processing. Foods, 2020, 9(10), 1468.
[http://dx.doi.org/10.3390/foods9101468] [PMID: 33076324]
[32]
Brühl, C.A.; Zaller, J.G. Biodiversity decline as a consequence of an inappropriate environmental risk assessment of pesticides. Front. Environ. Sci., 2019, 7, 177.
[http://dx.doi.org/10.3389/fenvs.2019.00177]
[33]
Teklu, B.M.; Haileslassie, A.; Mekuria, W. Pesticides as water pollutants and level of risks to environment and people: An example from Central Rift Valley of Ethiopia. Environ. Dev. Sustain., 2022, 24(4), 5275-5294.
[http://dx.doi.org/10.1007/s10668-021-01658-9]
[34]
Carvalho, F.P. Pesticides, environment, and food safety. Food Energy Secur., 2017, 6(2), 48-60.
[http://dx.doi.org/10.1002/fes3.108]
[35]
Shipley, H.J.; Engates, K.E.; Guettner, A.M. Study of iron oxide nanoparticles in soil for remediation of arsenic. J. Nanopart. Res., 2011, 13(6), 2387-2397.
[http://dx.doi.org/10.1007/s11051-010-9999-x]
[36]
Majumder, A.; Ramrakhiani, L.; Mukherjee, D.; Mishra, U.; Halder, A.; Mandal, A.K.; Ghosh, S. Green synthesis of iron oxide nanoparticles for arsenic remediation in water and sludge utilization. Clean Technol. Environ. Policy, 2019, 21(4), 795-813.
[http://dx.doi.org/10.1007/s10098-019-01669-1]
[37]
Santiago Monje, D. Iron oxide nanoparticles embedded in organic microparticles from Yerba Mate useful for remediation of textile wastewater through a photo-Fenton treatment: Ilex paraguariensis as a platform of environmental interest – Part 1. Environ. Sci. Pollut. Res., 2022, 29, 57127-57146.
[http://dx.doi.org/10.1007/s11356-022-19744-4]
[38]
Nageswara Rao, V.; Gopal, N.V.S.V.; Patrudu, T.B. Removal of diclosulam pesticide residues in water samples using Cu doped ZnO nanocatalyst. Int. J. Curr. Microbiol. Appl. Sci., 2020, 9(11), 910-921.
[http://dx.doi.org/10.20546/ijcmas.2020.911.109]
[39]
Sowjanya, B.; Sirisha, U.; Suhasini Juttuka, A.; Matla, S.; King, P.; Vangalapati, M. Synthesis and characterization of zinc oxide nanoparticles: It’s application for the removal of alizarin red S dye. Mater. Today Proc., 2022, 62(6), 3968-3972.
[http://dx.doi.org/10.1016/j.matpr.2022.04.576]
[40]
Moustafa, M.; Abu-Saied, M.A.; Taha, T.; Elnouby, M.; El-shafeey, M.; Alshehri, A.G.; Alamri, S.; Shati, A.; Alrumman, S.; Alghamdii, H.; Al-Khatani, M. Chitosan functionalized AgNPs for efficient removal of Imidacloprid pesticide through a pressure-free design. Int. J. Biol. Macromol., 2021, 168, 116-123.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.055] [PMID: 33309655]
[41]
Rani, M.; Shanker, U. Removal of chlorpyrifos, thiamethoxam, and tebuconazole from water using green synthesized metal hexacyanoferrate nanoparticles. Environ. Sci. Pollut. Res. Int., 2018, 25(11), 10878-10893.
[http://dx.doi.org/10.1007/s11356-018-1346-2] [PMID: 29397507]
[42]
Rafique, M.; Tahir, M.B.; Rafique, M.S.; Hamza, M. History and fundamentals of nanoscience and nanotechnology. In: Nanotechnology and Photocatalysis for Environmental Applications; Elsevier, 2020, pp. 1-25.
[http://dx.doi.org/10.1016/B978-0-12-821192-2.00001-2]
[43]
Saini, P. Kamalesu; Lalita; Manikanika, Review on nanotechnology “Impact on the food services industry”. Mater. Today Proc., 2023, 92, 226-232.
[http://dx.doi.org/10.1016/j.matpr.2023.04.377]
[44]
Singh, R.K.; Nayak, N.P. Opportunities and challenges of nanotechnology in enhanced oil recovery: An overview. Mater. Today Proc., 2023.
[45]
Jain, K.; Patel, A.S.; Pardhi, V.P.; Flora, S.J.S. Nanotechnology in wastewater management: A new paradigm towards wastewater treatment. Molecules, 2021, 26(6), 1797.
[http://dx.doi.org/10.3390/molecules26061797] [PMID: 33806788]
[46]
Nishu; Kumar, S. Smart and innovative nanotechnology applications for water purification. Hybrid Advances, 2023, 3, 100044.
[http://dx.doi.org/10.1016/j.hybadv.2023.100044]
[47]
Bayda, S.; Adeel, M.; Tuccinardi, T.; Cordani, M.; Rizzolio, F. The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine. Molecules, 2019, 25(1), 112.
[http://dx.doi.org/10.3390/molecules25010112] [PMID: 31892180]
[48]
Feynman, R.P. There’s Plenty of Room at the Bottom., 1959. Available From: https://en.wikipedia.org/wiki/There%27s_Plenty_of_Room_at_the_Bottom
[49]
Roy, A.; Roy, M.; Alghamdi, S.; Dablool, A.S.; Almakki, A.A.; Ali, I.H.; Yadav, K.K.; Islam, M.R.; Cabral-Pinto, M.M.S. Role of microbes and nanomaterials in the removal of pesticides from Wastewater. Int. J. Photoenergy, 2022, 2022, 1-12.
[http://dx.doi.org/10.1155/2022/2131583]
[50]
Irfan, F.; Tanveer, M.U.; Moiz, M.A.; Husain, S.W.; Ramzan, M. TiO2 as an effective photocatalyst mechanisms, applications, and dopants: A review. Eur. Phys. J. B, 2022, 95(11), 184.
[http://dx.doi.org/10.1140/epjb/s10051-022-00440-8]
[51]
Haleem, A.; Javaid, M.; Singh, R.P.; Rab, S.; Suman, R. Applications of nanotechnology in medical field: A brief review. J. Glob. Health, 2023, 7(2), 70-77.
[http://dx.doi.org/10.1016/j.glohj.2023.02.008]
[52]
Kumar, R.; Kumar, M.; Luthra, G. Fundamental approaches and applications of nanotechnology: A mini review. Mater. Today Proc., 2023 in press
[http://dx.doi.org/10.1016/j.matpr.2022.12.172]
[53]
Yadav, N.; Garg, V.K.; Chhillar, A.K.; Rana, J.S. Recent advances in nanotechnology for the improvement of conventional agricultural systems: A review. Plant Nano Biology, 2023, 4, 100032.
[http://dx.doi.org/10.1016/j.plana.2023.100032]
[54]
Singh, H.; Kaur, K. Role of nanotechnology in research fields: Medical sciences, military & tribology- A review on recent advancements, grand challenges and perspectives. Mater. Today Proc., 2023. in press
[http://dx.doi.org/10.1016/j.matpr.2023.02.061]
[55]
Dolatabadi, M.; Świergosz, T.; Wang, C.; Ahmadzadeh, S. Accelerated degradation of groundwater-containing malathion using persulfate activated magnetic Fe3O4/graphene oxide nanocomposite for advanced water treatment. Arab. J. Chem., 2023, 16(1), 104424.
[http://dx.doi.org/10.1016/j.arabjc.2022.104424]
[56]
Tahir, M.B.; Kiran, H.; Iqbal, T. The detoxification of heavy metals from aqueous environment using nano-photocatalysis approach: A review. Environ. Sci. Pollut. Res. Int., 2019, 26(11), 10515-10528.
[http://dx.doi.org/10.1007/s11356-019-04547-x] [PMID: 30835072]
[57]
Gangwar, K.; Jeevanandam, P. Synthesis of SnO2-Ag nanocomposites via thermal decomposition method and their application for catalytic reduction of 4-nitrophenol and photocatalytic degradation of congo red. J. Mol. Struct., 2023, 1285, 135423.
[http://dx.doi.org/10.1016/j.molstruc.2023.135423]
[58]
Pramanick, B.; Chawla, M.; Siril, P.F. Photocatalytic degradation of aromatic pollutants using plasmonic Cu–Ag nanocomposites. Opt. Mater., 2023, 137, 113553.
[http://dx.doi.org/10.1016/j.optmat.2023.113553]
[59]
Mathew, J.; John, N.; Mathew, B. Graphene oxide-incorporated silver-based photocatalysts for enhanced degradation of organic toxins: A review. Environ. Sci. Pollut. Res. Int., 2023, 30(7), 16817-16851.
[http://dx.doi.org/10.1007/s11356-022-25026-w] [PMID: 36595177]
[60]
Harinisri, K.; Jayanthi, N.; Suresh Kumar, R. Diverse application of green nanotechnology – A review. Mater. Today Proc., 2023.
[http://dx.doi.org/10.1016/j.matpr.2023.06.085]
[61]
Iravani, S. Nanomaterials and nanotechnology for water treatment: Recent advances. Inorg. Nano-Met. Chem, 2020, 51(12), 1615-1645.
[http://dx.doi.org/10.1080/24701556.2020.1852253]
[62]
Yang, J.; Hou, B.; Wang, J.; Tian, B.; Bi, J.; Wang, N.; Li, X.; Huang, X. Nanomaterials for the removal of heavy metals from wastewater. Nanomaterials , 2019, 9(3), 424.
[http://dx.doi.org/10.3390/nano9030424] [PMID: 30871096]
[63]
Umar, W. Use of nanotechnology for wastewater treatment: Potential applications, advantages, and limitations. Environ. Nanotechnol., 2022, 223-272.
[http://dx.doi.org/ 10.1016/B978-0-12-824547-7.00002-3]
[64]
Barzagan, A. Photocatalytic. Waste Wastewater Treat., 2022.
[http://dx.doi.org/10.2166/9781789061932]
[65]
Pathania, D.; Sharma, A.; Kumar, S.; Srivastava, A.K.; Kumar, A.; Singh, L. Bio-synthesized Cu–ZnO hetro-nanostructure for catalytic degradation of organophosphate chlorpyrifos under solar illumination. Chemosphere, 2021, 277, 130315.
[http://dx.doi.org/10.1016/j.chemosphere.2021.130315] [PMID: 34384181]
[66]
Prasad, V.; Gnanamani Simiyon, G.; Elizabeth Mammen, A.; Jayaprakash, N. Microwave assisted synthesis, characterization and photo-catalytic study of Cu/ZnO nanocomposite. Rasayan J. Chem., 2019, 12(2), 860-865.
[http://dx.doi.org/10.31788/RJC.2019.1225226]
[67]
Ortiz-Bustos, J.; Hierro, I.; Pérez, Y. Photocatalytic oxidative desulfurization and degradation of organic pollutants under visible light using TiO2 nanoparticles modified with iron and sulphate ions. Ceram. Int., 2022, 48(5), 6905-6916.
[http://dx.doi.org/10.1016/j.ceramint.2021.11.246]
[68]
Pujar, M.S.; Hunagund, S.M.; Barretto, D.A.; Desai, V.R.; Patil, S.; Vootla, S.K.; Sidarai, A.H. Synthesis of cerium-oxide NPs and their surface morphology effect on biological activities. Bull. Mater. Sci., 2020, 43(1), 24.
[http://dx.doi.org/10.1007/s12034-019-1962-6]
[69]
Jiménez-Rosado, M.; Gomez-Zavaglia, A.; Guerrero, A.; Romero, A. Green synthesis of ZnO nanoparticles using polyphenol extracts from pepper waste (Capsicum annuum). J. Clean. Prod., 2022, 350, 131541.
[http://dx.doi.org/10.1016/j.jclepro.2022.131541]
[70]
Rane, A.V.; Kanny, K.; Abitha, V.K.; Thomas, S. Methods for synthesis of nanoparticles and fabrication of nanocomposites. In: Synthesis of Inorganic Nanomaterials, Advances and Key Technologies; Elsevier Ltd., 2018.
[http://dx.doi.org/10.1016/B978-0-08-101975-7.00005-1]
[71]
Hong, N.H. Introduction to nanomaterials: Basic properties, synthesis, and characterization. In: Nano-Sized Multifunctional Materials, Synthesis, Properties and Applications; Elsevier Inc., 2019.
[http://dx.doi.org/10.1016/B978-0-12-813934-9.00001-3]
[72]
El Golli, A.; Fendrich, M.; Bazzanella, N.; Dridi, C.; Miotello, A.; Orlandi, M. Wastewater remediation with ZnO photocatalysts: Green synthesis and solar concentration as an economically and environmentally viable route to application. J. Environ. Manage., 2021, 286, 112226.
[http://dx.doi.org/10.1016/j.jenvman.2021.112226] [PMID: 33677338]
[73]
Lalithamba, H.S.; Raghavendra, M.; Yatish, K.V. Efficient application of green synthesized ceo2 nanoparticles for the preparation of selenoester derivatives of protected amino acids and production of biodiesel from annona squamosa oil. J. Electron. Mater., 2022, 51(7), 3650-3659.
[http://dx.doi.org/10.1007/s11664-022-09610-x]
[74]
An, H.; Liu, L.; Song, N.; Zhu, H.; Tang, Y. Rational design and synthesis of cerium dioxide-based nanocomposites. Nano Res., 2022, 2022, 1-19.
[http://dx.doi.org/10.1007/s12274-022-4941-y]
[75]
Lee, L.Z.; Zaini, M.A.A.; Tang, S.H. Porous nanomaterials for heavy metal removal. Handb. Ecomater., 2019, 1, 469-494.
[http://dx.doi.org/10.1007/978-3-319-68255-6_27]
[76]
Omanović-Mikličanin, E.; Badnjević, A.; Kazlagić, A.; Hajlovac, M. Nanocomposites: A brief review. Health Technol., 2020, 10(1), 51-59.
[http://dx.doi.org/10.1007/s12553-019-00380-x]
[77]
Hanh, N.T.; Le Minh Tri, N.; Van Thuan, D.; Thanh Tung, M.H.; Pham, T-D.; Minh, T.D.; Trang, H.T.; Binh, M.T.; Nguyen, M.V. Monocrotophos pesticide effectively removed by novel visible light driven Cu doped ZnO photocatalyst. J. Photochem. Photobiol. Chem., 2019, 382, 111923.
[http://dx.doi.org/10.1016/j.jphotochem.2019.111923]
[78]
Adabavazeh, H.; Saljooqi, A.; Shamspur, T.; Mostafavi, A. Synthesis of polyaniline decorated with ZnO and CoMoO4 nanoparticles for enhanced photocatalytic degradation of imidacloprid pesticide under visible light. Polyhedron, 2021, 198, 115058.
[http://dx.doi.org/10.1016/j.poly.2021.115058]
[79]
Bhat, A.; Budholiya, S.; Aravind Raj, S.; Sultan, M.T.H.; Hui, D.; Md Shah, A.U.; Safri, S.N.A. Review on nanocomposites based on aerospace applications. Nanotechnol. Rev., 2021, 10(1), 237-253.
[http://dx.doi.org/10.1515/ntrev-2021-0018]
[80]
Khan, S.H.; Pathak, B. Zinc oxide based photocatalytic degradation of persistent pesticides: A comprehensive review. Environ. Nanotechnology. Monit. Manag., 2020, 13, 100290.
[http://dx.doi.org/10.1016/j.enmm.2020.100290]
[81]
Bruckmann, F.S. Adsorption and photocatalytic degradation of pesticides into nanocomposites: A review. Molecules, 2022, 27(19), 6261.
[http://dx.doi.org/10.3390/molecules27196261]
[82]
Farhan, A. Metal ferrites-based nanocomposites and nanohybrids for photocatalytic water treatment and electrocatalytic water splitting. Chemosphere, 2022, 310, 136835.
[http://dx.doi.org/10.1016/j.chemosphere.2022.136835]
[83]
Andronic, L.; Lelis, M.; Enesca, A.; Karazhanov, S. Photocatalytic activity of defective black-titanium oxide photocatalysts towards pesticide degradation under UV/VIS irradiation. Surf. Interfaces, 2022, 32, 102123.
[http://dx.doi.org/10.1016/j.surfin.2022.102123]
[84]
Ebenazer, A.F.; Vijayan, P.; Sampathkumar, N.; Sivadhayanidhy, M. Photocatalytic degradation of organophosphorus pesticide using semiconductor-sensitized composite in natural water: Effect of oxidants. Appl. Phys., A Mater. Sci. Process., 2020, 126(3), 186.
[http://dx.doi.org/10.1007/s00339-020-3338-6]
[85]
Goel, P.; Arora, M. Photocatalytic degradation efficiency of Cu/Cu2O core–shell structured nanoparticles for endosulfan mineralization. J. Nanopart. Res., 2022, 24(3), 56.
[http://dx.doi.org/10.1007/s11051-022-05436-0]
[86]
Sraw, A.; Kaur, T.; Thakur, I.; Verma, A.; Wanchoo, R.K.; Toor, A.P. Photocatalytic degradation of pesticide monocrotophos in water using W-TiO2 in slurry and fixed bed recirculating reactor. J. Mol. Struct., 2022, 1265, 133392.
[http://dx.doi.org/10.1016/j.molstruc.2022.133392]
[87]
Alkayal, N.S.; Hussein, M.A. Photocatalytic degradation of atrazine under visible light using novel Ag@Mg4Ta2O9 nanocomposites. Sci. Rep., 2019, 9(1), 7470.
[http://dx.doi.org/10.1038/s41598-019-43915-y] [PMID: 31097751]
[88]
Kadam, V.V.; Shanmugam, S.D.; Ettiyappan, J.P.; Balakrishnan, R.M. Photocatalytic degradation of p-nitrophenol using biologically synthesized ZnO nanoparticles. Environ. Sci. Pollut. Res. Int., 2021, 28(10), 12119-12130.
[http://dx.doi.org/10.1007/s11356-020-10833-w] [PMID: 32948944]
[89]
Chinnappa, K.; Karuna Ananthai, P.; Srinivasan, P.P.; Dharmaraj Glorybai, C. Green synthesis of rGO-AgNP composite using curcubita maxima extract for enhanced photocatalytic degradation of the organophosphate pesticide chlorpyrifos. Environ. Sci. Pollut. Res. Int., 2022, 29(38), 58121-58132.
[http://dx.doi.org/10.1007/s11356-022-19917-1] [PMID: 35364789]
[90]
Oliva, J.; Valadez-Renteria, E.; Kshetri, Y.K.; Encinas, A.; Lee, S.W.; Rodriguez-Gonzalez, V. A sustainable composite of rice-paper/BaMoO4 nanoparticles for the photocatalytic elimination of the recalcitrant 2,6-dichlorobenzamide (BAM) pesticide in drinking water and its mechanisms of degradation. Environ. Sci. Pollut. Res. Int., 2022, 29(39), 59915-59929.
[http://dx.doi.org/10.1007/s11356-022-19908-2] [PMID: 35397726]
[91]
Keihan, A.H.; Rasoulnezhad, H.; Mohammadgholi, A.; Sajjadi, S.; Hosseinzadeh, R.; Farhadian, M.; Hosseinzadeh, G. Pd nanoparticle loaded TiO2 semiconductor for photocatalytic degradation of Paraoxon pesticide under visible-light irradiation. J. Mater. Sci. Mater. Electron., 2017, 28(22), 16718-16727.
[http://dx.doi.org/10.1007/s10854-017-7585-z]
[92]
Jadoun, S.; Yáñez, J.; Mansilla, H.D.; Riaz, U.; Chauhan, N.P.S. Conducting polymers/zinc oxide-based photocatalysts for environmental remediation: A review. Environ. Chem. Lett., 2022, 20(3), 2063-2083.
[http://dx.doi.org/10.1007/s10311-022-01398-w] [PMID: 35221834]
[93]
Bolade, O.P.; Akinsiku, A.A.; Oluwafemi, O.S.; Williams, A.B.; Benson, N.U. Biogenic iron oxide nanoparticles and activated sodium persulphate for hydrocarbon remediation in contaminated soil. Environ. Technol. Innov., 2021, 23, 101719.
[http://dx.doi.org/10.1016/j.eti.2021.101719]
[94]
Linley, S.; Thomson, N.R. Environmental applications of nanotechnology: Nano-enabled remediation processes in water, soil and air treatment. Water Air Soil Pollut., 2021, 232(2), 59.
[http://dx.doi.org/10.1007/s11270-021-04985-9]
[95]
Sharma, R.; Almáši, M.; Nehra, S.P.; Rao, V.S.; Panchal, P.; Paul, D.R.; Jain, I.P.; Sharma, A. Photocatalytic hydrogen production using graphitic carbon nitride (GCN): A precise review. Renew. Sustain. Energy Rev., 2022, 168, 112776.
[http://dx.doi.org/10.1016/j.rser.2022.112776]
[96]
Xue, J. Construction of multi-homojunction TiO2 nanotubes for boosting photocatalytic hydrogen evolution by steering photogenerated charge transfer. Nano Res., 2022, 2022, 1-12.
[http://dx.doi.org/10.1007/s12274-022-5050-7]
[97]
Singla, S.; Sharma, S.; Basu, S.; Shetti, N.P.; Aminabhavi, T.M. Photocatalytic water splitting hydrogen production via environmental benign carbon based nanomaterials. Int. J. Hydrogen Energy, 2021, 46(68), 33696-33717.
[http://dx.doi.org/10.1016/j.ijhydene.2021.07.187]
[98]
Nishiyama, H.; Yamada, T.; Nakabayashi, M.; Maehara, Y.; Yamaguchi, M.; Kuromiya, Y.; Nagatsuma, Y.; Tokudome, H.; Akiyama, S.; Watanabe, T.; Narushima, R.; Okunaka, S.; Shibata, N.; Takata, T.; Hisatomi, T.; Domen, K. Photocatalytic solar hydrogen production from water on a 100-m2 scale. Nature, 2021, 598(7880), 304-307.
[http://dx.doi.org/10.1038/s41586-021-03907-3] [PMID: 34433207]
[99]
Sinha, I.; De, A.K. An overview of synthesis techniques for preparing doped photocatalysts. In: Nano-Materials as Photocatalysts for Degradation of Environmental Pollutants; Elsevier Inc., 2019, pp. 1-13.
[http://dx.doi.org/10.1016/B978-0-12-818598-8.00001-8]
[100]
Liu, B.; Cai, M.; Feng, X.; Lu, S.; Lin, S.; Tian, F. Enzyme-free carbon dots@MgO nanocomposite as an efficient sensor for on-site detection and degradation of paraoxon toxins. Carbon, 2023, 209(April), 118003.
[http://dx.doi.org/10.1016/j.carbon.2023.118003]
[101]
Kuang, C.; Tan, P.; Bahadur, A.; Iqbal, S.; Javed, M.; Qamar, M.A.; Fayyaz, M.; Liu, G.; Alzahrani, O.M.; Alzahrani, E.; Farouk, A-E.A. Dye degradation study by incorporating Cu-doped ZnO photocatalyst into polyacrylamide microgel. J. Mater. Sci. Mater. Electron., 2022, 33(13), 9930-9940.
[http://dx.doi.org/10.1007/s10854-022-07984-6]
[102]
Faheem, M.; Riaz, S.; Javed, Y.; Aziz, H.; Ashraf, M.; Younus, A.; Rehman, F.; Ali, K. Rapid single-step synthesis and crystal structure analysis of Cu:ZnO Photocatalyst for efficient degradation of reactive dyes under UV–visible light irradiation. Arab. J. Sci. Eng., 2022, 47(6), 7729-7745.
[http://dx.doi.org/10.1007/s13369-022-06629-4]
[103]
Karidas, S.; Veena, B.K.; Pujari, N.; Krishna, P.; Chunduru, V. “Photodegradation of methylene blue (MB) using cerium-doped zinc oxide nanoparticles,” Sadhana - Acad. Proc. Eng. Sci., 2020, 45(1), 1-9.
[http://dx.doi.org/10.1007/S12046-020-01329-X/TABLES/4]
[104]
Raees, A.; Jamal, M.A.; Ahmad, A.; Ahmad, I.; Saeed, M.; Habila, M.A.; AlMasoud, N.; Alomar, T.S. Synthesis and characterization of Ceria incorporated Nickel oxide nanocomposite for promising degradation of methylene blue via photocatalysis. Int. J. Environ. Sci. Technol., 2022, 19(7), 6445-6452.
[http://dx.doi.org/10.1007/s13762-021-03584-9]
[105]
Akhter, P.; Nawaz, S.; Shafiq, I.; Nazir, A.; Shafique, S.; Jamil, F.; Park, Y-K.; Hussain, M. Efficient visible light assisted photocatalysis using ZnO/TiO2 nanocomposites. J. Mol. Catal., 2023, 535, 112896.
[http://dx.doi.org/10.1016/j.mcat.2022.112896]
[106]
Rajendran, R.; Mani, A. Photocatalytic, antibacterial and anticancer activity of silver-doped zinc oxide nanoparticles. J. Saudi Chem. Soc., 2020, 24(12), 1010-1024.
[http://dx.doi.org/10.1016/j.jscs.2020.10.008]
[107]
Javan, S.; Rezaei Kahkha, M.R.; Moghaddam, F.; Faghihi-Zarandi, M.; Hejazi, A. Photocatalytic degradation of methyl orange using Cerium doped zinc oxide nanoparticles supported bentonite clay. Anal. Methods Environ. Chem. J., 2022, 5(4), 87-95.
[http://dx.doi.org/10.24200/amecj.v5.i04.216]
[108]
Hannachi, E.; Slimani, Y.; Nawaz, M.; Trabelsi, Z.; Yasin, G.; Bilal, M.; Almessiere, M.A.; Baykal, A.; Thakur, A.; Thakur, P. Synthesis, characterization, and evaluation of the photocatalytic properties of zinc oxide co-doped with lanthanides elements. J. Phys. Chem. Solids, 2022, 170, 110910.
[http://dx.doi.org/10.1016/j.jpcs.2022.110910]
[109]
Li, Y.; Li, K.; Li, M.; Ge, M. Zinc-doped ferrite nanoparticles as magnetic recyclable catalysts for scale-up glycolysis of poly(ethylene terephthalate) wastes. Adv. Powder Technol., 2022, 33(3), 103444.
[http://dx.doi.org/10.1016/j.apt.2022.103444]
[110]
Kanwal, M.; Tariq, S.R.; Chotana, G.A. Photocatalytic degradation of imidacloprid by Ag-ZnO composite. Environ. Sci. Pollut. Res. Int., 2018, 25(27), 27307-27320.
[http://dx.doi.org/10.1007/s11356-018-2693-8] [PMID: 30032372]
[111]
Rodwihok, C.; Wongratanaphisan, D.; Van Tam, T.; Choi, W.M.; Hur, S.H.; Chung, J.S. Cerium-oxide-nanoparticle-decorated zinc oxide with enhanced photocatalytic degradation of methyl orange. Appl. Sci. , 2020, 10(5), 1697.
[http://dx.doi.org/10.3390/app10051697]
[112]
Sivakumar, S.; Thangadurai, T.D.; Nataraj, D. Role of interfacial AuNPs in solid-state direct Z-scheme MoS2/Au/g-C3N4 heterojunction nanocomposite’s pollutant degradation activity under sunlight. Colloids Surf. A Physicochem. Eng. Asp., 2023, 667(March), 131365.
[http://dx.doi.org/10.1016/j.colsurfa.2023.131365]
[113]
Singh, P.; Mohan, B.; Madaan, V.; Ranga, R.; Kumari, P.; Kumar, S.; Bhankar, V.; Kumar, P.; Kumar, K. Nanomaterials photocatalytic activities for waste water treatment: A review. Environ. Sci. Pollut. Res. Int., 2022, 29(46), 69294-69326.
[http://dx.doi.org/10.1007/s11356-022-22550-7] [PMID: 35978242]
[114]
Yari, K.; Seidmohammadi, A.; Khazaei, M.; Bhatnagar, A.; Leili, M. A comparative study for the removal of imidacloprid insecticide from water by chemical-less UVC, UVC/TiO2 and UVC/ZnO processes. J. Environ. Health Sci. Eng., 2019, 17(1), 337-351.
[http://dx.doi.org/10.1007/s40201-019-00352-3] [PMID: 31321051]
[115]
Garg, A.; Singhania, T.; Singh, A.; Sharma, S.; Rani, S.; Neogy, A.; Yadav, S.R.; Sangal, V.K.; Garg, N. Photocatalytic degradation of bisphenol-A using N, Co codoped TiO2 catalyst under solar light. Sci. Rep., 2019, 9(1), 765.
[http://dx.doi.org/10.1038/s41598-018-38358-w] [PMID: 30679732]
[116]
Syafrudin, M.; Kristanti, R.A.; Yuniarto, A.; Hadibarata, T.; Rhee, J.; Al-onazi, W.A.; Algarni, T.S.; Almarri, A.H.; Al-Mohaimeed, A.M. Pesticides in drinking water: A review. Int. J. Environ. Res. Public Health, 2021, 18(2), 468.
[http://dx.doi.org/10.3390/ijerph18020468] [PMID: 33430077]
[117]
Jatoi, A.S.; Hashmi, Z.; Adriyani, R.; Yuniarto, A.; Mazari, S.A.; Akhter, F.; Mubarak, N.M. Recent trends and future challenges of pesticide removal techniques – A comprehensive review. J. Environ. Chem. Eng., 2021, 9(4), 105571.
[http://dx.doi.org/10.1016/j.jece.2021.105571]
[118]
Ajiboye, T.O.; Kuvarega, A.T.; Onwudiwe, D.C. Recent strategies for environmental remediation of organochlorine pesticides. Appl. Sci. , 2020, 10(18), 6286.
[http://dx.doi.org/10.3390/app10186286]
[119]
Pathania, D.; Thakur, M.; Sharma, A. Photocatalytical degradation of pesticides. In: Nano-Materials as Photocatalysts for Degradation of Environmental Pollutants; Elsevier Inc., 2019, pp. 153-172.
[http://dx.doi.org/10.1016/B978-0-12-818598-8.00009-2]
[120]
Yadav, G.K.; Ahmaruzzaman, M. Recent advances in the development of nanocomposites for effective removal of pesticides from aqueous stream. J. Nanopart. Res., 2021, 23(9), 213.
[http://dx.doi.org/10.1007/s11051-021-05290-6]
[121]
Zheng, A.L.T.; Abdullah, C.A.C.; Chung, E.L.T.; Andou, Y. Recent progress in visible light-doped ZnO photocatalyst for pollution control. Int. J. Environ. Sci. Technol., 2022, 2022, 1-20.
[http://dx.doi.org/10.1007/s13762-022-04354-x]
[122]
Pathania, D.; Kumar, S.; Thakur, P.; Chaudhary, V.; Kaushik, A.; Varma, R.S.; Furukawa, H.; Sharma, M.; Khosla, A. Essential oil-mediated biocompatible magnesium nanoparticles with enhanced antibacterial, antifungal, and photocatalytic efficacies. Sci. Rep., 2022, 12(1), 11431.
[http://dx.doi.org/10.1038/s41598-022-14984-3] [PMID: 35794190]
[123]
Ahmad, W.; Kaur, N.; Joshi, H.C. Photocatalytic behavior of NiO nanoparticles towards photocatalytic degradation of paracetamol. Mater. Today Proc., 2022.
[http://dx.doi.org/10.1016/j.matpr.2022.09.075]
[124]
Yadav, J.; Rani, M.; Zhang, T.C.; Shanker, U. Efficient photoadsorptive eradication of endocrine disrupting pesticides by chitosan co- decorated metal oxide bio-nanocomposite 2023, 30, pp. 72523-72538.
[http://dx.doi.org/10.21203/rs.3.rs-2518888/v1]
[125]
Abdelhameed, R.M.; Darwesh, O.M.; El-Shahat, M. Titanium-based metal-organic framework capsulated with magnetic nanoparticles: Antimicrobial and photocatalytic degradation of pesticides. Microporous Mesoporous Mater., 2023, 354, 112543.
[http://dx.doi.org/10.1016/j.micromeso.2023.112543]
[126]
Ederer, J.; Šťastný, M.; Došek, M. Mesoporous cerium oxide for fast degradation of aryl organophosphate flame retardant triphenyl phosphate. RSC Adv., 2019, 9(55), 32058-32065.
[http://dx.doi.org/10.1039/C9RA06575J]
[127]
Premalatha, N.; Rose Miranda, L. Surfactant modified ZnO–Bi2O3 nanocomposite for degradation of lambda- cyhalothrin pesticide in visible light: A study of reaction kinetics and intermediates. J. Environ. Manage., 2019, 246, 259-266.
[http://dx.doi.org/10.1016/j.jenvman.2019.05.155] [PMID: 31181474]
[128]
Saljooqi, A.; Shamspur, T.; Mostafavi, A. Synthesis and photocatalytic activity of porous ZnO stabilized by TiO2 and Fe3O4 nanoparticles: investigation of pesticide degradation reaction in water treatment. Environ. Sci. Pollut. Res. Int., 2021, 28(8), 9146-9156.
[http://dx.doi.org/10.1007/s11356-020-11122-2] [PMID: 33131041]
[129]
Farahbakhsh, S.; Parvari, R.; Zare, A.; Mahdizadeh, H.; Faizi, V.; Saljooqi, A. Preparation of biochar based on grapefruit peel and magnetite decorated with cadmium sulfide nanoparticles for photocatalytic degradation of chlorpyrifos. Diamond Related Materials, 2022, 126, 109130.
[http://dx.doi.org/10.1016/j.diamond.2022.109130]
[130]
Sraw, A.; Kaur, T.; Pandey, Y.; Verma, A.; Sobti, A.; Wanchoo, R.K.; Toor, A.P. Photocatalytic degradation of monocrotophos and quinalphos using solar-activated S-doped TiO2. Int. J. Environ. Sci. Technol., 2020, 17(12), 4895-4908.
[http://dx.doi.org/10.1007/s13762-020-02802-0]
[131]
Garg, R.; Gupta, R.; Singh, N.; Bansal, A. Eliminating pesticide quinalphos from surface waters using synthesized GO-ZnO nanoflowers: Characterization, degradation pathways and kinetic study. Chemosphere, 2022, 286(Pt 3), 131837.
[http://dx.doi.org/10.1016/j.chemosphere.2021.131837] [PMID: 34399266]
[132]
Rani, M.; Yadav, J. Keshu; Shanker, U. Green synthesis of sunlight responsive zinc oxide coupled cadmium sulfide nanostructures for efficient photodegradation of pesticides. J. Colloid Interface Sci., 2021, 601, 689-703.
[http://dx.doi.org/10.1016/j.jcis.2021.05.152] [PMID: 34091316]
[133]
Maleki, A.; Moradi, F.; Shahmoradi, B.; Rezaee, R.; Lee, S.M. The photocatalytic removal of diazinon from aqueous solutions using tungsten oxide doped zinc oxide nanoparticles immobilized on glass substrate. J. Mol. Liq., 2020, 297, 111918.
[http://dx.doi.org/10.1016/j.molliq.2019.111918]
[134]
Rao, V.N.; Venu Gopal, N.V.S.; Patrudu, T.B. Zinc oxide nanoparticles catalytic activity for the degradation of quinclorac herbicide residues in water. 2020.http://bulletinmonumental.com/
[135]
Soltani-nezhad, F.; Saljooqi, A.; Mostafavi, A.; Shamspur, T. Synthesis of Fe3O4/CdS–ZnS nanostructure and its application for photocatalytic degradation of chlorpyrifos pesticide and brilliant green dye from aqueous solutions. Ecotoxicol. Environ. Saf., 2020, 189, 109886.
[http://dx.doi.org/10.1016/j.ecoenv.2019.109886] [PMID: 31759746]
[136]
Sudhaik, A.; Raizada, P.; Singh, P.; Hosseini-Bandegharaei, A.; Thakur, V.K.; Nguyen, V.H. Highly effective degradation of imidacloprid by H2O2/fullerene decorated P-doped g-C3N4 photocatalyst. J. Environ. Chem. Eng., 2020, 8(6), 104483.
[http://dx.doi.org/10.1016/j.jece.2020.104483]
[137]
Soltani-nezhad, F.; Saljooqi, A.; Shamspur, T.; Mostafavi, A. Photocatalytic degradation of imidacloprid using GO/Fe3O4/TiO2-NiO under visible radiation: Optimization by response level method. Polyhedron, 2019, 165, 188-196.
[http://dx.doi.org/10.1016/j.poly.2019.02.012]
[138]
Aulakh, M.K.; Kaur, S.; Pal, B.; Singh, S. Morphological influence of ZnO nanostructures and their Cu loaded composites for effective photodegradation of methyl parathion. Solid State Sciences., 2020, 99, 106045.
[http://dx.doi.org/10.1016/j.solidstatesciences.2019.106045]
[139]
Boruah, P.K.; Das, M.R. Dual responsive magnetic Fe3O4-TiO2/graphene nanocomposite as an artificial nanozyme for the colorimetric detection and photodegradation of pesticide in an aqueous medium. J. Hazard. Mater., 2020, 385, 121516.
[http://dx.doi.org/10.1016/j.jhazmat.2019.121516] [PMID: 31708291]
[140]
Choudhary, M.K.; Kataria, J.; Bhardwaj, V.K.; Sharma, S. Green biomimetic preparation of efficient Ag–ZnO heterojunctions with excellent photocatalytic performance under solar light irradiation: A novel biogenic-deposition-precipitation approach. Nanoscale Adv., 2019, 1(3), 1035-1044.
[http://dx.doi.org/10.1039/C8NA00318A] [PMID: 36133181]
[141]
Rashidimoghaddam, M.; Saljooqi, A.; Shamspur, T.; Mostafavi, A. Constructing S-doped Ni–Co LDH intercalated with Fe 3 O 4 heterostructure photocatalysts for enhanced pesticide degradation. New J. Chem., 2020, 44(36), 15584-15592.
[http://dx.doi.org/10.1039/D0NJ02772C]
[142]
Farrukh, M.A.; Butt, K.M.; Chong, K.K.; Chang, W.S. Photoluminescence emission behavior on the reduced band gap of Fe doping in CeO2-SiO2 nanocomposite and photophysical properties. J. Saudi Chem. Soc., 2019, 23(5), 561-575.
[http://dx.doi.org/10.1016/j.jscs.2018.10.002]
[143]
Naghizadeh, M.; Taher, M.A.; Tamaddon, A.M. Facile synthesis and characterization of magnetic nanocomposite ZnO/CoFe2O4 hetero-structure for rapid photocatalytic degradation of imidacloprid. Heliyon, 2019, 5(11), e02870.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02870] [PMID: 31799462]
[144]
Zangiabadi, M.; Saljooqi, A.; Shamspur, T.; Mostafavi, A. Evaluation of GO nanosheets decorated by CuFe2O4 and CdS nanoparticles as photocatalyst for the degradation of dinoseb and imidacloprid pesticides. Ceram. Int., 2020, 46(5), 6124-6128.
[http://dx.doi.org/10.1016/j.ceramint.2019.11.076]
[145]
Vigneshwaran, S.; Sirajudheen, P.; Karthikeyan, P.; Nikitha, M.; Ramkumar, K.; Meenakshi, S. Immobilization of MIL-88(Fe) anchored TiO2-chitosan(2D/2D) hybrid nanocomposite for the degradation of organophosphate pesticide: Characterization, mechanism and degradation intermediates. J. Hazard, 2021, 406, 124728.
[http://dx.doi.org/10.1016/j.jhazmat.2020.124728]
[146]
Luna-Sanguino, G.; Tolosana-Moranchel, A.; Duran-Valle, C.; Faraldos, M.; Bahamonde, A. Optimizing P25-rGO composites for pesticides degradation: Elucidation of photo-mechanism. Catal. Today, 2019, 328, 172-177.
[http://dx.doi.org/10.1016/j.cattod.2019.01.025]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy