Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article

Multi-target Compounds against Trypanosomatid Parasites and Mycobacterium tuberculosis

Author(s): Midiane Correia Gomes, Emanuelly Karla Araújo Padilha, Gustavo Rafael Angelo Diniz, Edilma Correia Gomes, Paulo Fernando da Silva Santos-Júnior, Peng Zhan and Edeildo Ferreira da Siva-Júnior*

Volume 25, Issue 9, 2024

Published on: 15 June, 2024

Page: [602 - 619] Pages: 18

DOI: 10.2174/0113894501306843240606114854

Price: $65

Abstract

Multi-target drug treatment has become popular as a substitute for traditional monotherapy. Monotherapy can lead to resistance and side effects. Multi-target drug discovery is gaining importance as data on bioactivity becomes more abundant. The design of multi-target drugs is expected to be an important development in the pharmaceutical industry in the near future. This review presents multi-target compounds against trypanosomatid parasites (Trypanosoma cruzi, T. brucei, and Leishmania sp.) and tuberculosis (Mycobacterium tuberculosis), which mainly affect populations in socioeconomically unfavorable conditions. The article analyzes the studies, including their chemical structures, viral strains, and molecular docking studies, when available. The objective of this review is to establish a foundation for designing new multi-target inhibitors for these diseases.

Graphical Abstract

[1]
WHO. Neglected tropical diseases. 2024. Available From: https://www.who.int/news-room/questions-and-answers/item/neglected-tropical-diseases
[2]
Berglund J. Combating neglected tropical diseases. IEEE Pulse 2019; 10(1): 10-4.
[http://dx.doi.org/10.1109/MPULS.2018.2885842] [PMID: 30872207]
[3]
da Silva-Júnior EF, Zhan P. Recent advances in medicinal chemistry of Neglected Tropical Diseases (NTDs). Eur J Med Chem 2023; 259: 115714.
[http://dx.doi.org/10.1016/j.ejmech.2023.115714] [PMID: 37563036]
[4]
Borba JVVB, Silva AC, Lima MNN, et al. Chemogenomics and Bioinformatics Approaches for Prioritizing Kinases as Drug Targets for Neglected Tropical Diseases. Adv Protein Chem Struct Biol 2021; 124(XX): XX-X.: 187-XX.
[http://dx.doi.org/10.1016/bs.apcsb.2020.10.006]
[5]
Ferreira LLG, Andricopulo AD. Drugs and vaccines in the 21st century for neglected diseases. Lancet Infect Dis 2019; 19(2): 125-7.
[http://dx.doi.org/10.1016/S1473-3099(19)30005-2] [PMID: 30712832]
[6]
Santos-Valle ABC, Souza GRR, Paes CQ, et al. Nanomedicine strategies for addressing major needs in neglected tropical diseases. Ann Rev Cont 2019; 48(4): 001.
[7]
Belllera CL. in silico modeling of fda-approved drugs for discovery of therapies against neglected diseases: A drug repurposing approach.in silico Drug Design. Cambridge, Massachusetts: Academic Press 2019; pp. 625-48.
[8]
Liu X, Thomas CE, Felder CC. The impact of external innovation on new drug approvals: A retrospective analysis. Int J Pharm 2019; 563: 273-81.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.093] [PMID: 30664998]
[9]
Klug DM, Gelb MH, Pollastri MP. Repurposing strategies for tropical disease drug discovery. Bioorg Med Chem Lett 2016; 26(11): 2569-76.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.103] [PMID: 27080183]
[10]
Zhang L, Tan J, Han D, Zhu H. From machine learning to deep learning: Progress in machine intelligence for rational drug discovery. Drug Discov Today 2017; 22(11): 1680-5.
[http://dx.doi.org/10.1016/j.drudis.2017.08.010] [PMID: 28881183]
[11]
Kinch MS, Griesenauer RH. 2017 in review: FDA approvals of new molecular entities. Drug Discov Today 2018; 23(8): 1469-73.
[http://dx.doi.org/10.1016/j.drudis.2018.05.011] [PMID: 29751111]
[12]
Campbell IB, Macdonald SJF, Procopiou PA. Medicinal chemistry in drug discovery in big pharma: Past, present and future. Drug Discov Today 2018; 23(2): 219-34.
[http://dx.doi.org/10.1016/j.drudis.2017.10.007] [PMID: 29031621]
[13]
Martin L, Hutchens M, Hawkins C, Radnov A. How much do clinical trials cost? Nat Rev Drug Discov 2017; 16(6): 381-2.
[http://dx.doi.org/10.1038/nrd.2017.70] [PMID: 28529317]
[14]
Makhoba XH, Viegas C Jr, Mosa RA, Viegas FPD, Pooe OJ. Potential impact of the multi-target drug approach in the treatment of some complex diseases. Drug Des Devel Ther 2020; 14: 3235-49.
[http://dx.doi.org/10.2147/DDDT.S257494] [PMID: 32884235]
[15]
Csermely P, Agoston V, Pongor S. The efficiency of multi-target drugs: The network approach might help drug design. Trends Pharmacol Sci 2005; 26(4): 178-82.
[http://dx.doi.org/10.1016/j.tips.2005.02.007] [PMID: 15808341]
[16]
Msomi NZ, Shode FO, Pooe OJ, Mazibuko-Mbeje S, Simelane MBC. Iso-Mukaadial Acetate from Warburgia salutaris enhances glucose uptake in the L6 rat myoblast cell line. Biomolecules 2019; 9(10): 520.
[http://dx.doi.org/10.3390/biom9100520] [PMID: 31546691]
[17]
Liu C, Zhang M, Hu M, et al. Increased glucagon-like peptide-1 secretion may be involved in antidiabetic effects of ginsenosides. J Endocrinol 2013; 217(2): 185-96.
[http://dx.doi.org/10.1530/JOE-12-0502] [PMID: 23444389]
[18]
Zhou P, Xie W, He S, et al. Ginsenoside Rb1 as an anti-diabetic agent and its underlying mechanism analysis. Cells 2019; 8(3): 204.
[http://dx.doi.org/10.3390/cells8030204] [PMID: 30823412]
[19]
Li K, Schurig-Briccio LA, Feng X, et al. Multitarget drug discovery for tuberculosis and other infectious diseases. J Med Chem 2014; 57(7): 3126-39.
[http://dx.doi.org/10.1021/jm500131s] [PMID: 24568559]
[20]
Carvalho D, Paulino M, Polticelli F, Arredondo F, Williams RJ, Abin-Carriquiry JA. Structural evidence of quercetin multi-target bioactivity: A reverse virtual screening strategy. Eur J Pharm Sci 2017; 106: 393-403.
[http://dx.doi.org/10.1016/j.ejps.2017.06.028] [PMID: 28636950]
[21]
Bolognesi ML. Polypharmacology in a single drug: Multitarget drugs. Curr Med Chem 2013; 20(13): 1639-45.
[http://dx.doi.org/10.2174/0929867311320130004] [PMID: 23410164]
[22]
Wetzel C, Lonneman M, Wu C. Polypharmacological drug actions of recently FDA approved antibiotics. Eur J Med Chem 2021; 209: 112931.
[http://dx.doi.org/10.1016/j.ejmech.2020.112931] [PMID: 33127170]
[23]
Medina-Franco JL, Giulianotti MA, Welmaker GS, Houghten RA. Shifting from the single to the multitarget paradigm in drug discovery. Drug Discov Today 2013; 18(9-10): 495-501.
[http://dx.doi.org/10.1016/j.drudis.2013.01.008] [PMID: 23340113]
[24]
da Conceição JR, Lopes CPG, Ferreira EI, Epiphanio S, Giarolla J. Neglected tropical diseases and systemic racism especially in Brazil: From socio-economic aspects to the development of new drugs. Acta Trop 2022; 235: 106654.
[http://dx.doi.org/10.1016/j.actatropica.2022.106654] [PMID: 35988823]
[25]
Joshi G, Quadir SS, Yadav KS. Road map to the treatment of neglected tropical diseases: Nanocarriers interventions. J Control Release 2021; 339: 51-74.
[http://dx.doi.org/10.1016/j.jconrel.2021.09.020] [PMID: 34555491]
[26]
Beyrer C, Villar JC, Suwanvanichkij V, Singh S, Baral SD, Mills EJ. Neglected diseases, civil conflicts, and the right to health. Lancet 2007; 370(9587): 619-27.
[http://dx.doi.org/10.1016/S0140-6736(07)61301-4] [PMID: 17707757]
[27]
da Silva Santos-Júnior PF, Schmitt M, de Araújo-Júnior JX, da Silva-Júnior EF. Sterol 14α-demethylase from trypanosomatidae parasites as a promising target for designing new antiparasitic agents. Curr Top Med Chem 2021; 21(21): 1900-21.
[http://dx.doi.org/10.2174/1568026621666210303144448] [PMID: 33655860]
[28]
Kumari D, Mahajan S, Kour P, Singh K. Virulence factors of Leishmania parasite: Their paramount importance in unraveling novel vaccine candidates and therapeutic targets. Life Sci 2022; 306: 120829.
[http://dx.doi.org/10.1016/j.lfs.2022.120829] [PMID: 35872004]
[29]
Shetye GS, Franzblau SG, Cho S. New tuberculosis drug targets, their inhibitors, and potential therapeutic impact. Transl Res 2020; 220: 68-97.
[http://dx.doi.org/10.1016/j.trsl.2020.03.007] [PMID: 32275897]
[30]
Beltran-Hortelano I, Alcolea V, Font M, Pérez-Silanes S. Examination of multiple Trypanosoma cruzi targets in a new drug discovery approach for Chagas disease. Bioorg Med Chem 2022; 58: 116577.
[31]
Prati F, Bottegoni G, Bolognesi ML, Cavalli A. BACE-1 inhibitors: From recent single-target molecules to multitarget compounds for Alzheimer’s Disease. J Med Chem 2018; 61(3): 619-37.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00393] [PMID: 28749667]
[32]
Cigler P, Moré G, Bize P, et al. Trypanosomiasis: An emerging disease in Alpine swift (Tachymarptis melba) nestlings in Switzerland? Int J Parasitol Parasites Wildl 2024; 23: 100895.
[http://dx.doi.org/10.1016/j.ijppaw.2023.100895] [PMID: 38187443]
[33]
Field MC, Horn D, Fairlamb AH, et al. Anti-trypanosomatid drug discovery: An ongoing challenge and a continuing need. Nat Rev Microbiol 2017; 15(4): 217-31.
[http://dx.doi.org/10.1038/nrmicro.2016.193] [PMID: 28239154]
[34]
Bailey F, Eaton J, Jidda M, van Brakel WH, Addiss DG, Molyneux DH. Neglected tropical diseases and mental health: Progress, partnerships, and integration. Trends Parasitol 2019; 35(1): 23-31.
[http://dx.doi.org/10.1016/j.pt.2018.11.001] [PMID: 30578149]
[35]
Silva-Júnior EF, Schirmeister T, Araújo-Júnior JX. Promising trypanocidal heterocyclic compounds of natural origin and their synthetic analogs.Discovery and Development of Therapeutics from Natural Products Against Neglected Tropical Diseases. Amsterdam: Elsevier 2019; pp. 165-217.
[http://dx.doi.org/10.1016/B978-0-12-815723-7.00005-5]
[36]
De Rycker M, Wyllie S, Horn D, Read KD, Gilbert IH. Anti-trypanosomatid drug discovery: Progress and challenges. Nat Rev Microbiol 2023; 21(1): 35-50.
[http://dx.doi.org/10.1038/s41579-022-00777-y] [PMID: 35995950]
[37]
Lascano F, García Bournissen F, Altcheh J. Review of pharmacological options for the treatment of Chagas disease. Br J Clin Pharmacol 2022; 88(2): 383-402.
[http://dx.doi.org/10.1111/bcp.14700] [PMID: 33314266]
[38]
Alves ETM, Pernichelle FG, Nascimento LA, Ferreira GM, Ferreira EI. Covalent inhibitors for neglected diseases: An exploration of novel therapeutic options. Pharmaceuticals (Basel) 2023; 16(7): 1028.
[http://dx.doi.org/10.3390/ph16071028] [PMID: 37513939]
[39]
Fernando da Silva Santos-Júnior P, Rocha Silva L, José Quintans-Júnior L, Ferreira da Silva-Júnior E. Nitro compounds against trypanosomatidae parasites: Heroes or villains? Bioorg Med Chem Lett 2022; 75: 128930.
[http://dx.doi.org/10.1016/j.bmcl.2022.128930] [PMID: 36030001]
[40]
Kasozi KI, MacLeod ET, Ntulume I, Welburn SC. An update on african trypanocide pharmaceutics and resistance. Front Vet Sci 2022; 9: 828111.
[http://dx.doi.org/10.3389/fvets.2022.828111] [PMID: 35356785]
[41]
Santos ALS, Rodrigues IA, d’Avila-Levy CM, Sodré CL, Ritmeijer K, Branquinha MH. Therapeutic Strategies against Leishmania and Trypanosoma. Pathogens 2023; 12(10): 1263.
[http://dx.doi.org/10.3390/pathogens12101263] [PMID: 37887779]
[42]
Büscher P, Cecchi G, Jamonneau V, Priotto G. Human African trypanosomiasis. Lancet 2017; 390(10110): 2397-409.
[http://dx.doi.org/10.1016/S0140-6736(17)31510-6] [PMID: 28673422]
[43]
Pérez-Pertejo Y, García-Estrada C, Martínez-Valladares M, Murugesan S, Reguera RM, Balaña-Fouce R. Polyamine metabolism for drug intervention in trypanosomatids. Pathogens 2024; 13(1): 79.
[http://dx.doi.org/10.3390/pathogens13010079] [PMID: 38251386]
[44]
Vermelho AB, Rodrigues GC, Supuran CT. Why hasn’t there been more progress in new Chagas disease drug discovery? Expert Opin Drug Discov 2020; 15(2): 145-58.
[http://dx.doi.org/10.1080/17460441.2020.1681394] [PMID: 31670987]
[45]
Ribeiro V, Dias N, Paiva T, et al. Current trends in the pharmacological management of Chagas disease. Int J Parasitol Drugs Drug Resist 2020; 12: 7-17.
[http://dx.doi.org/10.1016/j.ijpddr.2019.11.004] [PMID: 31862616]
[46]
Franco J, Scarone L, Comini MA. Drugs and Drug Resistance in African and American Trypanosomiasis. (1st ed.). Amsterdam: Elsevier Inc. 2018; Vol. 51.
[http://dx.doi.org/10.1016/bs.armc.2018.08.003]
[47]
Lindner AK, Lejon V, Chappuis F, et al. New WHO guidelines for treatment of gambiense human African trypanosomiasis including fexinidazole: Substantial changes for clinical practice. Lancet Infect Dis 2020; 20(2): e38-46.
[http://dx.doi.org/10.1016/S1473-3099(19)30612-7] [PMID: 31879061]
[48]
Torrico F, Gascón J, Ortiz L, et al. A Phase 2, randomized, multicenter, placebo-controlled, proof-of-concept trial of oral fexinidazole in adults with chronic indeterminate chagas disease. Clin Infect Dis 2022.
[PMID: 35925555]
[49]
DNDi. Fexinidazole for Chagas. 2013. Available From: https://dndi.org/research-development/portfolio/fexinidazole-chagas/
[50]
Villalta F, Rachakonda G. Advances in preclinical approaches to Chagas disease drug discovery. Expert Opin Drug Discov 2019; 14(11): 1161-74.
[http://dx.doi.org/10.1080/17460441.2019.1652593] [PMID: 31411084]
[51]
Pinazo MJ, Forsyth C, Losada I, et al. Efficacy and safety of fexinidazole for treatment of chronic indeterminate Chagas disease (FEXI-12): A multicentre, randomised, double-blind, phase 2 trial. Lancet Infect Dis 2024; 24(4): 395-403.
[http://dx.doi.org/10.1016/S1473-3099(23)00651-5] [PMID: 38218194]
[52]
Zuma AA, de Souza W. Fexinidazole interferes with the growth and structural organization of Trypanosoma cruzi. Sci Rep 2022; 12(1): 20388.
[http://dx.doi.org/10.1038/s41598-022-23941-z] [PMID: 36437273]
[53]
Gerpe A, Odreman-Nuñez I, Draper P, et al. Heteroallyl-containing 5-nitrofuranes as new anti-Trypanosoma cruzi agents with a dual mechanism of action. Bioorg Med Chem 2008; 16(1): 569-77.
[http://dx.doi.org/10.1016/j.bmc.2007.07.031] [PMID: 17981471]
[54]
Bland ND, Wang C, Tallman C, et al. Pharmacological validation of Trypanosoma brucei phosphodiesterases B1 and B2 as druggable targets for African sleeping sickness. J Med Chem 2011; 54(23): 8188-94.
[http://dx.doi.org/10.1021/jm201148s] [PMID: 22023548]
[55]
Pieretti S, Haanstra JR, Mazet M, et al. Naphthoquinone derivatives exert their antitrypanosomal activity via a multi-target mechanism. PLoS Negl Trop Dis 2013; 7(1): e2012.
[http://dx.doi.org/10.1371/journal.pntd.0002012] [PMID: 23350008]
[56]
Yang G, Zhu W, Wang Y, et al. in vitro and in vivo activity of multitarget inhibitors against Trypanosoma brucei. ACS Infect Dis 2015; 1(8): 388-98.
[http://dx.doi.org/10.1021/acsinfecdis.5b00068] [PMID: 26295062]
[57]
Franco J, Sardi F, Szilágyi L, Kövér KE, Fehér K, Comini MA. Diglycosyl diselenides alter redox homeostasis and glucose consumption of infective African trypanosomes. Int J Parasitol Drugs Drug Resist 2017; 7(3): 303-13.
[http://dx.doi.org/10.1016/j.ijpddr.2017.08.001] [PMID: 28826037]
[58]
Kimuda MP, Laming D, Hoppe HC, Tastan Bishop Ö. Identification of novel potential inhibitors of pteridine reductase 1 in Trypanosoma brucei via computational structure-based approaches and in vitro inhibition assays. Molecules 2019; 24(1): 142.
[http://dx.doi.org/10.3390/molecules24010142] [PMID: 30609681]
[59]
Zuccotto F, Martin ACR, Laskowski RA, Thornton JM, Gilbert IH. Dihydrofolate reductase: A potential drug target in trypanosomes and leishmania. J Comput Aided Mol Des 1998; 12(3): 241-57.
[http://dx.doi.org/10.1023/A:1016085005275] [PMID: 9749368]
[60]
Sienkiewicz N, Jarosławski S, Wyllie S, Fairlamb AH. Chemical and genetic validation of dihydrofolate reductase–thymidylate synthase as a drug target in African trypanosomes. Mol Microbiol 2008; 69(2): 520-33.
[http://dx.doi.org/10.1111/j.1365-2958.2008.06305.x] [PMID: 18557814]
[61]
Tassone G, Landi G, Linciano P, et al. Evidence of Pyrimethamine and Cycloguanil Analogues as Dual Inhibitors of Trypanosoma brucei Pteridine Reductase and Dihydrofolate Reductase. Pharmaceuticals (Basel) 2021; 14(7): 636.
[http://dx.doi.org/10.3390/ph14070636] [PMID: 34209148]
[62]
Possart K, Herrmann FC, Jose J, Costi MP, Schmidt TJ. Sesquiterpene lactones with dual inhibitory activity against the Trypanosoma brucei pteridine reductase 1 and dihydrofolate reductase. Molecules 2021; 27(1): 149.
[http://dx.doi.org/10.3390/molecules27010149] [PMID: 35011381]
[63]
Moujir L, Callies O, Sousa PMC, Sharopov F, Seca AML. Applications of sesquiterpene lactones: A review of some potential success cases. Appl Sci (Basel) 2020; 10(9): 3001.
[http://dx.doi.org/10.3390/app10093001]
[64]
Schmidt TJ, Da Costa FB, Lopes NP, Kaiser M, Brun R. in silico prediction and experimental evaluation of furanoheliangolide sesquiterpene lactones as potent agents against Trypanosoma brucei rhodesiense. Antimicrob Agents Chemother 2014; 58(1): 325-32.
[http://dx.doi.org/10.1128/AAC.01263-13] [PMID: 24165182]
[65]
Schmidt T, Nour A, Khalid S, Kaiser M, Brun R. Quantitative structure--antiprotozoal activity relationships of sesquiterpene lactones. Molecules 2009; 14(6): 2062-76.
[http://dx.doi.org/10.3390/molecules14062062] [PMID: 19513006]
[66]
Possart K, Herrmann FC, Jose J, Schmidt TJ. in silico and in vitro search for dual inhibitors of the Trypanosoma brucei and Leishmania major pteridine reductase 1 and dihydrofolate reductase. Molecules 2023; 28(22): 7526.
[http://dx.doi.org/10.3390/molecules28227526] [PMID: 38005256]
[67]
Pereira PML, Camargo PG, Fernandes BT, et al. in vitro evaluation of antitrypanosomal activity and molecular docking of benzoylthioureas. Parasitol Int 2021; 80: 102225.
[http://dx.doi.org/10.1016/j.parint.2020.102225] [PMID: 33160050]
[68]
dos Santos Nascimento IJ, de Aquino TM, da Silva-Júnior EF. Cruzain and rhodesain inhibitors: Last decade of advances in seeking for new compounds against american and african trypanosomiases. Curr Top Med Chem 2021; 21(21): 1871-99.
[http://dx.doi.org/10.2174/18734294MTE10MTEoz] [PMID: 33797369]
[69]
Aguilera E, Varela J, Birriel E, et al. Potent and selective inhibitors of Trypanosoma cruzi triosephosphate isomerase with concomitant inhibition of cruzipain: Inhibition of parasite growth through multitarget activity. ChemMedChem 2016; 11(12): 1328-38.
[http://dx.doi.org/10.1002/cmdc.201500385] [PMID: 26492824]
[70]
Ebiloma GU, Katsoulis E, Igoli JO, Gray AI, De Koning HP. Multi-target mode of action of a Clerodane-type diterpenoid from Polyalthia longifolia targeting African trypanosomes. Sci Rep 2018; 8(1): 4613.
[http://dx.doi.org/10.1038/s41598-018-22908-3] [PMID: 29545637]
[71]
WHO. Leishmaniasis. 2023. Available From: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis
[72]
WHO. The Global Health Observatory. 2024. Available From: https://www.who.int/gho/neglected_diseases/leishmaniasis/en/
[73]
WHO. Accelerated Plan for Kala-Azar elimination. 2017. Available From: https://www.who.int/leishmaniasis/resources/Accelerated_plan_for_Kala-azar_Elimination_2017/en/
[74]
Gupta D, Singh PK, Yadav PK, et al. Emerging strategies and challenges of molecular therapeutics in antileishmanial drug development. Int Immunopharmacol 2023; 115: 109649.
[http://dx.doi.org/10.1016/j.intimp.2022.109649] [PMID: 36603357]
[75]
Salari S, Bamorovat M, Sharifi I, Almani PGN. Global distribution of treatment resistance gene markers for leishmaniasis. J Clin Lab Anal 2022; 36(8): e24599.
[http://dx.doi.org/10.1002/jcla.24599] [PMID: 35808933]
[76]
Sasidharan S, Saudagar P. Leishmaniasis: Where are we and where are we heading? Parasitol Res 2021; 120(5): 1541-54.
[http://dx.doi.org/10.1007/s00436-021-07139-2] [PMID: 33825036]
[77]
Ray S, Sadhukhan PK, Mandal NB, Mahato SB, Majumder HK. Dual inhibition of DNA topoisomerases of Leishmania donovani by novel indolyl quinolines. Biochem Biophys Res Commun 1997; 230(1): 171-5.
[http://dx.doi.org/10.1006/bbrc.1996.5874] [PMID: 9020039]
[78]
Lamba S, Roy A. DNA topoisomerases in the unicellular protozoan parasites: Unwinding the mystery. Biochem Pharmacol 2022; 203: 115158.
[http://dx.doi.org/10.1016/j.bcp.2022.115158] [PMID: 35780829]
[79]
Roy Chowdhury A, Mandal S, Goswami A, et al. Dihydrobetulinic acid induces apoptosis in Leishmania donovani by targeting DNA topoisomerase I and II: Implications in antileishmanial therapy. Mol Med 2003; 9(1-2): 26-36.
[http://dx.doi.org/10.1007/BF03402104] [PMID: 12765337]
[80]
Herrera-Acevedo C, de Menezes RPB, de Sousa NF, Scotti L, Scotti MT, Coy-Barrera E. Kaurane-type diterpenoids as potential inhibitors of dihydrofolate reductase-thymidylate synthase in new world Leishmania species. Antibiotics (Basel) 2023; 12(4): 663.
[http://dx.doi.org/10.3390/antibiotics12040663] [PMID: 37107025]
[81]
Herrera-Acevedo C, Flores-Gaspar A, Scotti L, Mendonça-Junior FJB, Scotti MT, Coy-Barrera E. Identification of kaurane-type diterpenes as inhibitors of leishmania pteridine reductase I. Molecules 2021; 26(11): 3076.
[http://dx.doi.org/10.3390/molecules26113076] [PMID: 34063939]
[82]
Nogueira M, Da Costa F, Brun R, Kaiser M, Schmidt T. ent-Pimarane and ent-Kaurane Diterpenes from Aldama discolor (Asteraceae) and Their Antiprotozoal Activity. Molecules 2016; 21(9): 1237.
[http://dx.doi.org/10.3390/molecules21091237] [PMID: 27649126]
[83]
Santos AO, Izumi E, Ueda-Nakamura T, Dias-Filho BP, Veiga-Júnior VF, Nakamura CV. Antileishmanial activity of diterpene acids in copaiba oil. Mem Inst Oswaldo Cruz 2013; 108(1): 59-64.
[http://dx.doi.org/10.1590/S0074-02762013000100010] [PMID: 23440116]
[84]
Hassan AHE, Mahmoud K, Phan TN, et al. Bestatin analogs-4-quinolinone hybrids as antileishmanial hits: Design, repurposing rational, synthesis, in vitro and in silico studies. Eur J Med Chem 2023; 250: 115211.
[http://dx.doi.org/10.1016/j.ejmech.2023.115211] [PMID: 36827952]
[85]
Obeid S, Berbel-Manaia E, Nicolas V, et al. Deciphering the mechanism of action of VP343, an antileishmanial drug candidate, in Leishmania infantum. iScience 2023; 26(11): 108144.
[http://dx.doi.org/10.1016/j.isci.2023.108144] [PMID: 37915600]
[86]
Bora K, Sarma M, Kanaujia SP, Dubey VK. Dual-target drugs against Leishmania donovani for potential novel therapeutics. Sci Rep 2023; 13(1): 18363.
[http://dx.doi.org/10.1038/s41598-023-45448-x] [PMID: 37884555]
[87]
Fogel N. Tuberculosis: A disease without boundaries. Tuberculosis (Edinb) 2015; 95(5): 527-31.
[http://dx.doi.org/10.1016/j.tube.2015.05.017] [PMID: 26198113]
[88]
Keshavjee S, Farmer PE. Tuberculosis, drug resistance, and the history of modern medicine. N Engl J Med 2012; 367(10): 931-6.
[http://dx.doi.org/10.1056/NEJMra1205429] [PMID: 22931261]
[89]
Comas I, Gagneux S. The past and future of tuberculosis research. PLoS Pathog 2009; 5(10): e1000600.
[http://dx.doi.org/10.1371/journal.ppat.1000600] [PMID: 19855821]
[90]
WHO. Tuberculosis. 2023. Available From: https://www.who.int/news-room/fact-sheets/detail/tuberculosis
[91]
Lee SH. Tuberculosis infection and latent tuberculosis. Tuberc Respir Dis (Seoul) 2016; 79(4): 201-6.
[http://dx.doi.org/10.4046/trd.2016.79.4.201] [PMID: 27790271]
[92]
Loudon RG, Bumgarner LR, Lacy J, Coffman GK. Aerial transmission of mycobacteria. Am Rev Respir Dis 1969; 100(2): 165-71.
[PMID: 4979742]
[93]
Nardell EA. Catching droplet nuclei: Toward a better understanding of tuberculosis transmission. Am J Respir Crit Care Med 2004; 169(5): 553-4.
[http://dx.doi.org/10.1164/rccm.2401003] [PMID: 14982820]
[94]
Donald PR, Diacon AH, Lange C, Demers A-M, von Groote-Biddlingmeier F, Nardell E. Droplets, dust and guinea pigs: An historical review of tuberculosis transmission research, 1878–1940. Int J Tuberc Lung Dis 2018; 22(9): 972-82.
[http://dx.doi.org/10.5588/ijtld.18.0173] [PMID: 30092861]
[95]
Thillai M, Pollock K, Pareek M, Lalvani A. Interferon-gamma release assays for tuberculosis: Current and future applications. Expert Rev Respir Med 2014; 8(1): 67-78.
[http://dx.doi.org/10.1586/17476348.2014.852471] [PMID: 24308653]
[96]
Banerjee DR, Biswas R, Das AK, Basak A. Design, synthesis and characterization of dual inhibitors against new targets FabG4 and HtdX of Mycobacterium tuberculosis. Eur J Med Chem 2015; 100: 223-34.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.007] [PMID: 26092447]
[97]
Kumar D, Beena , Khare G, et al. Synthesis of novel 1,2,3-triazole derivatives of isoniazid and their in vitro and in vivo antimycobacterial activity evaluation. Eur J Med Chem 2014; 81: 301-13.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.005] [PMID: 24852277]
[98]
Hajian B, Scocchera E, Shoen C, et al. Drugging the folate pathway in mycobacterium tuberculosis: The role of multi-targeting agents. Cell Chem Biol 2019; 26(6): 781-791.e6.
[http://dx.doi.org/10.1016/j.chembiol.2019.02.013] [PMID: 30930162]
[99]
Hajian B, Scocchera E, Keshipeddy S, et al. Propargyl-linked antifolates are potent inhibitors of drug-sensitive and drug-resistant mycobacterium tuberculosis. PLoS One 2016; 11(8): e0161740.
[http://dx.doi.org/10.1371/journal.pone.0161740] [PMID: 27580226]
[100]
Nguyen PC, Delorme V, Bénarouche A, et al. Oxadiazolone derivatives, new promising multi-target inhibitors against M. tuberculosis. Bioorg Chem 2018; 81: 414-24.
[http://dx.doi.org/10.1016/j.bioorg.2018.08.025] [PMID: 30212765]
[101]
Duggirala S, Napoleon JV, Nankar RP, et al. FtsZ inhibition and redox modulation with one chemical scaffold: Potential use of dihydroquinolines against mycobacteria. Eur J Med Chem 2016; 123: 557-67.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.058] [PMID: 27517804]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy