Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article

Polypharmacology-Driven Discovery and Design of Highly Selective, Dual and Multitargeting Inhibitors of Mycobacterium tuberculosis - A Review

Author(s): Franklin V. Amandy, Gabriel L.L. Neri, Joe A.H. Manzano, Adrian D. Go and Allan P.G. Macabeo*

Volume 25, Issue 9, 2024

Published on: 07 June, 2024

Page: [620 - 634] Pages: 15

DOI: 10.2174/0113894501306302240526160804

Price: $65

Abstract

The increasing demand for novel antitubercular agents has been the main 'force' of many TB research efforts due to the uncontrolled growing number of drug-resistant strains of M. tuberculosis in the clinical setting. Many strategies have been employed to address the drug-resistant issue, including a trend that is gaining attention, which is the design and discovery of Mtb inhibitors that are either dual- or multitargeting. The multiple-target design concept is not new in medicinal chemistry. With a growing number of newly discovered Mtb proteins, numerous targets are now available for developing new biochemical/cell-based assays and computer-aided drug design (CADD) protocols. To describe the achievements and overarching picture of this field in anti- infective drug discovery, we provide in this review small molecules that exhibit profound inhibitory activity against the tubercle bacilli and are identified to trace two or more Mtb targets. This review also presents emerging design methodologies for developing new anti-TB agents, particularly tailored to structure-based CADD.

Graphical Abstract

[1]
Lyon SM, Rossman MD. Pulmonary tuberculosis. Microbiol Spectr 2017; 5(1): 5.1.24.
[http://dx.doi.org/10.1128/microbiolspec.TNMI7-0032-2016] [PMID: 28185620]
[2]
Leung AN. Pulmonary tuberculosis: The essentials. Radiology 1999; 210(2): 307-22.
[http://dx.doi.org/10.1148/radiology.210.2.r99ja34307] [PMID: 10207408]
[3]
Campbell IA, Bah-Sow O. Pulmonary tuberculosis: Diagnosis and treatment. BMJ 2006; 332(7551): 1194-7.
[http://dx.doi.org/10.1136/bmj.332.7551.1194] [PMID: 16709993]
[4]
Gopalaswamy R, Dusthackeer VNA, Kannayan S, Subbian S. Extrapulmonary tuberculosis—an update on the diagnosis, treatment and drug resistance. J Respir 2021; 1(2): 141-64.
[http://dx.doi.org/10.3390/jor1020015]
[5]
Sharma SK, Mohan A, Kohli M. Extrapulmonary tuberculosis. Expert Rev Respir Med 2021; 15(7): 931-48.
[http://dx.doi.org/10.1080/17476348.2021.1927718] [PMID: 33966561]
[6]
Daley CL. Extrapulmonary tuberculosis. Clinical Tuberculosis 2020; 249-65.
[http://dx.doi.org/10.1201/9781351249980-14]
[7]
Global Tuberculosis Report 2022. WHO 2022.
[8]
Koch R. The atiologic of tuberculosis. About Klin Weekly 1882; 15: 221-30.
[9]
Sakula A. Robert Koch: Centenary of the discovery of the tubercle bacillus, 1882. Thorax 1982; 37(4): 246-51.
[http://dx.doi.org/10.1136/thx.37.4.246] [PMID: 6180494]
[10]
Centers for disease control and prevention. TB risk factors. 2016. Available from: https://www.cdc.gov/tb/topic/basics/risk.htm [cited 2024 Apr 29].
[11]
Sharan R, Bucşan AN, Ganatra S, et al. Chronic immune activation in TB/HIV co-infection. Trends Microbiol 2020; 28(8): 619-32.
[http://dx.doi.org/10.1016/j.tim.2020.03.015] [PMID: 32417227]
[12]
Letang E, Ellis J, Naidoo K, et al. Tuberculosis-HIV co-infection: Progress and challenges after two decades of global antiretroviral treatment roll-out. Arch Bronconeumol 2020; 56(7): 446-54.
[PMID: 35373756]
[13]
Herzmann C, Sotgiu G, Bellinger O, et al. Risk for latent and active tuberculosis in Germany. Infection 2017; 45(3): 283-90.
[http://dx.doi.org/10.1007/s15010-016-0963-2] [PMID: 27866367]
[14]
Shu CC, Tsai MK, Lin SW, Wang JY, Yu CJ, Lee CY. Latent tuberculosis infection increases in kidney transplantation recipients compared with transplantation candidates: A neglected perspective in tuberculosis control. Clin Infect Dis 2020; 71(4): 914-23.
[http://dx.doi.org/10.1093/cid/ciz851] [PMID: 32620949]
[15]
Badawi A, Liu CJ. Obesity and prevalence of latent tuberculosis: A population-based survey. Infect Dis (Auckl) 2021; 14
[http://dx.doi.org/10.1177/1178633721994607] [PMID: 33716508]
[16]
De Biasio F, Aratari A, Caporuscio S, Simeoni I, Papi C, Festa S. Acute kidney injury: An unexpected Isoniazid-related adverse event in a patient with Crohn’s disease receiving prophylactic treatment for latent tuberculosis. Dig Liver Dis 2020; 52(9): 1065-6.
[http://dx.doi.org/10.1016/j.dld.2020.04.033] [PMID: 32505573]
[17]
Yang Q, Lin M, He Z, et al. Mycobacterium tuberculosis infection among 1,659 silicosis patients in zhejiang province, China. Microbiol Spectr 2022; 10(6): e01451-22.
[http://dx.doi.org/10.1128/spectrum.01451-22] [PMID: 36453892]
[18]
Hensel RL, Kempker RR, Tapia J, Oladele A, Blumberg HM, Magee MJ. Increased risk of latent tuberculous infection among persons with pre-diabetes and diabetes mellitus. Int J Tuberc Lung Dis 2016; 20(1): 71-8.
[http://dx.doi.org/10.5588/ijtld.15.0457] [PMID: 26688531]
[19]
Matsuo M. Development of active tuberculosis during treatment of head and neck carcinoma: A case series. J Med Case Reports 2019; 13(1): 162.
[http://dx.doi.org/10.1186/s13256-019-2055-2] [PMID: 31122266]
[20]
Acharya B, Acharya A, Gautam S, et al. Advances in diagnosis of Tuberculosis: An update into molecular diagnosis of Mycobacterium tuberculosis. Mol Biol Rep 2020; 47(5): 4065-75.
[http://dx.doi.org/10.1007/s11033-020-05413-7] [PMID: 32248381]
[21]
Stop TB Initiative (World Health Organization) Treatment of tuberculosis: guidelines. WHO 2010.
[22]
Alsayed SSR, Gunosewoyo H. Tuberculosis: Pathogenesis, current treatment regimens and new drug targets. Int J Mol Sci 2023; 24(6): 5202.
[http://dx.doi.org/10.3390/ijms24065202] [PMID: 36982277]
[23]
Bansal R, Sharma D, Singh R. Tuberculosis and its treatment: An overview. Mini Rev Med Chem 2018; 18(1): 58-71.
[PMID: 27553018]
[24]
Sotgiu G, Centis R, D’ambrosio L, Migliori GB. Tuberculosis treatment and drug regimens. Cold Spring Harb Perspect Med 2015; 5(5): a017822.
[http://dx.doi.org/10.1101/cshperspect.a017822] [PMID: 25573773]
[25]
Zumla A, Nahid P, Cole ST. Advances in the development of new tuberculosis drugs and treatment regimens. Nat Rev Drug Discov 2013; 12(5): 388-404.
[http://dx.doi.org/10.1038/nrd4001] [PMID: 23629506]
[26]
What is DOTS?: A guide to understanding the WHO-recommended TB control strategy known as DOTS. WHO 1999.
[27]
WHO consolidated guidelines on drug-resistant tuberculosis treatment. WHO 2019.
[28]
WHO consolidated guidelines on tuberculosis. Module 4: Treatment-drug-resistant tuberculosis treatment. WHO 2020.
[29]
Nahid P, Mase SR, Migliori GB, et al. Treatment of drug-resistant Tuberculosis. An official ATS/CDC/ERS/IDSA clinical practice guideline. Am J Respir Crit Care Med 2019; 200(10): e93-e142.
[http://dx.doi.org/10.1164/rccm.201909-1874ST] [PMID: 31729908]
[30]
Migliori GB, Tiberi S, Zumla A, et al. MDR/XDR-TB management of patients and contacts: Challenges facing the new decade. The 2020 clinical update by the global tuberculosis network. Int J Infect Dis 2020; 92: S15-25.
[http://dx.doi.org/10.1016/j.ijid.2020.01.042] [PMID: 32032752]
[31]
Hazra S, Hazarika R, Patra S. Multitargeting: An alternative approach to tackle multidrug resistance in Tuberculosis. Curr Drug Targets 2023; 24(9): 751-75.
[http://dx.doi.org/10.2174/1389450124666230505145335] [PMID: 37151074]
[32]
Stelitano G, Sammartino JC, Chiarelli LR. Multitargeting compounds: A promising strategy to overcome multi-drug resistant tuberculosis. Molecules 2020; 25(5): 1239.
[http://dx.doi.org/10.3390/molecules25051239] [PMID: 32182964]
[33]
Talevi A. Multi-target pharmacology: Possibilities and limitations of the “skeleton key approach” from a medicinal chemist perspective. Front Pharmacol 2015; 6: 205.
[http://dx.doi.org/10.3389/fphar.2015.00205] [PMID: 26441661]
[34]
Feng J, Zheng Y, Ma W. Multitarget antibacterial drugs: An effective strategy to combat bacterial resistance. Pharmacol Therapeut 2023; 252: 108550.
[http://dx.doi.org/10.1016/j.pharmthera.2023.108550]
[35]
Gray DA, Wenzel M. Multitarget approaches against multiresistant superbugs. ACS Infect Dis 2020; 6(6): 1346-65.
[http://dx.doi.org/10.1021/acsinfecdis.0c00001] [PMID: 32156116]
[36]
Silver LL. Multi-targeting by monotherapeutic antibacterials. Nat Rev Drug Discov 2007; 6(1): 41-55.
[http://dx.doi.org/10.1038/nrd2202] [PMID: 17159922]
[37]
Rybak MY, Balanda AO, Yatsyshyna AP, et al. Discovery of novel antituberculosis agents among 3-phenyl-5-(1-phenyl-1H-[1,2,3]triazol-4-yl)-[1,2,4]oxadiazole derivatives targeting aminoacyl-tRNA synthetases. Sci Rep 2021; 11(1): 7162.
[http://dx.doi.org/10.1038/s41598-021-86562-y] [PMID: 33785838]
[38]
Kovalenko OP, Volynets GP, Rybak MY, et al. Dual-target inhibitors of mycobacterial aminoacyl-tRNA synthetases among N -benzylidene- N ′-thiazol-2-yl-hydrazines. MedChemComm 2019; 10(12): 2161-9.
[http://dx.doi.org/10.1039/C9MD00347A] [PMID: 32206244]
[39]
Jankute M, Cox JAG, Harrison J, Besra GS. Assembly of the mycobacterial cell wall. Annu Rev Microbiol 2015; 69(1): 405-23.
[http://dx.doi.org/10.1146/annurev-micro-091014-104121] [PMID: 26488279]
[40]
Alderwick LJ, Harrison J, Lloyd GS, Birch HL. The mycobacterial cell wall—peptidoglycan and arabinogalactan. Cold Spring Harb Perspect Med 2015; 5(8): a021113.
[http://dx.doi.org/10.1101/cshperspect.a021113] [PMID: 25818664]
[41]
Kuang W, Zhang H, Wang X, Yang P. Overcoming Mycobacterium tuberculosis through small molecule inhibitors to break down cell wall synthesis. Acta Pharm Sin B 2022; 12(8): 3201-14.
[http://dx.doi.org/10.1016/j.apsb.2022.04.014] [PMID: 35967276]
[42]
Belete TM. Recent progress in the development of novel mycobacterium cell wall inhibitor to combat drug-resistant tuberculosis. Microbiol Insights 2022; 15
[http://dx.doi.org/10.1177/11786361221099878] [PMID: 35645569]
[43]
Remuiñán MJ, Pérez-Herrán E, Rullás J, et al. Tetrahydropyrazolo[1,5-a]pyrimidine-3-carboxamide and N-benzyl-6′,7′-dihydrospiro[piperidine-4,4′-thieno[3,2-c]pyran] analogues with bactericidal efficacy against Mycobacterium tuberculosis targeting MmpL3. PLoS One 2013; 8(4): e60933.
[http://dx.doi.org/10.1371/journal.pone.0060933] [PMID: 23613759]
[44]
Xu Z, Meshcheryakov VA, Poce G, Chng SS. MmpL3 is the flippase for mycolic acids in mycobacteria. Proc Natl Acad Sci USA 2017; 114(30): 7993-8.
[http://dx.doi.org/10.1073/pnas.1700062114] [PMID: 28698380]
[45]
Su CC, Klenotic PA, Bolla JR, Purdy GE, Robinson CV, Yu EW. MmpL3 is a lipid transporter that binds trehalose monomycolate and phosphatidylethanolamine. Proc Natl Acad Sci USA 2019; 116(23): 11241-6.
[http://dx.doi.org/10.1073/pnas.1901346116] [PMID: 31113875]
[46]
Moorey AR, Cabanillas A, Batt SM, et al. The multi-target aspect of an MmpL3 inhibitor: The BM212 series of compounds bind EthR2, a transcriptional regulator of ethionamide activation. Cell Surf 2021; 7: 100068.
[http://dx.doi.org/10.1016/j.tcsw.2021.100068] [PMID: 34888432]
[47]
Cox JAG, Abrahams KA, Alemparte C, et al. THPP target assignment reveals EchA6 as an essential fatty acid shuttle in mycobacteria. Nat Microbiol 2016; 1(2): 15006.
[http://dx.doi.org/10.1038/nmicrobiol.2015.6] [PMID: 27571973]
[48]
Kaur P, Potluri V, Ahuja VK, et al. A multi-targeting pre-clinical candidate against drug-resistant tuberculosis. Tuberculosis 2021; 129: 102104.
[http://dx.doi.org/10.1016/j.tube.2021.102104] [PMID: 34214859]
[49]
Singh S, Kaur G, Mangla V, Gupta MK. Quinoline and quinolones: Promising scaffolds for future antimycobacterial agents. J Enzyme Inhib Med Chem 2015; 30(3): 492-504.
[http://dx.doi.org/10.3109/14756366.2014.930454] [PMID: 25032745]
[50]
Radhakrishnan A, Kumar N, Wright CC, et al. Crystal structure of the transcriptional regulator Rv0678 of Mycobacterium tuberculosis. J Biol Chem 2014; 289(23): 16526-40.
[http://dx.doi.org/10.1074/jbc.M113.538959] [PMID: 24737322]
[51]
Sassetti CM, Boyd DH, Rubin EJ. Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 2003; 48(1): 77-84.
[http://dx.doi.org/10.1046/j.1365-2958.2003.03425.x] [PMID: 12657046]
[52]
Banerjee DR, Biswas R, Das AK, Basak A. Design, synthesis and characterization of dual inhibitors against new targets FabG4 and HtdX of Mycobacterium tuberculosis. Eur J Med Chem 2015; 100: 223-34.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.007] [PMID: 26092447]
[53]
Raju RM, Unnikrishnan M, Rubin DHF, et al. Mycobacterium tuberculosis ClpP1 and ClpP2 function together in protein degradation and are required for viability in vitro and during infection. PLoS Pathog 2012; 8(2): e1002511.
[http://dx.doi.org/10.1371/journal.ppat.1002511] [PMID: 22359499]
[54]
Hu G, Lin G, Wang M, et al. Structure of the Mycobacterium tuberculosis proteasome and mechanism of inhibition by a peptidyl boronate. Mol Microbiol 2006; 59(5): 1417-28.
[http://dx.doi.org/10.1111/j.1365-2958.2005.05036.x] [PMID: 16468986]
[55]
Lin G, Li D, de Carvalho LPS, et al. Inhibitors selective for mycobacterial versus human proteasomes. Nature 2009; 461(7264): 621-6.
[http://dx.doi.org/10.1038/nature08357] [PMID: 19759536]
[56]
Rožman K, Alexander EM, Ogorevc E, et al. Psoralen derivatives as inhibitors of Mycobacterium tuberculosis proteasome. Molecules 2020; 25(6): 1305.
[http://dx.doi.org/10.3390/molecules25061305] [PMID: 32178473]
[57]
Moreira W, Santhanakrishnan S, Dymock BW, Dick T. Bortezomib warhead-switch confers dual activity against mycobacterial caseinolytic protease and proteasome and selectivity against human proteasome. Front Microbiol 2017; 8: 746.
[http://dx.doi.org/10.3389/fmicb.2017.00746] [PMID: 28496439]
[58]
Moreira W, Santhanakrishnan S, Ngan GJY, et al. Towards selective mycobacterial ClpP1P2 inhibitors with reduced activity against the human proteasome. Antimicrob Agents Chemother 2017; 61(5): e02307-16.
[http://dx.doi.org/10.1128/AAC.02307-16] [PMID: 28193668]
[59]
Kumar A, Guardia A, Colmenarejo G, et al. A focused screen identifies antifolates with activity on Mycobacterium tuberculosis. ACS Infect Dis 2015; 1(12): 604-14.
[http://dx.doi.org/10.1021/acsinfecdis.5b00063] [PMID: 26771003]
[60]
Scocchera E, Wright DL. The antifolates. Antibacterials 2018; II: 123-49.
[61]
Hajian B, Scocchera E, Shoen C, et al. Drugging the folate pathway in Mycobacterium tuberculosis: The role of multi-targeting agents. Cell Chem Biol 2019; 26(6): 781-791.e6.
[http://dx.doi.org/10.1016/j.chembiol.2019.02.013] [PMID: 30930162]
[62]
Cheng YS, Sacchettini JC. Structural insights into Mycobacterium tuberculosis Rv2671 protein as a dihydrofolate reductase functional analogue contributing to para-aminosalicylic acid resistance. Biochemistry 2016; 55(7): 1107-19.
[http://dx.doi.org/10.1021/acs.biochem.5b00993] [PMID: 26848874]
[63]
Ganapathy U, Marrero J, Calhoun S, et al. Two enzymes with redundant fructose bisphosphatase activity sustain gluconeogenesis and virulence in Mycobacterium tuberculosis. Nat Commun 2015; 6(1): 7912.
[http://dx.doi.org/10.1038/ncomms8912] [PMID: 26258286]
[64]
van der Veen S, Tang CM. The BER necessities: The repair of DNA damage in human-adapted bacterial pathogens. Nat Rev Microbiol 2015; 13(2): 83-94.
[http://dx.doi.org/10.1038/nrmicro3391] [PMID: 25578955]
[65]
Ramharack P, Salifu EY, Agoni C. Dual-target Mycobacterium tuberculosis inhibition: insights into the molecular mechanism of antifolate drugs. Int J Mol Sci 2023; 24(18): 14021.
[http://dx.doi.org/10.3390/ijms241814021] [PMID: 37762327]
[66]
Agoni C, Ramharack P, Salifu EY, Soliman MES. The dual-targeting activity of the metabolite substrate of para-amino salicyclic acid in the mycobacterial folate pathway: Atomistic and structural perspectives. Protein J 2020; 39(2): 106-17.
[http://dx.doi.org/10.1007/s10930-020-09885-1] [PMID: 32086691]
[67]
Rasmussen LCV, Sperling-Petersen HU, Mortensen KK. Hitting bacteria at the heart of the central dogma: Sequence-specific inhibition. Microb Cell Fact 2007; 6(1): 24.
[http://dx.doi.org/10.1186/1475-2859-6-24] [PMID: 17692125]
[68]
Schneider-Poetsch T, Yoshida M. Along the central dogma—controlling gene expression with small molecules. Annu Rev Biochem 2018; 87(1): 391-420.
[http://dx.doi.org/10.1146/annurev-biochem-060614-033923] [PMID: 29727582]
[69]
Singh M, Ilic S, Tam B, et al. Dual-acting small-molecule inhibitors targeting mycobacterial DNA replication. Chemistry 2020; 26(47): 10849-60.
[http://dx.doi.org/10.1002/chem.202001725] [PMID: 32485035]
[70]
van Eijk E, Wittekoek B, Kuijper EJ, Smits WK. DNA replication proteins as potential targets for antimicrobials in drug-resistant bacterial pathogens. J Antimicrob Chemother 2017; 72(5): dkw548.
[http://dx.doi.org/10.1093/jac/dkw548] [PMID: 28073967]
[71]
Ilic S, Cohen S, Singh M, Tam B, Dayan A, Akabayov B. DnaG primase—a target for the development of novel antibacterial agents. Antibiotics 2018; 7(3): 72.
[http://dx.doi.org/10.3390/antibiotics7030072] [PMID: 30104489]
[72]
Isa MA, Abubakar MB, Mohammed MM, Ibrahim MM, Gubio FA. Identification of potent inhibitors of ATP synthase subunit c (AtpE) from Mycobacterium tuberculosis using in silico approach. Heliyon 2021; 7(12): e08482.
[http://dx.doi.org/10.1016/j.heliyon.2021.e08482] [PMID: 34934830]
[73]
Malaluan I, Manzano JA, Muñoz JE, et al. Antituberculosis and antiproliferative activities of the extracts and tetrahydrobisbenzylisoquinoline alkaloids from Phaeanthus ophthalmicus: in vitro and in silico investigations. Philipp J Sci 2021; 151(1)
[http://dx.doi.org/10.56899/151.01.28]
[74]
Mori G, Chiarelli LR, Esposito M, et al. Thiophenecarboxamide derivatives activated by EthA kill Mycobacterium tuberculosis by inhibiting the CTP synthetase PyrG. Chem Biol 2015; 22(7): 917-27.
[http://dx.doi.org/10.1016/j.chembiol.2015.05.016] [PMID: 26097035]
[75]
Chiarelli LR, Mori G, Orena BS, et al. A multitarget approach to drug discovery inhibiting Mycobacterium tuberculosis PyrG and PanK. Sci Rep 2018; 8(1): 3187.
[http://dx.doi.org/10.1038/s41598-018-21614-4] [PMID: 29453370]
[76]
Spry C, Kirk K, Saliba KJ. Coenzyme A biosynthesis: An antimicrobial drug target. FEMS Microbiol Rev 2008; 32(1): 56-106.
[http://dx.doi.org/10.1111/j.1574-6976.2007.00093.x] [PMID: 18173393]
[77]
Evans JC, Trujillo C, Wang Z, et al. Validation of CoaBC as a bactericidal target in the coenzyme A pathway of Mycobacterium tuberculosis. ACS Infect Dis 2016; 2(12): 958-68.
[http://dx.doi.org/10.1021/acsinfecdis.6b00150] [PMID: 27676316]
[78]
Reddy BKK, Landge S, Ravishankar S, et al. Assessment of Mycobacterium tuberculosis pantothenate kinase vulnerability through target knockdown and mechanistically diverse inhibitors. Antimicrob Agents Chemother 2014; 58(6): 3312-26.
[http://dx.doi.org/10.1128/AAC.00140-14] [PMID: 24687493]
[79]
Mori G, Chiarelli LR, Riccardi G, Pasca MR. New prodrugs against tuberculosis. Drug Discov Today 2017; 22(3): 519-25.
[http://dx.doi.org/10.1016/j.drudis.2016.09.006] [PMID: 27649942]
[80]
Hu Y, Henderson B, Lund PA, et al. A Mycobacterium tuberculosis mutant lacking the groEL homologue cpn60.1 is viable but fails to induce an inflammatory response in animal models of infection. Infect Immun 2008; 76(4): 1535-46.
[http://dx.doi.org/10.1128/IAI.01078-07] [PMID: 18227175]
[81]
Hu Y, Coates ARM, Liu A, Lund PA, Henderson B. Identification of the monocyte activating motif in Mycobacterium tuberculosis chaperonin 60.1. Tuberculosis 2013; 93(4): 442-7.
[http://dx.doi.org/10.1016/j.tube.2013.04.001] [PMID: 23643849]
[82]
Zhou B, He Y, Zhang X, et al. Targeting mycobacterium protein tyrosine phosphatase B for antituberculosis agents. Proc Natl Acad Sci USA 2010; 107(10): 4573-8.
[http://dx.doi.org/10.1073/pnas.0909133107] [PMID: 20167798]
[83]
Singh R, Rao V, Shakila H, et al. Disruption of mptpB impairs the ability of Mycobacterium tuberculosis to survive in guinea pigs. Mol Microbiol 2003; 50(3): 751-62.
[http://dx.doi.org/10.1046/j.1365-2958.2003.03712.x] [PMID: 14617138]
[84]
Washburn A, Abdeen S, Ovechkina Y, et al. Dual-targeting GroEL/ES chaperonin and protein tyrosine phosphatase B (PtpB) inhibitors: A polypharmacology strategy for treating Mycobacterium tuberculosis infections. Bioorg Med Chem Lett 2019; 29(13): 1665-72.
[http://dx.doi.org/10.1016/j.bmcl.2019.04.034] [PMID: 31047750]
[85]
Duggirala S, Napoleon JV, Nankar RP, Senu Adeeba V, Manheri MK, Doble M. FtsZ inhibition and redox modulation with one chemical scaffold: Potential use of dihydroquinolines against mycobacteria. Eur J Med Chem 2016; 123: 557-67.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.058] [PMID: 27517804]
[86]
Av-Gay Y, Everett M. The eukaryotic-like Ser/Thr protein kinases of Mycobacterium tuberculosis. Trends Microbiol 2000; 8(5): 238-44.
[http://dx.doi.org/10.1016/S0966-842X(00)01734-0] [PMID: 10785641]
[87]
Fernandez P, Saint-Joanis B, Barilone N, et al. The Ser/Thr protein kinase PknB is essential for sustaining mycobacterial growth. J Bacteriol 2006; 188(22): 7778-84.
[http://dx.doi.org/10.1128/JB.00963-06] [PMID: 16980473]
[88]
Prisic S, Dankwa S, Schwartz D, et al. Extensive phosphorylation with overlapping specificity by Mycobacterium tuberculosis serine/threonine protein kinases. Proc Natl Acad Sci USA 2010; 107(16): 7521-6.
[http://dx.doi.org/10.1073/pnas.0913482107] [PMID: 20368441]
[89]
Chou MF, Prisic S, Lubner JM, Church GM, Husson RN, Schwartz D. Using bacteria to determine protein kinase specificity and predict target substrates. PLoS One 2012; 7(12): e52747.
[http://dx.doi.org/10.1371/journal.pone.0052747] [PMID: 23300758]
[90]
Ortega C, Liao R, Anderson LN, et al. Mycobacterium tuberculosis Ser/Thr protein kinase B mediates an oxygen-dependent replication switch. PLoS Biol 2014; 12(1): e1001746.
[http://dx.doi.org/10.1371/journal.pbio.1001746] [PMID: 24409094]
[91]
Wang T, Bemis G, Hanzelka B, et al. Mtb PKNA/PKNB dual inhibition provides selectivity advantages for inhibitor design to minimize host kinase interactions. ACS Med Chem Lett 2017; 8(12): 1224-9.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00239] [PMID: 29259738]
[92]
Adolph C, Cheung CY, McNeil MB, et al. A dual-targeting succinate dehydrogenase and F1Fo-ATP synthase inhibitor rapidly sterilizes replicating and non-replicating Mycobacterium tuberculosis. Cell Chem Biol 2024; 31(4): 683-698.e7.
[http://dx.doi.org/10.1016/j.chembiol.2023.12.002] [PMID: 38151019]
[93]
Imran M, Arora MK, Chaudhary A, et al. MmpL3 inhibition as a promising approach to develop novel therapies against tuberculosis: A spotlight on SQ109, clinical studies, and patents literature. Biomedicines 2022; 10(11): 2793.
[http://dx.doi.org/10.3390/biomedicines10112793] [PMID: 36359313]
[94]
Tahlan K, Wilson R, Kastrinsky DB, et al. SQ109 targets MmpL3, a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of Mycobacterium tuberculosis. Antimicrob Agents Chemother 2012; 56(4): 1797-809.
[http://dx.doi.org/10.1128/AAC.05708-11] [PMID: 22252828]
[95]
Li K, Schurig-Briccio LA, Feng X, et al. Multitarget drug discovery for tuberculosis and other infectious diseases. J Med Chem 2014; 57(7): 3126-39.
[http://dx.doi.org/10.1021/jm500131s] [PMID: 24568559]
[96]
Onajole OK, Govender P, Helden PD, et al. Synthesis and evaluation of SQ109 analogues as potential anti-tuberculosis candidates. Eur J Med Chem 2010; 45(5): 2075-9.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.046] [PMID: 20149497]
[97]
Nguyen PC, Delorme V, Bénarouche A, et al. Oxadiazolone derivatives, new promising multi-target inhibitors against M. tuberculosis. Bioorg Chem 2018; 81: 414-24.
[http://dx.doi.org/10.1016/j.bioorg.2018.08.025] [PMID: 30212765]
[98]
Delorme V, Diomandé SV, Dedieu L, et al. MmPPOX inhibits Mycobacterium tuberculosis lipolytic enzymes belonging to the hormone-sensitive lipase family and alters mycobacterial growth. PLoS One 2012; 7(9): e46493.
[http://dx.doi.org/10.1371/journal.pone.0046493] [PMID: 23029536]
[99]
Ben Ali Y, Chahinian H, Petry S, et al. Use of an inhibitor to identify members of the hormone-sensitive lipase family. Biochemistry 2006; 45(47): 14183-91.
[http://dx.doi.org/10.1021/bi0613978] [PMID: 17115713]
[100]
Ben Ali Y, Verger R, Carrière F, Petry S, Muller G, Abousalham A. The molecular mechanism of human hormone-sensitive lipase inhibition by substituted 3-phenyl-5-alkoxy-1,3,4-oxadiazol-2-ones. Biochimie 2012; 94(1): 137-45.
[http://dx.doi.org/10.1016/j.biochi.2011.09.028] [PMID: 22008857]
[101]
Hopkins A, Mason J, Overington J. Can we rationally design promiscuous drugs? Curr Opin Struct Biol 2006; 16(1): 127-36.
[http://dx.doi.org/10.1016/j.sbi.2006.01.013] [PMID: 16442279]
[102]
Morphy JR, Harris CJ. Eds; Designing multi-target drugs. Royal Society of Chemistry 2012.
[http://dx.doi.org/10.1039/9781849734912]
[103]
Saravanan P, Patra S. Discovery of potential dual inhibitors against lipases Rv0183 and Rv3802c for Tuberculosis therapeutics. Lett Drug Des Discov 2015; 13(2): 185-95.
[http://dx.doi.org/10.2174/1570180812999150812165215]
[104]
Olotu FA, Soliman ME. Probing the highly disparate dual inhibitory mechanisms of novel quinazoline derivatives against Mycobacterium tuberculosis protein kinases A and B. Molecules 2020; 25(18): 4247.
[http://dx.doi.org/10.3390/molecules25184247] [PMID: 32947886]
[105]
Ejalonibu MA, Elrashedy AA, Lawal MM, et al. Dual targeting approach for Mycobacterium tuberculosis drug discovery: Insights from DFT calculations and molecular dynamics simulations. Struct Chem 2020; 31(2): 557-71.
[http://dx.doi.org/10.1007/s11224-019-01422-w]
[106]
Ejalonibu MA, Elrashedy AA, Lawal MM, Kumalo HM, Mhlongo NN. Probing the dual inhibitory mechanisms of novel thiophenecarboxamide derivatives against Mycobacterium tuberculosis PyrG and PanK: An insight from biomolecular modeling study. J Biomol Struct Dyn 2022; 40(7): 2978-90.
[http://dx.doi.org/10.1080/07391102.2020.1844055] [PMID: 33155869]
[107]
Battah B, Chemi G, Butini S, et al. A repurposing approach for uncovering the anti-tubercular activity of FDA-approved drugs with potential multi-targeting profiles. Molecules 2019; 24(23): 4373.
[http://dx.doi.org/10.3390/molecules24234373] [PMID: 31795400]
[108]
Alzain AA, Makki AA, Ibraheem W. Insights into the inhibition of mycolic acid synthesis by Cytosporone E derivatives for Tuberculosis treatment via an in silico multi-target approach. Chemistry Africa 2023; 6(4): 1811-31.
[http://dx.doi.org/10.1007/s42250-023-00605-7]
[109]
Ali MA, Farah MA, Lee J, Al-Anazi KM, Al-Hemaid FMA. Molecular insights into the interaction of ursolic acid and cucurbitacin from Colocynth with therapeutic targets of Mycobacterium tuberculosis. Lett Drug Des Discov 2020; 17(10): 1309-18.
[http://dx.doi.org/10.2174/1570180817999200514102750]
[110]
Shinde Y, Ahmad I, Surana S, Patel H. The Mur enzymes chink in the armour of Mycobacterium tuberculosis cell wall. Eur J Med Chem 2021; 222: 113568.
[http://dx.doi.org/10.1016/j.ejmech.2021.113568] [PMID: 34118719]
[111]
Eniyan K, Kumar A, Rayasam GV, Perdih A, Bajpai U. Development of a one-pot assay for screening and identification of Mur pathway inhibitors in Mycobacterium tuberculosis. Sci Rep 2016; 6(1): 35134.
[http://dx.doi.org/10.1038/srep35134] [PMID: 27734910]
[112]
Kumari M, Singh R, Subbarao N. Exploring the interaction mechanism between potential inhibitor and multi-target Mur enzymes of mycobacterium tuberculosis using molecular docking, molecular dynamics simulation, principal component analysis, free energy landscape, dynamic cross-correlation matrices, vector movements, and binding free energy calculation. J Biomol Struct Dyn 2022; 40(24): 13497-526.
[http://dx.doi.org/10.1080/07391102.2021.1989040] [PMID: 34662260]
[113]
Kumari M, Waseem M, Subbarao N. Discovery of multi-target mur enzymes inhibitors with anti-mycobacterial activity through a Scaffold approach. J Biomol Struct Dyn 2023; 41(7): 2878-99.
[http://dx.doi.org/10.1080/07391102.2022.2040593] [PMID: 35174764]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy