Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Developments of Pyrrolo[2,3-d]pyrimidines with Pharmaceutical Potential

Author(s): Aymn E. Rashad*, Tamer El Malah and Ahmed H. Shamroukh

Volume 28, Issue 16, 2024

Published on: 06 June, 2024

Page: [1244 - 1264] Pages: 21

DOI: 10.2174/0113852728306820240515054401

Price: $65

Abstract

In terms of fused heterocyclic compounds, pyrrolopyrimidines, and their substituted analogs are among the most extensively explored scaffolds. Based on the location of the nitrogen atom in the pyrrole ring, pyrrolopyrimidines have different isomers. This study deals only with the pyrrolo[2,3-d]pyrimidine isomer. Several techniques are represented and discussed in this review for producing pyrrolo[2,3-d]pyrimidine derivatives. The first one is the cyclization of the pyrimidine ring on the pyrrole ring through the reaction of β-enaminonitrile, β-enaminoester or β-enaminoamide of the pyrrole ring with different bifunctional reagents such as formic acid, acetic acid, acetic anhydride, formamide, isothiocyanate, urea, thiourea, and carbon disulfide. The second technique includes cyclization of the pyrrole ring on the pyrimidine ring via the treatment of pyrimidine, aminopyrimidine, diamino-pyrimidine, or triamino-pyrimidine with different reagents such as nitroalkenes, alkynes, aldehydes, and acid chlorides. In addition, different reaction methodologies like one pot, two-step, and threestep synthetic methodologies were reported. The last technique for producing pyrrolo[2,3-d]pyrimidine derivatives is through miscellaneous reactions. This review also includes the interactions of pyrrolo[2,3- d]pyrimidines at different active centers of the pyrrole ring with different reagents to form N-alkylated, Nglycosylated, C-5, and C-6 adducts. Besides, the interactions on the pyrimidine ring to form chloro, hydrazino, and amino-imino derivatives were also discussed. The amino-imino derivatives are key intermediates for the preparation of tricyclic pyrrolotriazolopyrimidines. Finally, the pharmaceutical and biological properties of some pyrrolo[2,3-d]pyrimidine derivatives have also been mentioned. This information can be utilized to design novel diverse pyrrolopyrimidine derivatives for recent challenges in pharmaceutical and medical studies to develop the already existing drugs or discover new ones.

Graphical Abstract

[1]
Malah, E.T.; Mageid, A.R.E.; Shamroukh, A.H. Review of the synthesis, reactions and pharmaceutical potential of pyrido[2,3-d]pyrimidine derivatives. Curr. Org. Chem., 2023, 27(4), 260-281.
[http://dx.doi.org/10.2174/1385272827666230410114551]
[2]
Azmy, E.M.; Hagras, M.; Ewida, M.A.; Doghish, A.S.; Khidr, G.E.; Husseiny, E.A.A.; Gomaa, M.H.; Refaat, H.M.; Ismail, N.S.M.; Nassar, I.F.; Lashin, W.H. Development of pyrolo[2,3-c]pyrazole, pyrolo[2,3-d]pyrimidine and their bioisosteres as novel CDK2 inhibitors with potent in vitro apoptotic anti-proliferative activity: Synthesis, biological evaluation and molecular dynamics investigations. Bioorg. Chem., 2023, 139, 106729.
[http://dx.doi.org/10.1016/j.bioorg.2023.106729] [PMID: 37467621]
[3]
Zeng, S.; Yuan, S.; Zhang, Y.; Du, J.; Wu, Y.; Chen, Y.; Zhu, P.; Huang, W. Discovery of novel pyrrolo[2,3-d]pyrimidine derivatives as potent FAK inhibitors based on cyclization strategy. Bioorg. Chem., 2023, 139, 106713.
[http://dx.doi.org/10.1016/j.bioorg.2023.106713] [PMID: 37459823]
[4]
Alanazi, A.S.; Mirgany, T.O.; Alsaif, N.A.; Alsfouk, A.A.; Alanazi, M.M. Design, synthesis, antitumor evaluation, and molecular docking of novel pyrrolo[2,3-d]pyrimidine as multi-kinase inhibitors. Saudi Pharm. J., 2023, 31(6), 989-997.
[http://dx.doi.org/10.1016/j.jsps.2023.05.003] [PMID: 37234342]
[5]
Wei, W.; Feng, Z.; Liu, Z.; Li, X.; He, H.; Ran, K.; Shi, Y.; Zhu, Y.; Ye, T.; Gao, C.; Wang, N.; Yu, L. Design, synthesis and biological evaluation of 7-((7H-pyrrolo[2,3-d]pyrimidin-4-yl)oxy)-2,3-dihydro-1H-inden-1-one derivatives as potent FAK inhibitors for the treatment of ovarian cancer. Eur. J. Med. Chem., 2022, 228, 113978.
[http://dx.doi.org/10.1016/j.ejmech.2021.113978] [PMID: 34810020]
[6]
Sajadikhah, S.S.; Zare, A. Synthesis of pyrrolo[2,3-d]pyrimidines (microreview). Chem. Heterocycl. Compd., 2019, 55(12), 1168-1170.
[http://dx.doi.org/10.1007/s10593-019-02595-2]
[7]
De Coen, L.M.; Heugebaert, T.S.A.; García, D.; Stevens, C.V. Synthetic entries to and biological activity of pyrrolopyrimidines. Chem. Rev., 2016, 116(1), 80-139.
[http://dx.doi.org/10.1021/acs.chemrev.5b00483] [PMID: 26699634]
[8]
Gao, L.J.; Schwed, J.S.; Weizel, L.; De Jonghe, S.; Stark, H.; Herdewijn, P. Synthesis and evaluation of novel ligands for the histamine H4 receptor based on a pyrrolo[2,3-d]pyrimidine scaffold. Bioorg. Med. Chem. Lett., 2013, 23(1), 132-137.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.139] [PMID: 23218604]
[9]
Hameed, A.E.R.H.; Sayed, A.I.; Mahmoud Ali, S.; Mosa, M.A.; Khoder, Z.M.; Fatahala, S.S. Synthesis of novel pyrroles and fused pyrroles as antifungal and antibacterial agents. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 2183-2198.
[http://dx.doi.org/10.1080/14756366.2021.1984904] [PMID: 34602000]
[10]
Mohamed, M.S.; Fathallah, S.S. Pyrroles and fused pyrroles: Synthesis and therapeutic activities. Mini Rev. Org. Chem., 2014, 6, 477-507.
[11]
Perlíková, P.; Hocek, M. Pyrrolo[2,3‐d]pyrimidine (7‐deazapurine) as a privileged scaffold in design of antitumor and antiviral nucleosides. Med. Res. Rev., 2017, 37(6), 1429-1460.
[http://dx.doi.org/10.1002/med.21465] [PMID: 28834581]
[12]
Mohamed, M.S.; Sayed, A.I.; Khedr, M.A.; Soror, S.H. Design, synthesis, assessment, and molecular docking of novel pyrrolopyrimidine (7-deazapurine) derivatives as non-nucleoside hepatitis C virus NS5B polymerase inhibitors. Bioorg. Med. Chem., 2016, 24(9), 2146-2157.
[http://dx.doi.org/10.1016/j.bmc.2016.03.046] [PMID: 27052365]
[13]
Jiang, F.; Zang, L.; Miao, X.; Jia, F.; Wang, J.; Zhu, M.; Gong, P.; Jiang, N.; Zhai, X. Design, synthesis and anti-inflammatory evaluation of novel pyrrolo[2,3-d]pyrimidin derivatives as potent JAK inhibitors. Bioorg. Med. Chem., 2019, 27(18), 4089-4100.
[http://dx.doi.org/10.1016/j.bmc.2019.07.037] [PMID: 31378597]
[14]
Cawrse, B.M.; Robinson, N.M.; Lee, N.C.; Wilson, G.M.; Radtke, S.K.L. Structural and biological investigations for a Series of N-5 substituted pyrrolo[3,2-d]pyrimidines as potential anti-cancer therapeutics. Molecules, 2019, 24(14), 2656.
[http://dx.doi.org/10.3390/molecules24142656] [PMID: 31340431]
[15]
Xia, Y.; Wang, M.; Demaria, O.; Tang, J.; Rocchi, P.; Qu, F.; Iovanna, J.L.; Alexopoulou, L.; Peng, L. A novel bitriazolyl acyclonucleoside endowed with dual antiproliferative and immunomodulatory activity. J. Med. Chem., 2012, 55(11), 5642-5646.
[http://dx.doi.org/10.1021/jm300534u] [PMID: 22578090]
[16]
Xie, H.; Zeng, S.; He, Y.; Zhang, G.; Yu, P.; Zhong, G.; Xu, H.; Yang, L.; Wang, S.; Zhao, X.; Hu, W. Rapid generation of a novel DPP-4 inhibitor with long-acting properties: SAR study and PK/PD evaluation. Eur. J. Med. Chem., 2017, 141, 519-529.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.029] [PMID: 29078995]
[17]
Mao, W.; Wu, H.; Guo, Q.; Zheng, X.; Wei, C.; Liao, Y.; Shen, L.; Mi, J.; Li, J.; Chen, S.; Qian, W. Synthesis and evaluation of hydrazinyl-containing pyrrolo[2,3-d]pyrimidine series as potent, selective and oral JAK1 inhibitors for the treatment of rheumatoid arthritis. Bioorg. Med. Chem. Lett., 2022, 74, 128905.
[http://dx.doi.org/10.1016/j.bmcl.2022.128905] [PMID: 35870730]
[18]
Song, S.; Tang, H.; Ran, T.; Fang, F.; Tong, L.; Chen, H.; Xie, H.; Lu, X. Application of deep generative model for design of pyrrolo[2,3-d] pyrimidine derivatives as new selective TANK binding kinase 1 (TBK1) inhibitors. Eur. J. Med. Chem., 2023, 247, 115034.
[http://dx.doi.org/10.1016/j.ejmech.2022.115034] [PMID: 36603506]
[19]
Ergul, M.; Kurt, K.Z.; Aka, Y.; Kutuk, O.; Inan, S.Z.D. The mechanism of anticancer effects of some pyrrolopyrimidine derivatives on HT-29 human colon cancer cells. Toxicol. In Vitro, 2024, 95, 105757.
[http://dx.doi.org/10.1016/j.tiv.2023.105757] [PMID: 38061602]
[20]
Pieterse, L.; Beteck, R.M.; Baratte, B.; Jesumoroti, O.J.; Robert, T.; Ruchaud, S.; Bach, S.; Legoabe, L.J. Synthesis and biological evaluation of selected 7H-pyrrolo[2,3-d]pyrimidine derivatives as novel CDK9/CyclinT and Haspin inhibitors. Chem. Biol. Interact., 2021, 349, 109643.
[http://dx.doi.org/10.1016/j.cbi.2021.109643] [PMID: 34508710]
[21]
Zhang, J.; Xiong, H.; Yang, F.; He, J.; Chen, T.; Fu, D.; Zheng, P.; Tang, Q. Design, synthesis and biological evaluation of novel 4-(pyrrolo[2,3-d]pyrimidine-4-yloxy)benzamide derivatives as potential antitumor agents. Bioorg. Med. Chem. Lett., 2021, 33, 127740.
[http://dx.doi.org/10.1016/j.bmcl.2020.127740] [PMID: 33316412]
[22]
Shi, X.; Quan, Y.; Wang, Y.; Wang, Y.; Li, Y. Design, synthesis, and biological evaluation of 2,6,7-substituted pyrrolo[2,3-d]pyrimidines as cyclin dependent kinase inhibitor in pancreatic cancer cells. Bioorg. Med. Chem. Lett., 2021, 33, 127725.
[http://dx.doi.org/10.1016/j.bmcl.2020.127725] [PMID: 33316409]
[23]
Fischer, T.; Krüger, T.; Najjar, A.; Totzke, F.; Schächtele, C.; Sippl, W.; Ritter, C.; Hilgeroth, A. Discovery of novel substituted benzo-anellated 4-benzylamino pyrrolopyrimidines as dual EGFR and VEGFR2 inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(12), 2708-2712.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.053] [PMID: 28478927]
[24]
Raju, S.K. AnkiReddy, S.; Sabitha, G.; Krishna, S.V.; Sriram, D.; Reddy, B.K.; Sagurthi, R.S. Synthesis and biological evaluation of 1H-pyrrolo[2,3-d]pyrimidine-1,2,3-triazole derivatives as novel anti-tubercular agents. Bioorg. Med. Chem. Lett., 2019, 29(2), 284-290.
[http://dx.doi.org/10.1016/j.bmcl.2018.11.036] [PMID: 30497913]
[25]
Boland, S.; Bourin, A.; Alen, J.; Geraets, J.; Schroeders, P.; Castermans, K.; Kindt, N.; Boumans, N.; Panitti, L.; Vanormelingen, J.; Fransen, S.; Van de Velde, S.; Defert, O. Design, synthesis and biological characterization of selective LIMK inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(18), 4005-4010.
[http://dx.doi.org/10.1016/j.bmcl.2015.07.009] [PMID: 26233434]
[26]
Sroor, F.M.; Basyouni, W.M.; Tohamy, W.M.; Abdelhafez, T.H.; El-awady, M.K. Novel pyrrolo[2,3-d]pyrimidine derivatives: Design, synthesis, structure elucidation and in vitro anti-BVDV activity. Tetrahedron, 2019, 75(51), 130749.
[http://dx.doi.org/10.1016/j.tet.2019.130749]
[27]
Xiao, C.; Sun, C.; Han, W.; Pan, F.; Dan, Z.; Li, Y.; Song, Z.G.; Jin, Y.H. Synthesis of 6-(het) ary Xylocydine analogues and evaluating their inhibitory activities of CDK1 and CDK2 in vitro. Bioorg. Med. Chem., 2011, 19(23), 7100-7110.
[http://dx.doi.org/10.1016/j.bmc.2011.10.003] [PMID: 22036212]
[28]
Suh, H.; Choi, K.; Lee, J.; Ryou, C.; Rhee, H.; Lee, C.H. Effects of a novel carbocyclic analog of pyrrolo[2,3-d]pyrimidine nucleoside on pleiotropic induction of cell death in prostate cancer cells with different androgen responsiveness. Bioorg. Med. Chem. Lett., 2016, 26(4), 1130-1135.
[http://dx.doi.org/10.1016/j.bmcl.2016.01.057] [PMID: 26832220]
[29]
Vazirimehr, S.; Davoodnia, A.; Beyramabadi, S.A.; Moghaddam, N.M.; Hoseini, T.N. Two new pyrrolo[2,3-d]pyrimidines (7-deazapurines): Ultrasonic-assisted synthesis, experimental and theoretical characterizations as well as antibacterial evaluation. Z. Naturforsch. B. J. Chem. Sci., 2017, 72(7), 481-487.
[http://dx.doi.org/10.1515/znb-2017-0004]
[30]
Mohamed, M.S.; Abd El-Hameed, R.H.; Sayed, A.I.; Soror, S.H. Novel antiviral compounds against gastroenteric viral infections. Arch. Pharm., 2015, 348(3), 194-205.
[http://dx.doi.org/10.1002/ardp.201400387] [PMID: 25704120]
[31]
Mohamed, M.S.; Ali, S.A.; Abdelaziz, D.H.A.; Fathallah, S.S. Synthesis and evaluation of novel pyrroles and pyrrolopyrimidines as anti-hyperglycemic agents. BioMed Res. Int., 2014, 2014, 1-13.
[http://dx.doi.org/10.1155/2014/249780] [PMID: 25054134]
[32]
Mohamed, M.; Hameed, A.E.R.; Sayed, A. Synthesis strategies and biological value of pyrrole and pyrrolopyrimidine. J. Adv. Pharm. Res., 2017, 1(1), 1-24.
[http://dx.doi.org/10.21608/aprh.2017.16155]
[33]
Ghorab, M.M.; Ceruso, M.; Alsaid, M.S.; Nissan, Y.M.; Arafa, R.K.; Supuran, C.T. Novel sulfonamides bearing pyrrole and pyrrolopyrimidine moieties as carbonic anhydrase inhibitors: Synthesis, cytotoxic activity and molecular modeling. Eur. J. Med. Chem., 2014, 87, 186-196.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.059] [PMID: 25255434]
[34]
Hilmy, H.K.M.; Khalifa, M.M.A.; Hawata, A.M.A.; Keshk, A.R.M.; Torgman, E.A.A. Synthesis of new pyrrolo[2,3-d]pyrimidine derivatives as antibacterial and antifungal agents. Eur. J. Med. Chem., 2010, 45(11), 5243-5250.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.043] [PMID: 20828885]
[35]
Ghorab, M.M.; Ragab, F.A.; Heiba, H.I.; Youssef, H.A.; El-Gazzar, M.G. Synthesis of novel pyrrole and pyrrolo[2,3-d]pyrimidine derivatives bearing sulfonamide moiety for evaluation as anticancer and radiosensitizing agents. Bioorg. Med. Chem. Lett., 2010, 20(21), 6316-6320.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.005] [PMID: 20850308]
[36]
Hilmy, K.M.H.; Soliman, D.H.; Shahin, E.B.A.; El-Deeb, H.S.; El-Kousy, S.M. Design, synthesis and evaluation of novel diaryl pyrrolopyrimidine and pyrrolothiazine derivatives as inhibitors of tumor necrosis factor stimulated gene-14 (TSG-14) production. Eur. J. Med. Chem., 2014, 78, 419-424.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.068] [PMID: 24704614]
[37]
Mohamed, M.S.; Kamel, R.; Fathallah, S.S. Synthesis of new pyrroles of potential anti-inflammatory activity. Arch. Pharm., 2011, 344(12), 830-839.
[http://dx.doi.org/10.1002/ardp.201100056] [PMID: 21956581]
[38]
Davoodnia, A.; Bakavoli, M.; Moloudi, R.; Khashi, M.; Hoseini, T.N. 7-Deazapurines: Synthesis of new pyrrolo[2,3-d]pyrimidin-4-ones catalyzed by a Brønsted-acidic ionic liquid as a green and reusable catalyst. Chin. Chem. Lett., 2010, 21(1), 1-4.
[http://dx.doi.org/10.1016/j.cclet.2009.09.002]
[39]
Frolova, L.V.; Magedov, I.V.; Romero, A.E.; Karki, M.; Otero, I.; Hayden, K.; Evdokimov, N.M.; Banuls, L.M.Y.; Rastogi, S.K.; Smith, W.R.; Lu, S.L.; Kiss, R.; Shuster, C.B.; Hamel, E.; Betancourt, T.; Rogelj, S.; Kornienko, A. Exploring natural product chemistry and biology with multicomponent reactions. 5. Discovery of a novel tubulin-targeting scaffold derived from the rigidin family of marine alkaloids. J. Med. Chem., 2013, 56(17), 6886-6900.
[http://dx.doi.org/10.1021/jm400711t] [PMID: 23927793]
[40]
Gangjee, A.; Kurup, S.; Ihnat, M.A.; Thorpe, J.E.; Shenoy, S.S. Synthesis and biological activity of N4-phenylsubstituted-6-(2,4-dichloro phenylmethyl)-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamines as vascular endothelial growth factor receptor-2 inhibitors and antiangiogenic and antitumor agents. Bioorg. Med. Chem., 2010, 18(10), 3575-3587.
[http://dx.doi.org/10.1016/j.bmc.2010.03.052] [PMID: 20403700]
[41]
Yang, B.; Quan, Y.; Zhao, W.; Ji, Y.; Yang, X.; Li, J.; Li, Y.; Liu, X.; Wang, Y.; Li, Y. Design, synthesis and biological evaluation of 2-((4-sulfamoylphenyl)amino)-pyrrolo[2,3-d]pyrimidine derivatives as CDK inhibitors. J. Enzyme Inhib. Med. Chem., 2023, 38(1), 2169282.
[http://dx.doi.org/10.1080/14756366.2023.2169282] [PMID: 36656085]
[42]
Zhang, Y.L.; Xu, C.T.; Liu, T.; Zhu, Y.; Luo, Y. An improved synthesis of 4-chloro-7H-pyrrolo[2,3-d]pyrimidine. Chem. Heterocycl. Compd., 2018, 54(6), 638-642.
[http://dx.doi.org/10.1007/s10593-018-2320-0]
[43]
Nofal, Z.M.; Fahmy, H.H.; Zarie, E.S.; Hamdy, A.A. Synthesis of some new pyrimidines and pyrrolo[2,3-d]pyrimidines as potential antimicrobial agents. Egypt. J. Chem., 2011, 54(5), 595-608.
[http://dx.doi.org/10.21608/ejchem.2011.1428]
[44]
Tan, H.; Liu, Y.; Gong, C.; Zhang, J.; Huang, J.; Zhang, Q. Synthesis and evaluation of FAK inhibitors with a 5-fluoro-7H-pyrrolo[2,3-d]pyrimidine scaffold as anti-hepatocellular carcinoma agents. Eur. J. Med. Chem., 2021, 223, 113670.
[http://dx.doi.org/10.1016/j.ejmech.2021.113670] [PMID: 34214842]
[45]
Musumeci, F.; Fallacara, A.L.; Brullo, C.; Grossi, G.; Botta, L.; Calandro, P.; Chiariello, M.; Kissova, M.; Crespan, E.; Maga, G.; Schenone, S. Identification of new pyrrolo[2,3-d]pyrimidines as Src tyrosine kinase inhibitors in vitro active against Glioblastoma. Eur. J. Med. Chem., 2017, 127, 369-378.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.036] [PMID: 28076826]
[46]
Paul, S.; Das, A.R. A new application of polymer supported, homogeneous and reusable catalyst PEG–SO3H in the synthesis of coumarin and uracil fused pyrrole derivatives. Catal. Sci. Technol., 2012, 2(6), 1130-1135.
[http://dx.doi.org/10.1039/c2cy20117h]
[47]
(a) Govindaraju, S.; Daniel, N.K.; Tabassum, S. Sulfamic acid catalyzed grinding: A facile one-pot approach for the synthesis of polysubstituted pyrazoles under green conditions. Mater. Today Proc., 2022, 62, 5336-5340.
[http://dx.doi.org/10.1016/j.matpr.2022.03.416];
(b) Govindaraju, S.; Tabassum, S.; Pasha, M.A. Silica iodide catalyzed, ultrasound-promoted, one-pot four-component synthesis of novel 1,4,5,6-tetrahydropyridine-3-carboxylate derivatives. Phosphorus Sulfur Silicon Relat. Elem., 2017, 192(3), 292-299.
[http://dx.doi.org/10.1080/10426507.2016.1237948];
(c) Tabassum, S.; Govindaraju, S.; White, L.E.D. White LED light-mediated eosin y-photocatalyzed one-pot synthesis of novel 1,2,4-Triazol-3-amines by sequential addition. Top. Catal., 2022, 2022
[http://dx.doi.org/10.1007/s11244-022-01590-w];
(d) Govindaraju, S.; Tabassum, S. Visible light mediated organophotoredoxcatalyzed one-pot domino synthesis of novel 6,7 disubstituted 1H-pyrroles. Top Catal, 2022.
[http://dx.doi.org/10.1007/s11244-022-01580-y];
(e) Saikia, L.; Roudragouda, P.; Thakur, A.J. A one pot, two-step synthesis of 5-arylpyrrolo[2,3-d]pyrimidines and screening of their preliminary antibacterial properties. Bioorg. Med. Chem. Lett., 2016, 26(3), 992-998.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.047] [PMID: 26739778]
[48]
Ryzhkova, Y.E.; Fakhrutdinov, A.N.; Elinson, M.N. Green on-water multicomponent approach for the synthesis of pyrrolo[2,3-d]pyrimidines. Tetrahedron Lett., 2021, 81, 153336.
[http://dx.doi.org/10.1016/j.tetlet.2021.153336]
[49]
Javahershenas, R.; Khalafy, J. one-pot three-component synthesis of pyrrolo[2,3-d]pyrimidine derivatives. J. Mex. Chem. Soc., 2018, 62, 1-12.
[50]
Naidu, P.S.; Bhuyan, P.J. A novel one-pot three-component reaction for the synthesis of 5-arylamino-pyrrolo[2,3-d]pyrimidines under microwave irradiation. RSC Advances, 2014, 4(20), 9942-9945.
[http://dx.doi.org/10.1039/c3ra47143h]
[51]
Alipoor, R.; Mohammadizadeh, M.R.; Saberi, D. New one-pot pathway for the synthesis of 2H–pyrrolo[2,3-d]pyrimidine-2,4-(3H)-diones and 1H-benzo[f]indole-4,9-dione derivatives substituted 3-hydroxy-1,4-naphthoquinonyl. Polycycl. Aromat. Compd., 2023, 43(2), 1602-1618.
[http://dx.doi.org/10.1080/10406638.2022.2032766]
[52]
Yadav, V.B.; Rai, P.; Sagir, H.; Kumar, A.; Siddiqui, I.R. A green route for the synthesis of pyrrolo[2,3-d]pyrimidine derivatives catalyzed by β-cyclodextrin. New J. Chem., 2018, 42(1), 628-633.
[http://dx.doi.org/10.1039/C7NJ03577B]
[53]
Javahershenas, R.; Khalafy, J. A new synthesis of pyrrolo[3,2-d]pyrimidine derivatives by a one-pot, three-component reaction in the presence of L-proline as an organocatalyst. Heterocycl. Commun., 2018, 24(1), 37-41.
[http://dx.doi.org/10.1515/hc-2017-0187]
[54]
Saroha, M.; Khanna, G.; Khurana, J.M. Synthesis of novel 5-substituted 6-phenylpyrrolo[2,3-d]pyrimidine derivatives via one-pot three-component reactions under catalyst-free condition. Chem. Select, 2017, 2, 7263-7266.
[55]
Pathania, S.; Rawal, R.K. Pyrrolopyrimidines: An update on recent advancements in their medicinal attributes. Eur. J. Med. Chem., 2018, 157, 503-526.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.023] [PMID: 30114661]
[56]
Azimi, S.C.A.; Moghadam, R.K. A clean and highly efficient synthesis of oxindole substituted pyrrolo[2,3-d]pyrimidines under ultrasound irradiation. Iran. Chem. Commun., 2017, 5, 156-166.
[57]
Mishra, R.; Panday, A.K.; Choudhury, L.H.; Pal, J.; Subramanian, R.; Verma, A. Multicomponent reactions of arylglyoxal, 4-hydroxycoumarin, and cyclic 1,3-C,N-binucleophiles: Binucleophile directed synthesis of fused five and six membered N-heterocycles. Eur. J. Org. Chem., 2017, 2017(19), 2789-2800.
[http://dx.doi.org/10.1002/ejoc.201700115]
[58]
Tari, L.W.; Trzoss, M.; Bensen, D.C.; Li, X.; Chen, Z.; Lam, T.; Zhang, J.; Creighton, C.J.; Cunningham, M.L.; Kwan, B.; Stidham, M.; Shaw, K.J.; Lightstone, F.C.; Wong, S.E.; Nguyen, T.B.; Nix, J.; Finn, J.; Nguyen, T.B.; Finn, J. Pyrrolopyrimidine inhibitors of DNA gyrase B (GyrB) and topoisomerase IV (ParE). Part I: Structure guided discovery and optimization of dual targeting agents with potent, broad-spectrum enzymatic activity. Bioorg. Med. Chem. Lett., 2013, 23(5), 1529-1536.
[http://dx.doi.org/10.1016/j.bmcl.2012.11.032] [PMID: 23352267]
[59]
Trzoss, M.; Bensen, D.C.; Li, X.; Chen, Z.; Lam, T.; Zhang, J.; Creighton, C.J.; Cunningham, M.L.; Kwan, B.; Stidham, M.; Nelson, K.; Driver, B.V.; Castellano, A.; Shaw, K.J.; Lightstone, F.C.; Wong, S.E.; Nguyen, T.B.; Finn, J.; Tari, L.W. Pyrrolopyrimidine inhibitors of DNA gyrase B (GyrB) and topoisomerase IV (ParE), Part II: Development of inhibitors with broad spectrum, Gram-negative antibacterial activity. Bioorg. Med. Chem. Lett., 2013, 23(5), 1537-1543.
[http://dx.doi.org/10.1016/j.bmcl.2012.11.073] [PMID: 23294697]
[60]
Davies, N.G.M.; Browne, H.; Davis, B.; Drysdale, M.J.; Foloppe, N.; Geoffrey, S.; Gibbons, B.; Hart, T.; Hubbard, R.; Jensen, M.R.; Mansell, H.; Massey, A.; Matassova, N.; Moore, J.D.; Murray, J.; Pratt, R.; Ray, S.; Robertson, A.; Roughley, S.D.; Schoepfer, J.; Scriven, K.; Simmonite, H.; Stokes, S.; Surgenor, A.; Webb, P.; Wood, M.; Wright, L.; Brough, P. Targeting conserved water molecules: Design of 4-aryl-5-cyanopyrrolo[2,3-d]pyrimidine Hsp90 inhibitors using fragment-based screening and structure-based optimization. Bioorg. Med. Chem., 2012, 20(22), 6770-6789.
[http://dx.doi.org/10.1016/j.bmc.2012.08.050] [PMID: 23018093]
[61]
Prieur, V.; Rubio-Martínez, J.; Font-Bardia, M.; Guillaumet, G.; Pujol, M.D. Microwave-assisted synthesis of substituted pyrrolo[2,3-d]pyrimidines. Eur. J. Org. Chem., 2014, 2014(7), 1514-1524.
[http://dx.doi.org/10.1002/ejoc.201301496]
[62]
Jiang, X.; Sun, D.; Jiang, Y.; Ma, D. Efficient synthesis of pyrrolo[2,3-d]pyrimidines via a Cu(I)/6-methylpicolinic acid catalyzed coupling reaction. Tetrahedron Lett., 2015, 56(23), 3259-3261.
[http://dx.doi.org/10.1016/j.tetlet.2014.12.098]
[63]
Wang, L.; Zheng, L.; Kong, X.; Zhang, W.; Chen, G.; Wang, J. Concise synthesis of pyrrolo[2,3-d]pyrimidine derivatives via the Cu-catalyzed coupling reaction. Green Chem. Lett. Rev., 2017, 10(1), 42-47.
[http://dx.doi.org/10.1080/17518253.2016.1275822]
[64]
Kobayashi, K.; Nakazawa, K.; Yuba, S.; Hiyoshi, H.; Umezu, K. Synthesis of 7-alkyl-6-amino-7H-pyrrolo[2,3-d]pyrimidine-6-carbonitriles by the copper-catalyzed reaction of 4-(alkylamino)-5-iodopyrimidines with propanedinitrile. Heterocycles, 2015, 90(1), 216-225.
[http://dx.doi.org/10.3987/COM-14-S(K)5]
[65]
Scott, J.S.; Degorce, S.L.; Anjum, R.; Culshaw, J.; Davies, R.D.M.; Davies, N.L.; Dillman, K.S.; Dowling, J.E.; Drew, L.; Ferguson, A.D.; Groombridge, S.D.; Halsall, C.T.; Hudson, J.A.; Lamont, S.; Lindsay, N.A.; Marden, S.K.; Mayo, M.F.; Pease, J.E.; Perkins, D.R.; Pink, J.H.; Robb, G.R.; Rosen, A.; Shen, M.; McWhirter, C.; Wu, D. Discovery and optimization of pyrrolopyrimidine inhibitors of interleukin-1 receptor associated kinase 4 (IRAK4) for the treatment of mutant MYD88L265P diffuse large B-cell lymphoma. J. Med. Chem., 2017, 60(24), 10071-10091.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01290] [PMID: 29172502]
[66]
Gangjee, A.; Zaware, N.; Raghavan, S.; Yang, J.; Thorpe, J.E.; Ihnat, M.A. N4-(3-Bromophenyl)-7-(substituted benzyl) pyrrolo[2,3-d]pyrimidines as potent multiple receptor tyrosine kinase inhibitors: Design, synthesis, and in vivo evaluation. Bioorg. Med. Chem., 2012, 20(7), 2444-2454.
[http://dx.doi.org/10.1016/j.bmc.2012.01.029] [PMID: 22370340]
[67]
Gao, T.; Zhang, C.; Shi, X.; Guo, R.; Zhang, K.; Gu, J.; Li, L.; Li, S.; Zheng, Q.; Cui, M.; Cui, M.; Gao, X.; Liu, Y.; Wang, L. Targeting dihydrofolate reductase: Design, synthesis and biological evaluation of novel 6-substituted pyrrolo[2,3-d]pyrimidines as nonclassical antifolates and as potential antitumor agents. Eur. J. Med. Chem., 2019, 178, 329-340.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.013] [PMID: 31200235]
[68]
Lee, J.H.; Shin, S.C.; Seo, S.H.; Seo, Y.H.; Jeong, N.; Kim, C.W.; Kim, E.E.; Keum, G. Synthesis and in vitro antiproliferative activity of C5-benzyl substituted 2-amino-pyrrolo[2,3-d]pyrimidines as potent Hsp90 inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(2), 237-241.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.062] [PMID: 27914802]
[69]
Zhang, F.; Li, C. L-Proline-catalyzed cyclization of 6-aminopyrimidine-4(3H)-ones with nitroolefins: Synthesis of polysubstituted 5-arylpyrrolo[2,3-d]pyrimidin-4-ones. Synlett, 2017, 28(11), 1315-1320.
[http://dx.doi.org/10.1055/s-0036-1588757]
[70]
Khalaf, A.I.; Huggan, J.K.; Suckling, C.J.; Gibson, C.L.; Stewart, K.; Giordani, F.; Barrett, M.P.; Wong, P.E.; Barrack, K.L.; Hunter, W.N. Structure-based design and synthesis of antiparasitic pyrrolopyrimidines targeting pteridine reductase 1. J. Med. Chem., 2014, 57(15), 6479-6494.
[http://dx.doi.org/10.1021/jm500483b] [PMID: 25007262]
[71]
Iaroshenko, V.; Wang, Y.; Sevenard, D.; Volochnyuk, D. Synthesis of fluorinated pyrrolo[2,3-b]pyridine and pyrrolo[2,3-d]pyrimidine nucleosides. Synthesis, 2009, 2009(11), 1851-1857.
[http://dx.doi.org/10.1055/s-0029-1216640]
[72]
Gangjee, A.; Zhao, Y.; Lin, L.; Raghavan, S.; Roberts, E.G.; Risinger, A.L.; Hamel, E.; Mooberry, S.L. Synthesis and discovery of water-soluble microtubule targeting agents that bind to the colchicine site on tubulin and circumvent Pgp mediated resistance. J. Med. Chem., 2010, 53(22), 8116-8128.
[http://dx.doi.org/10.1021/jm101010n] [PMID: 20973488]
[73]
Aarhus, T.I.; Teksum, V.; Unger, A.; Habenberger, P.; Wolf, A.; Eickhoff, J.; Klebl, B.; Wolowczyk, C.; Bjørkøy, G.; Sundby, E.; Hoff, B.H. Negishi cross-coupling in the preparation of benzyl substituted pyrrolo[2,3-d]pyrimidine based CSF1R inhibitors. Eur. J. Org. Chem., 2023, 26(12), e202300052.
[http://dx.doi.org/10.1002/ejoc.202300052]
[74]
Bjørnstad, F.; Sundby, E.; Hoff, B.H. Directed lithiation of protected 4-chloropyrrolopyrimidine: Addition to aldehydes and ketones aided by bis(2-dimethylaminoethyl)ether. Molecules, 2023, 28(3), 932.
[http://dx.doi.org/10.3390/molecules28030932] [PMID: 36770597]
[75]
Olsen, C.E.; Blindheim, F.H.; Søgaard, C.K.; Røst, L.M.; Singleton, A.H.; Bergum, O.E.T.; Bruheim, P.; Otterlei, M.; Sundby, E.; Hoff, B.H. Halogenated pyrrolopyrimidines with low MIC on Staphylococcus aureus and synergistic effects with an antimicrobial peptide. Antibiotics, 2022, 11(8), 984.
[http://dx.doi.org/10.3390/antibiotics11080984] [PMID: 35892374]
[76]
Bistrović, A.; Harej, A.; Grbčić, P.; Sedić, M.; Pavelić, K.S.; Cetina, M.; Raić-Malić, S. Synthesis and anti-proliferative effects of mono- and bis-purinomimetics targeting kinases. Int. J. Mol. Sci., 2017, 18(11), 2292.
[http://dx.doi.org/10.3390/ijms18112292] [PMID: 29104242]
[77]
Klečka, M.; Pohl, R.; Klepetářová, B.; Hocek, M. Direct C–H borylation and C–H arylation of pyrrolo[2,3-d]pyrimidines: Synthesis of 6,8-disubstituted 7-deazapurines. Org. Biomol. Chem., 2009, 7(5), 866-868.
[http://dx.doi.org/10.1039/b900218a] [PMID: 19225668]
[78]
Tang, G.; Liu, L.; Wang, X.; Pan, Z. Discovery of 7H-pyrrolo[2,3-d]pyrimidine derivatives as selective covalent irreversible inhibitors of interleukin-2-inducible T-cell kinase (Itk). Eur. J. Med. Chem., 2019, 173, 167-183.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.055] [PMID: 30999237]
[79]
Frank, A.; Arriagada, M.F.; Salas, C.O.; Bustos, E.C.; Stark, H. Nature-inspired pyrrolo[2,3-d]pyrimidines targeting the histamine H3 receptor. Bioorg. Med. Chem., 2019, 27(14), 3194-3200.
[http://dx.doi.org/10.1016/j.bmc.2019.05.042] [PMID: 31176569]
[80]
Mao, Z.; Jiang, Y.; Liu, M.; Zhang, X. Unique regioselective C H diacetoxylation of pyrrolo[2,3-d]pyrimidine derivatives promoted by sodium iodide. Tetrahedron Lett., 2021, 84, 153435.
[http://dx.doi.org/10.1016/j.tetlet.2021.153435]
[81]
Song, Y.; Ding, H.; Dou, Y.; Yang, R.; Sun, Q.; Xiao, Q.; Ju, Y. Efficient and practical synthesis of 5′-deoxytubercidin and its analogues via Vorbrüggen glycosylation. Synth., 2011, 9, 1442-1446.
[82]
Nauš, P.; Caletková, O.; Perlíková, P.; Slavětínská, P.L.; Tloušťová, E.; Hodek, J.; Weber, J.; Džubák, P.; Hajdúch, M.; Hocek, M. Synthesis and biological profiling of 6- or 7-(het)aryl-7-deazapurine 4′-C-methylribonucleosides. Bioorg. Med. Chem., 2015, 23(23), 7422-7438.
[http://dx.doi.org/10.1016/j.bmc.2015.10.040] [PMID: 26558518]
[83]
Hu, W.; Wang, P.; Song, C.; Pan, Z.; Wang, Q.; Guo, X.; Yu, X.; Shen, Z.; Wang, S.; Chang, J. Synthesis and anti-HCV activity of a new 2′-deoxy-2′-fluoro-2′-C-methyl nucleoside analogue. Bioorg. Med. Chem. Lett., 2010, 20(24), 7297-7298.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.076] [PMID: 21106452]
[84]
Ingale, S.A.; Leonard, P.; Seela, F. Glycosylation of pyrrolo[2,3-d]pyrimidines with 1-O-Acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose: Substituents and protecting groups effecting the synthesis of 7-deazapurine ribonucleosides. J. Org. Chem., 2018, 83(15), 8589-8595.
[http://dx.doi.org/10.1021/acs.joc.8b00343] [PMID: 29911384]
[85]
Hulpia, F.; Noppen, S.; Schols, D.; Andrei, G.; Snoeck, R.; Liekens, S.; Vervaeke, P.; Van Calenbergh, S. Synthesis of a 3′-C-ethynyl-β-d-ribofuranose purine nucleoside library: Discovery of C7-deazapurine analogs as potent antiproliferative nucleosides. Eur. J. Med. Chem., 2018, 157, 248-267.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.062] [PMID: 30098481]
[86]
Sroor, F.M.; Tohamy, W.M.; Zoheir, K.M.A.; Abdelazeem, N.M.; Mahrous, K.F.; Ibrahim, N.S. Design, synthesis, in vitro anticancer, molecular docking and SAR studies of new series of pyrrolo[2,3-d]pyrimidine derivatives. BMC Chem., 2023, 17(1), 106.
[http://dx.doi.org/10.1186/s13065-023-01014-0] [PMID: 37641068]
[87]
Mohamed, M.S.; Hussein, W.M.; McGeary, R.P.; Vella, P.; Schenk, G. hameed, A.E.R.H. Synthesis and kinetic testing of new inhibitors for a metallo-β-lactamase from Klebsiella pneumonia and Pseudomonas aeruginosa. Eur. J. Med. Chem., 2011, 46(12), 6075-6082.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.030] [PMID: 22051063]
[88]
Mohamed, M.S.; Mostafa, A.G.; Hameed, A.E.R.H. Evaluation of the anti-inflammatory activity of novel synthesized pyrrole, pyrrolopyrimidine and spiropyrrolopyrimidine derivatives. Pharmacophore, 2012, 3, 44-54.
[89]
Sayed, A.I.; Mansour, Y.E.; Ali, M.A.; Aly, O.; Khoder, Z.M.; Said, A.M.; Fatahala, S.S.; Hameed, A.E.R.H. Novel pyrrolopyrimidine derivatives: Design, synthesis, molecular docking, molecular simulations and biological evaluations as antioxidant and anti-inflammatory agents. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 1821-1837.
[http://dx.doi.org/10.1080/14756366.2022.2090546] [PMID: 35762086]
[90]
Riad, J.; Mohamed, M.; Fatahala, S. Mansour, Design and synthesis of N-4-substituted pyrrolopyrimidines with promising anticancer effects. Egypt. J. Chem., 2023.
[http://dx.doi.org/10.21608/ejchem.2023.223535.8273]
[91]
Khalil, O.M.; Kamal, A.M.; Bua, S.; Teba, E.S.H.; Nissan, Y.M.; Supuran, C.T. Pyrrolo and pyrrolopyrimidine sulfonamides act as cytotoxic agents in hypoxia via inhibition of transmembrane carbonic anhydrases. Eur. J. Med. Chem., 2020, 188, 112021.
[http://dx.doi.org/10.1016/j.ejmech.2019.112021] [PMID: 31901743]
[92]
Sugimoto, Y.; Sawant, D.B.; Fisk, H.A.; Mao, L.; Li, C.; Chettiar, S.; Li, P.K.; Darby, M.V.; Brueggemeier, R.W. Novel pyrrolopyrimidines as Mps1/TTK kinase inhibitors for breast cancer. Bioorg. Med. Chem., 2017, 25(7), 2156-2166.
[http://dx.doi.org/10.1016/j.bmc.2017.02.030] [PMID: 28259529]
[93]
Li, X.; Wei, W.; Tao, L.; Zeng, J.; Zhu, Y.; Yang, T.; Wang, Q.; Tang, M.; Liu, Z.; Yu, L. Design, synthesis and biological evaluation of a new class of 7H-pyrrolo[2,3-d]pyrimidine derivatives as Mps1 inhibitors for the treatment of breast cancer. Eur. J. Med. Chem., 2023, 245(Pt 1), 114887.
[http://dx.doi.org/10.1016/j.ejmech.2022.114887] [PMID: 36370549]
[94]
Soto-Acosta, R.; Jung, E.; Qiu, L.; Wilson, D.J.; Geraghty, R.J.; Chen, L. 4,7-Disubstituted 7H-pyrrolo[2,3-d]pyrimidines and their analogs as antiviral agents against Zika virus. Molecules, 2021, 26(13), 3779.
[http://dx.doi.org/10.3390/molecules26133779] [PMID: 34206327]
[95]
Rashad, A.E.; Heikal, O.A.; Nezhawy, E.A.O.H.; Megeid, A.F.M.E. Synthesis and isomerization of thienotriazolopyrimidine and thienotetrazolopyrimidine derivatives with potential anti-inflammatory activity. Heteroatom Chem., 2005, 16(3), 226-234.
[http://dx.doi.org/10.1002/hc.20114]
[96]
Rashad, A.E.; Shamroukh, A.H.; Hegab, M.I.; Awad, H.M. Synthesis of some biologically active pyrazoles and C-nucleosides. Acta Chim. Slov., 2005, 52, 429-434.
[97]
Shamroukh, A.H.; Zaki, M.E.A.; Morsy, E.M.H.; Motti, A.F.M.; Megeid, A.F.M.E. Synthesis, isomerization, and antimicrobial evaluation of some pyrazolopyranotriazolopyrimidine derivatives. Arch. Pharm., 2007, 340(7), 345-351.
[http://dx.doi.org/10.1002/ardp.200700007] [PMID: 17610300]
[98]
Rashad, A.; Shamroukh, A.; Megeid, A.R.; Ali, H. Synthesis and isomerization of some novel pyrazolopyrimidine and pyrazolotriazolopyrimidine derivatives. Molecules, 2014, 19(5), 5459-5469.
[http://dx.doi.org/10.3390/molecules19055459] [PMID: 24776812]
[99]
Hilmy, K.; Tag, M.; Aish, E.; Elsafty, M.; Attia, H. Synthesis and biological evaluation of pyrrolo[2,3-d]pyrimidine derivatives as a novel class of antimicrobial and antiviral agents. Russ. J. Org. Chem., 2021, 57(3), 430-439.
[http://dx.doi.org/10.1134/S1070428021030155]
[100]
Xing, R.; Zhang, H.; Yuan, J.; Zhang, K.; Li, L.; Guo, H.; Zhao, L.; Zhang, C.; Li, S.; Gao, T.; Liu, Y.; Wang, L. Novel 6-substituted benzoyl and non-benzoyl straight chain pyrrolo[2,3-d]pyrimidines as potential antitumor agents with multitargeted inhibition of TS, GARFTase and AICARFTase. Eur. J. Med. Chem., 2017, 139, 531-541.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.032] [PMID: 28830032]
[101]
Cardozo, T.J. Synthesis and biological evaluation of pyrrolo[2,3-d]pyrimidine derivatives as antibacterial and antiviral. Int. J. Chem., 2012, 4, 2.
[102]
Jesumoroti, O.J.; Beteck, R.M.; Jordaan, A.; Warner, D.F.; Legoabe, L.J. Exploration of 4-aminopyrrolo[2,3-d]pyrimidine as antitubercular agents. Mol. Divers., 2023, 27(2), 753-765.
[http://dx.doi.org/10.1007/s11030-022-10453-1] [PMID: 35598185]
[103]
Bustos, E.C.; Frank, A.; Opazo, A.S.; Salas, C.O.; Fierro, A.; Stark, H. New lead elements for histamine H3 receptor ligands in the pyrrolo[2,3-d]pyrimidine class. Bioorg. Med. Chem. Lett., 2018, 28(17), 2890-2893.
[http://dx.doi.org/10.1016/j.bmcl.2018.07.023] [PMID: 30025902]
[104]
Xie, H.; Zeng, L.; Zeng, S.; Lu, X.; Zhang, G.; Zhao, X.; Cheng, N.; Tu, Z.; Li, Z.; Xu, H.; Yang, L.; Zhang, X.; Huang, M.; Zhao, J.; Hu, W. Novel pyrrolopyrimidine analogues as potent dipeptidyl peptidase IV inhibitors based on pharmacokinetic property-driven optimization. Eur. J. Med. Chem., 2012, 52, 205-212.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.015] [PMID: 22475866]
[105]
Fatahala, S.S.; Mahgub, S.; Taha, H.; Hameed, A.E.R.H. Synthesis and evaluation of novel spiro derivatives for pyrrolopyrimidines as anti-hyperglycemia promising compounds. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 809-817.
[http://dx.doi.org/10.1080/14756366.2018.1461854] [PMID: 29708461]
[106]
Kumar, V.P.; Frey, K.M.; Wang, Y.; Jain, H.K.; Gangjee, A.; Anderson, K.S. Substituted pyrrolo[2,3-d]pyrimidines as Cryptosporidium hominis thymidylate synthase inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(19), 5426-5428.
[http://dx.doi.org/10.1016/j.bmcl.2013.07.037] [PMID: 23927969]
[107]
Tulloch, L.B.; Martini, V.P.; Iulek, J.; Huggan, J.K.; Lee, J.H.; Gibson, C.L.; Smith, T.K.; Suckling, C.J.; Hunter, W.N. Structure-based design of pteridine reductase inhibitors targeting African sleeping sickness and the leishmaniases. J. Med. Chem., 2010, 53(1), 221-229.
[http://dx.doi.org/10.1021/jm901059x] [PMID: 19916554]
[108]
Harrison, B.A.; Almstead, Z.Y.; Burgoon, H.; Gardyan, M.; Goodwin, N.C.; Healy, J.; Liu, Y.; Mabon, R.; Marinelli, B.; Samala, L.; Zhang, Y.; Stouch, T.R.; Whitlock, N.A.; Gopinathan, S.; McKnight, B.; Wang, S.; Patel, N.; Wilson, A.G.E.; Hamman, B.D.; Rice, D.S.; Rawlins, D.B. Discovery and development of LX7101, a dual LIM-Kinase and ROCK inhibitor for the treatment of glaucoma. ACS Med. Chem. Lett., 2015, 6(1), 84-88.
[http://dx.doi.org/10.1021/ml500367g] [PMID: 25589936]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy