Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Systematic Review Article

Compounds from Natural Products Candidates to Drug for Chikungunya Virus Infection: A Systematic Review

Author(s): Larissa de Mattos Oliveira, Janay Stefany Carneiro Araújo, Kaio Vinicius Freitas de Andrade, Ana Tereza Gomes Guerrero Moureau and Manoelito Coelho dos Santos Junior*

Volume 25, Issue 9, 2024

Published on: 06 June, 2024

Page: [635 - 648] Pages: 14

DOI: 10.2174/0113894501304256240524052446

Price: $65

Abstract

Introduction: Chikungunya fever is a disease caused by infection with the Chikungunya virus, transmitted by Aedes aegypti and Aedes albopictus mosquitoes. Despite its self-limited character, more than 60% of patients have chronic recurrent arthralgia with debilitating pain that lasts for years.

Aim: The objective of this review was to gather and analyze evidence from the literature on potential therapeutic strategies with molecules from natural products for the treatment of Chikungunya fever.

Methods: A search was performed for clinical trials, observational studies, in vitro or in vivo, without restriction of the year of publication or language in electronic databases (Medline/PubMed, EMBASE, Google Scholar, The Cochrane Library, LILACS (BVS), clinical trial registries (Clinical Trials.gov), digital libraries from CAPES theses and dissertations (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil) and conference abstracts. A quality assessment of the selected studies was performed using the SYRCLE, RoB2 and SciRAP tools.

Results: 42 studies were included, which showed molecules with potential antiviral pharmacological activity or with activity in reducing the joint complications caused by CHIKV infection.

Conclusions: Among the molecules found in the survey of references, regarding the class of secondary metabolites, flavonoids stood out and for this reason, the molecules may be promising candidates for future clinical trials. Overall, evidence from in vitro studies was of acceptable quality; in vivo and intervention studies showed a high risk of bias, which is a limitation of these studies.

« Previous
Graphical Abstract

[1]
Moizéis RNC, Fernandes TAAM, Guedes PMM, et al. Chikungunya fever: A threat to global public health. Pathog Glob Health 2018; 112(4): 182-94.
[http://dx.doi.org/10.1080/20477724.2018.1478777] [PMID: 29806537]
[2]
Vairo F, Haider N, Kock R, Ntoumi F, Ippolito G, Zumla A. Chikungunya. Infect Dis Clin North Am 2019; 33(4): 1003-25.
[http://dx.doi.org/10.1016/j.idc.2019.08.006] [PMID: 31668189]
[3]
Silva-Filho E, Okano AH, Morya E, et al. Neuromodulation treats Chikungunya arthralgia: A randomized controlled trial. Sci Rep 2018; 8(1): 16010.
[http://dx.doi.org/10.1038/s41598-018-34514-4] [PMID: 30375485]
[4]
Javelle E, Ribera A, Degasne I. Specific management of postchikungunya rheumatic disorders: A retrospective study of 159 cases in Reunion Island from 2006-2012. PLoS Negl Trop Dis 2015; 9(3): e0003603.
[5]
Chopra A, Saluja M, Venugopalan A. Effectiveness of chloroquine and inflammatory cytokine response in patients with early persistent musculoskeletal pain and arthritis following chikungunya virus infection. Arthritis Rheumatol 2014; 66(2): 319-26.
[http://dx.doi.org/10.1002/art.38221] [PMID: 24504804]
[6]
Julander JG, Dagley A, Gebre M, et al. Strain-dependent disease and response to favipiravir treatment in mice infected with Chikungunya virus. Antiviral Res 2020; 182: 104904.
[http://dx.doi.org/10.1016/j.antiviral.2020.104904] [PMID: 32791074]
[7]
Sagaya Jansi R, Khusro A, Agastian P, et al. Emerging paradigms of viral diseases and paramount role of natural resources as antiviral agents. Sci Total Environ 2021; 759: 143539.
[http://dx.doi.org/10.1016/j.scitotenv.2020.143539] [PMID: 33234268]
[8]
Oo A, Rausalu K, Merits A, et al. Deciphering the potential of baicalin as an antiviral agent for Chikungunya virus infection. Antiviral Res 2018; 150: 101-11.
[http://dx.doi.org/10.1016/j.antiviral.2017.12.012] [PMID: 29269135]
[9]
Mounce BC, Cesaro T, Carrau L, Vallet T, Vignuzzi M. Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antiviral Res 2017; 142: 148-57.
[http://dx.doi.org/10.1016/j.antiviral.2017.03.014] [PMID: 28343845]
[10]
Teo TH, Chan YH, Lee WWL, et al. Fingolimod treatment abrogates chikungunya virus–induced arthralgia. Sci Transl Med 2017; 9(375): eaal1333.
[http://dx.doi.org/10.1126/scitranslmed.aal1333] [PMID: 28148838]
[11]
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009; 339(jul21 1): b2535.
[http://dx.doi.org/10.1136/bmj.b2535] [PMID: 19622551]
[12]
Fabbri S, Silva C, Hernandes E, Octaviano F, Di Thommazo A, Belgamo A. Improvements in the StArt tool to better support the systematic review process. Proceedings of the 20th International Conference on Evaluation and Assessment in Software Engineering, . New York, NY, USA, 01 June 2016, pp. 1–5.
[http://dx.doi.org/10.1145/2915970.2916013]
[13]
Hooijmans CR, Rovers MM, de Vries RBM, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 2014; 14(1): 43.
[http://dx.doi.org/10.1186/1471-2288-14-43] [PMID: 24667063]
[14]
Roth N, Zilliacus J, Beronius A. Development of the SciRAP approach for evaluating the reliability and relevance of in vitro toxicity data. Frontiers in Toxicology 2021; 3: 746430.
[http://dx.doi.org/10.3389/ftox.2021.746430] [PMID: 35295161]
[15]
Sterne JAC, Savović J, Page MJ, et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019; 366: l4898.
[http://dx.doi.org/10.1136/bmj.l4898] [PMID: 31462531]
[16]
Esteves PO, de Oliveira MC, de Souza Barros C, Cirne-Santos CC, Laneuvlille VT, Palmer Paixão IC. Antiviral effect of caulerpin against chikungunya. Nat Prod Commun 2019; 14(10): 1934578X1987829.
[http://dx.doi.org/10.1177/1934578X19878295]
[17]
Betarelli Junior AA, Faria WR, Gonçalves Montenegro RL, Bahia DS, Gonçalves E. Research and development, productive structure and economic effects: Assessing the role of public financing in Brazil. Econ Model 2020; 90(May): 235-53.
[http://dx.doi.org/10.1016/j.econmod.2020.04.017]
[18]
Amaral JK, Sutaria R, Schoen RT. Treatment of chronic chikungunya arthritis with methotrexate: A systematic review. Arthritis Care Res 2018; 70(10): 1501-8.
[http://dx.doi.org/10.1002/acr.23519] [PMID: 29361202]
[19]
Hitakarun A, Khongwichit S, Wikan N, et al. Evaluation of the antiviral activity of orlistat (tetrahydrolipstatin) against dengue virus, Japanese encephalitis virus, Zika virus and chikungunya virus. Sci Rep 2020; 10(1): 1499.
[http://dx.doi.org/10.1038/s41598-020-58468-8] [PMID: 32001767]
[20]
Ravichandran R, Manian M. Ribavirin therapy for Chikungunya arthritis. J Infect Dev Ctries 2008; 2(2): 140-2.
[http://dx.doi.org/10.3855/T2.2.140] [PMID: 19738340]
[21]
Cordeiro TAR, de Resende MAC, Moraes SCS, Franco DL, Pereira AC, Ferreira LF. Electrochemical biosensors for neglected tropical diseases: A review. Talanta 2021; 234(June): 122617.
[http://dx.doi.org/10.1016/j.talanta.2021.122617] [PMID: 34364426]
[22]
Sharma SK, Jain S. Chikungunya: A rheumatologist’s perspective. Int J Rheum Dis 2018; 21(3): 584-601.
[http://dx.doi.org/10.1111/1756-185X.13273] [PMID: 29431292]
[23]
Dutra JIS. Impairment in the quality of life and functionality of adults chronically affected by Chikungunya fever 2019.
[24]
Feldstein LR, Ellis EM, Rowhani-Rahbar A, et al. Estimating the cost of illness and burden of disease associated with the 2014–2015 chikungunya outbreak in the U.S. Virgin Islands. PLoS Negl Trop Dis 2019; 13(7): e0007563.
[http://dx.doi.org/10.1371/journal.pntd.0007563] [PMID: 31323020]
[25]
Abdelnabi R, Staveness D, Near KE, et al. Comparative analysis of the anti-chikungunya virus activity of novel bryostatin analogs confirms the existence of a PKC-independent mechanism. Biochem Pharmacol 2016; 120: 15-21.
[http://dx.doi.org/10.1016/j.bcp.2016.09.020] [PMID: 27664855]
[26]
Ahmadi A, Hassandarvish P, Lani R, et al. Inhibition of chikungunya virus replication by hesperetin and naringenin. RSC Advances 2016; 6(73): 69421-30.
[http://dx.doi.org/10.1039/C6RA16640G]
[27]
Blum L, Geisslinger G, Parnham MJ, Grünweller A, Schiffmann S. Natural antiviral compound silvestrol modulates human monocyte-derived macrophages and dendritic cells. J Cell Mol Med 2020; 24(12): 6988-99.
[http://dx.doi.org/10.1111/jcmm.15360] [PMID: 32374474]
[28]
Bourjot M, Delang L, Nguyen VH, et al. Prostratin and 12-O-tetradecanoylphorbol 13-acetate are potent and selective inhibitors of Chikungunya virus replication. J Nat Prod 2012; 75(12): 2183-7.
[http://dx.doi.org/10.1021/np300637t] [PMID: 23215460]
[29]
Das I, Basantray I, Mamidi P, et al. Heat shock protein 90 positively regulates Chikungunya virus replication by stabilizing viral non-structural protein nsP2 during infection. PLoS One 2014; 9(6): e100531.
[http://dx.doi.org/10.1371/journal.pone.0100531] [PMID: 24959709]
[30]
Dey D, Siddiqui SI, Mamidi P, et al. The effect of amantadine on an ion channel protein from Chikungunya virus. PLoS Negl Trop Dis 2019; 13(7): e0007548.
[http://dx.doi.org/10.1371/journal.pntd.0007548] [PMID: 31339886]
[31]
Feibelman KM, Fuller BP, Li L, LaBarbera DV, Geiss BJ. Identification of small molecule inhibitors of the Chikungunya virus nsP1 RNA capping enzyme. Antiviral Res 2018; 154: 124-31.
[http://dx.doi.org/10.1016/j.antiviral.2018.03.013] [PMID: 29680670]
[32]
Gigante A, Canela MD, Delang L, et al. Identification of [1,2,3]triazolo[4,5-d]pyrimidin-7(6H)-ones as novel inhibitors of Chikungunya virus replication. J Med Chem 2014; 57(10): 4000-8.
[http://dx.doi.org/10.1021/jm401844c] [PMID: 24800626]
[33]
Gómez-Calderón C, Mesa-Castro C, Robledo S, et al. Antiviral effect of compounds derived from the seeds of Mammea americana and Tabernaemontana cymosa on Dengue and Chikungunya virus infections. BMC Complement Altern Med 2017; 17(1): 57.
[http://dx.doi.org/10.1186/s12906-017-1562-1] [PMID: 28100218]
[34]
Gupta D, Kaur P, Leong S, Tan L, Prinsep M, Chu J. Anti-Chikungunya viral activities of aplysiatoxin-related compounds from the marine cyanobacterium Trichodesmium erythraeum. Mar Drugs 2014; 12(1): 115-27.
[http://dx.doi.org/10.3390/md12010115] [PMID: 24394406]
[35]
Henss L, Scholz T, Grünweller A, Schnierle B. Silvestrol inhibits chikungunya virus replication. Viruses 2018; 10(11): 592.
[http://dx.doi.org/10.3390/v10110592] [PMID: 30380742]
[36]
Herrero LJ, Foo SS, Sheng KC, et al. Pentosan polysulfate: A novel glycosaminoglycan-like molecule for effective treatment of alphavirus-induced cartilage destruction and inflammatory disease. J Virol 2015; 89(15): 8063-76.
[http://dx.doi.org/10.1128/JVI.00224-15] [PMID: 26018160]
[37]
Hwu JR, Kapoor M, Tsay SC, et al. Benzouracil–coumarin–arene conjugates as inhibiting agents for chikungunya virus. Antiviral Res 2015; 118(April): 103-9.
[http://dx.doi.org/10.1016/j.antiviral.2015.03.013] [PMID: 25839734]
[38]
Kaur P, Thiruchelvan M, Lee RCH, et al. Inhibition of chikungunya virus replication by harringtonine, a novel antiviral that suppresses viral protein expression. Antimicrob Agents Chemother 2013; 57(1): 155-67.
[http://dx.doi.org/10.1128/AAC.01467-12] [PMID: 23275491]
[39]
Konishi E, Hotta S. On the mechanism of inactivation of Chikungunya virus by tannic acid. Microbiol Immunol 1980; 24(9): 847-59.
[http://dx.doi.org/10.1111/j.1348-0421.1980.tb02889.x] [PMID: 7219208]
[40]
Kumar R, Nehul S, Singh A, Tomar S. Identification and evaluation of antiviral potential of thymoquinone, a natural compound targeting Chikungunya virus capsid protein. Virology 2021; 561(May): 36-46.
[http://dx.doi.org/10.1016/j.virol.2021.05.013] [PMID: 34146962]
[41]
Lani R, Hassandarvish P, Chiam CW, et al. Antiviral activity of silymarin against chikungunya virus. Sci Rep 2015; 5(1): 11421.
[http://dx.doi.org/10.1038/srep11421] [PMID: 26078201]
[42]
Lani R, Hassandarvish P, Shu MH, et al. Antiviral activity of selected flavonoids against Chikungunya virus. Antiviral Res 2016; 133: 50-61.
[http://dx.doi.org/10.1016/j.antiviral.2016.07.009] [PMID: 27460167]
[43]
Lin SC, Chen MC, Li S, Lin CC, Wang TT. Antiviral activity of nobiletin against chikungunya virus in vitro. Antivir Ther 2017; 22(8): 689-97.
[http://dx.doi.org/10.3851/IMP3167] [PMID: 28406093]
[44]
Loaiza-Cano V, Monsalve-Escudero LM, Restrepo MP, et al. in vitro and in silico anti-arboviral activities of dihalogenated phenolic derivates of L-tyrosine. Molecules 2021; 26(11): 3430.
[http://dx.doi.org/10.3390/molecules26113430] [PMID: 34198817]
[45]
Loe MWC, Hao E, Chen M, et al. Betulinic acid exhibits antiviral effects against dengue virus infection. Antiviral Res 2020; 184: 104954.
[http://dx.doi.org/10.1016/j.antiviral.2020.104954] [PMID: 33080251]
[46]
Lu JW, Hsieh PS, Lin CC, et al. Synergistic effects of combination treatment using EGCG and suramin against the chikungunya virus. Biochem Biophys Res Commun 2017; 491(3): 595-602.
[http://dx.doi.org/10.1016/j.bbrc.2017.07.157] [PMID: 28760340]
[47]
Lucas-Hourani M, Lupan A, Desprès P, et al. A phenotypic assay to identify Chikungunya virus inhibitors targeting the nonstructural protein nsP2. SLAS Discov 2013; 18(2): 172-9.
[http://dx.doi.org/10.1177/1087057112460091] [PMID: 22983165]
[48]
Marcial-Vega V, Idxian Gonzalez-Terron G, Levy TE. Intravenous ascorbic acid and hydrogen peroxide in the management of patients with chikungunya. Bol Asoc Med P R 2015; 107(1): 20-4.
[PMID: 26035980]
[49]
Monsalve-Escudero LM, Loaiza-Cano V, Pájaro-González Y, et al. Indole alkaloids inhibit zika and chikungunya virus infection in different cell lines. BMC Complementary Medicine and Therapies 2021; 21(1): 216.
[http://dx.doi.org/10.1186/s12906-021-03386-z] [PMID: 34454481]
[50]
Nam S, Ga YJ, Lee JY, et al. Radicicol inhibits Chikungunya virus replication by targeting nonstructural protein 2. Antimicrob Agents Chemother 2021; 65(7): e00135-21.
[http://dx.doi.org/10.1128/AAC.00135-21] [PMID: 33903104]
[51]
Nothias-Scaglia LF, Pannecouque C, Renucci F, et al. Antiviral activity of diterpene esters on chikungunya virus and HIV replication. J Nat Prod 2015; 78(6): 1277-83.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00073] [PMID: 25970561]
[52]
Pohjala L, Utt A, Varjak M, et al. Inhibitors of alphavirus entry and replication identified with a stable Chikungunya replicon cell line and virus-based assays. PLoS One 2011; 6(12): e28923.
[http://dx.doi.org/10.1371/journal.pone.0028923] [PMID: 22205980]
[53]
Puranik NV, Rani R, Singh VA, Tomar S, Puntambekar HM, Srivastava P. Evaluation of the antiviral potential of halogenated dihydrorugosaflavonoids and molecular modeling with nsp3 protein of chikungunya virus (CHIKV). ACS Omega 2019; 4(23): 20335-45.
[http://dx.doi.org/10.1021/acsomega.9b02900] [PMID: 31815237]
[54]
Rathore APS, Haystead T, Das PK, Merits A, Ng ML, Vasudevan SG. Chikungunya virus nsP3 & nsP4 interacts with HSP-90 to promote virus replication: HSP-90 inhibitors reduce CHIKV infection and inflammation in vivo. Antiviral Res 2014; 103: 7-16.
[http://dx.doi.org/10.1016/j.antiviral.2013.12.010] [PMID: 24388965]
[55]
Staveness D, Abdelnabi R, Near KE, et al. Inhibition of chikungunya virus-induced cell death by salicylate-derived bryostatin analogues provides additional evidence for a pkc-independent pathway. J Nat Prod 2016; 79(4): 680-4.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01017] [PMID: 26900711]
[56]
Staveness D, Abdelnabi R, Schrier AJ, et al. Simplified bryostatin analogues protect cells from chikungunya virus-induced cell death. J Nat Prod 2016; 79(4): 675-9.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01016] [PMID: 26900625]
[57]
Tripathi PK, Soni A, Singh Yadav SP, et al. Evaluation of novobiocin and telmisartan for anti-CHIKV activity. Virology 2020; 548: 250-60.
[http://dx.doi.org/10.1016/j.virol.2020.05.010] [PMID: 32791353]
[58]
Troost-Kind B, van Hemert MJ, van de Pol D, et al. Tomatidine reduces Chikungunya virus progeny release by controlling viral protein expression. PLoS Negl Trop Dis 2021; 15(11): e0009916.
[http://dx.doi.org/10.1371/journal.pntd.0009916] [PMID: 34762680]
[59]
Uddin SJ, Bettadapura J, Guillon P, Grice ID, Mahalingam S, Tiralongo E. in-vitro antiviral activity of a novel phthalic acid ester derivative isolated from the bangladeshi mangrove fern acrostichumaureum. J Antivir Antiretrovir 2013; 5(6): 139-44.
[60]
Varghese FS, Thaa B, Amrun SN, et al. The antiviral alkaloid berberine reduces chikungunya virus-induced mitogen-activated protein kinase signaling. J Virol 2016; 90(21): 9743-57.
[http://dx.doi.org/10.1128/JVI.01382-16] [PMID: 27535052]
[61]
Weber C, Sliva K, von Rhein C, Kümmerer BM, Schnierle BS. The green tea catechin, epigallocatechin gallate inhibits chikungunya virus infection. Antiviral Res 2015; 113: 1-3.
[http://dx.doi.org/10.1016/j.antiviral.2014.11.001] [PMID: 25446334]
[62]
Wintachai P, Kaur P, Lee RCH, et al. Activity of andrographolide against chikungunya virus infection. Sci Rep 2015; 5(1): 14179.
[http://dx.doi.org/10.1038/srep14179] [PMID: 26384169]
[63]
Granja A, Frias I, Neves AR, Pinheiro M, Reis S. Therapeutic potential of epigallocatechin gallate nanodelivery systems. Biomed Res Int 2017; 2017: 5813793.
[http://dx.doi.org/10.1155/2017/5813793]
[64]
Mondal A, Gandhi A, Fimognari C, Atanasov AG, Bishayee A. Alkaloids for cancer prevention and therapy: Current progress and future perspectives. Eur J Pharmacol 2019; 858(June): 172472.
[http://dx.doi.org/10.1016/j.ejphar.2019.172472] [PMID: 31228447]
[65]
Ločárek M, Nováková J, Klouček P, et al. Antifungal and antibacterial activity of extracts and alkaloids of selected amaryllidaceae species. Nat Prod Commun 2015; 10(9): 1934578X1501000.
[http://dx.doi.org/10.1177/1934578X1501000912] [PMID: 26594752]
[66]
Hooijmans CR, Pasker-de Jong PCM, de Vries RBM, Ritskes-Hoitinga M. The effects of long-term omega-3 fatty acid supplementation on cognition and Alzheimer’s pathology in animal models of Alzheimer’s disease: A systematic review and meta-analysis. J Alzheimers Dis 2012; 28(1): 191-209.
[http://dx.doi.org/10.3233/JAD-2011-111217] [PMID: 22002791]
[67]
Abdelnabi R, Neyts J, Delang L. Towards antivirals against chikungunya virus. Antiviral Res 2015; 121: 59-68.
[http://dx.doi.org/10.1016/j.antiviral.2015.06.017] [PMID: 26119058]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy