Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Three Diterpene Lactones from Andrographis paniculata (Burm. f) Nees In vitro, In silico Assessment of the Anticancer and Novel Liposomal Encapsulation Efficiency

Author(s): Tran Le Thi Thanh, Trinh Thi Diep, Nguyen Thi To Uyen, Tran Nguyen Minh An* and Le Van Tan*

Volume 28, Issue 16, 2024

Published on: 23 May, 2024

Page: [1265 - 1277] Pages: 13

DOI: 10.2174/0113852728296753240507065455

Price: $65

Abstract

Three compounds from Andrographis paniculata (Burm. f) Nees leaf were isolated and identified using 1H, 13C, 2D-NMR, and HR-MS techniques for the first time. Compound 3,19-Di-O-acetylandrographolide (3,19-DAA) or (4) is produced by acetylating compound (2). Compounds (2) and (4) have been investigated for their cytotoxic effects on three human cancer cell lines (SK-LU-1, Hela, and HepG2) using the MTT method. Compound (4) demonstrated significant cytotoxicity against all three cancer cell lines, with IC50 values ranging from 8.38 to 10.15 μM. This represents an increase in cytotoxicity of 2.67 to 3.12-fold compared to compound (2). One way to deal with the problem of low water solubility is by encapsulating (4) into liposomes using a thin-film hydration technique. The optimal conditions for maximizing encapsulation efficiency involve molar ratios of phosphatidylcholine, 3,19-DAA, and cholesterol at 4:1:1. Encapsulating compound (4) within nanoscale liposomes increases its water solubility compared to the free form of compound (4). Pose 324 of compound (4) demonstrated the best conformation among 500 docking conformations when docked to enzyme 1T8I in a in silico docking study. The free Gibbs energy and inhibition constant were determined to be -7.09 Kcal/mol and 6.32 μM, respectively. These values help elucidate the strong interaction between compound (4) and the enzyme in the ligand interaction model. The molecular dynamics simulation using Desmond software in the Linux environment was conducted for a duration of 0 to 100 nanoseconds on the complex formed by pose 324 and 1T8I. The results showed effective interactions within the complex, with stability observed from 0 to 60 nanoseconds. Throughout the simulation, specific amino acids such as Ala 499 (involved in 90% of the simulation time with hydrogen bonding via a water bridge) and Thr 501 (involved in 50% of the simulation time with one hydrogen bond via a water bridge) were found to play significant roles. The majority of torsion bondings are C-O bondings in the acetyl group of compound (4), with torsion energy values of 13.47 Kcal/mol. Carbon atom C-29 at position 324 exhibits the highest fluctuation.

Graphical Abstract

[1]
Gupta, A.; Sharma, P. Management strategies for cancer patients in the time of COVID-19 pandemic. J. Maxillofac. Oral Surg., 2020, 19(3), 473-474.
[http://dx.doi.org/10.1007/s12663-020-01402-2] [PMID: 32801547]
[2]
Varma, A.; Padh, H.; Shrivastava, N. Andrographolide: A new plant-derived antineoplastic entity on horizon. Evid. Based Complement. Alternat. Med., 2011, 2011, 1-9.
[http://dx.doi.org/10.1093/ecam/nep135] [PMID: 19752167]
[3]
Dar, K.; Bhat, A.; Amin, S.; Pharm, S.A. Herbal compounds as potential anticancer therapeutics: Current. Ann. Pharmacol. Pharm., 2017, 20(2), 1106.
[4]
Hendouei, N.; Saghafi, F.; Shadfar, F.; Hosseinimehr, S.J. Molecular mechanisms of anti-psychotic drugs for improvement of cancer treatment. Eur. J. Pharmacol., 2019, 856, 172402.
[http://dx.doi.org/10.1016/j.ejphar.2019.05.031] [PMID: 31108054]
[5]
Jiang, Y.; Wang, F.; Xu, H.; Liu, H.; Meng, Q.; Liu, W. Development of andrographolide loaded PLGA microspheres: Optimization, characterization and in vitroin vivo correlation. Int. J. Pharm., 2014, 475(1-2), 475-484.
[http://dx.doi.org/10.1016/j.ijpharm.2014.09.016] [PMID: 25219858]
[6]
Islam, M.T.; Ali, E.S.; Uddin, S.J.; Islam, M.A.; Shaw, S.; Khan, I.N.; Saravi, S.S.S.; Ahmad, S.; Rehman, S.; Gupta, V.K.; Găman, M.A.; Găman, A.M.; Yele, S.; Das, A.K. de e Sousa, C.J.M.; de Dantas, M.S.M.M.; Rolim, H.M.L.; de Cavalcante, C.M.A.A.; Mubarak, M.S.; Yarla, N.S.; Shilpi, J.A.; Mishra, S.K.; Atanasov, A.G.; Kamal, M.A. Andrographolide, a diterpene lactone from Andrographis paniculata and its therapeutic promises in cancer. Cancer Lett., 2018, 420, 129-145.
[http://dx.doi.org/10.1016/j.canlet.2018.01.074] [PMID: 29408515]
[7]
Lee, J.C.; Tseng, C.K.; Young, K.C.; Sun, H.Y.; Wang, S.W.; Chen, W.C.; Lin, C.K.; Wu, Y.H. Andrographolide exerts anti‐hepatitis C virus activity by up‐regulating haeme oxygenase‐1 via the p38 MAPK/Nrf2 pathway in human hepatoma cells. Br. J. Pharmacol., 2014, 171(1), 237-252.
[http://dx.doi.org/10.1111/bph.12440] [PMID: 24117426]
[8]
Li, M.; Zhang, T.; Zhu, L.; Wang, R.; Jin, Y. Liposomal andrographolide dry powder inhalers for treatment of bacterial pneumonia via anti-inflammatory pathway. Int. J. Pharm., 2017, 528(1-2), 163-171.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.005] [PMID: 28583330]
[9]
Yang, E.J.; Song, K.S. Andrographolide, a major component of Andrographis paniculata leaves, has the neuroprotective effects on glutamate-induced HT22 cell death. J. Funct. Foods, 2014, 9(1), 162-172.
[http://dx.doi.org/10.1016/j.jff.2014.04.023]
[10]
Cheung, M.T.W.; Ramalingam, R.; Lau, K.K.K.; Chiang, M.W.L.; Chiu, S.K.; Cheung, H.Y.; Lam, Y.W. Cell type-dependent effects of andrographolide on human cancer cell lines. Life Sci., 2012, 91(15-16), 751-760.
[http://dx.doi.org/10.1016/j.lfs.2012.04.009] [PMID: 23047020]
[11]
Nanduri, S.; Nyavanandi, V.K.; Thunuguntla, S.R.S.; Kasu, S.; Pallerla, M.K.; Sai Ram, P.; Rajagopal, S.; Kumar, A.R.; Ramanujam, R.; Babu, M.J.; Vyas, K.; Devi, S.A.; Reddy, O.G.; Akella, V. Synthesis and structure–activity relationships of andrographolide analogues as novel cytotoxic agents. Bioorg. Med. Chem. Lett., 2004, 14(18), 4711-4717.
[http://dx.doi.org/10.1016/j.bmcl.2004.06.090] [PMID: 15324893]
[12]
Chen, D.; Song, Y.; Lu, Y.; Xue, X. Synthesis and in vitro cytotoxicity of andrographolide-19-oic acid analogues as anti-cancer agents. Bioorg. Med. Chem. Lett., 2013, 23(11), 3166-3169.
[http://dx.doi.org/10.1016/j.bmcl.2013.04.010] [PMID: 23628335]
[13]
Sirion, U.; Kasemsook, S.; Suksen, K.; Piyachaturawat, P.; Suksamrarn, A.; Saeeng, R. New substituted C-19-andrographolide analogues with potent cytotoxic activities. Bioorg. Med. Chem. Lett., 2012, 22(1), 49-52.
[http://dx.doi.org/10.1016/j.bmcl.2011.11.085] [PMID: 22154665]
[14]
Casamonti, M.; Risaliti, L.; Vanti, G.; Piazzini, V.; Bergonzi, M.C.; Bilia, A.R. Andrographolide loaded in micro- and nano-formulations: Improved bioavailability, target-tissue distribution, and efficacy of the “king of bitters”. Engineering, 2019, 5(1), 69-75.
[http://dx.doi.org/10.1016/j.eng.2018.12.004]
[15]
Ali, A.M.; Wang, W.; Chen, Q.Y. Structure and biomolecular recognition of nitro-BODIPY-andrographolide assembles for cancer treatment. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 263, 120180.
[http://dx.doi.org/10.1016/j.saa.2021.120180] [PMID: 34303221]
[16]
Maheri, H.; Hashemzadeh, F.; Shakibapour, N.; Kamelniya, E.; Malaekeh-Nikouei, B.; Mokaberi, P.; Chamani, J. Glucokinase activity enhancement by cellulose nanocrystals isolated from jujube seed: A novel perspective for type II diabetes mellitus treatment (in vitro). J. Mol. Struct., 2022, 1269, 133803.
[http://dx.doi.org/10.1016/j.molstruc.2022.133803]
[17]
Kalhori, F.; Yazdyani, H.; Khademorezaeian, F.; Hamzkanloo, N.; Mokaberi, P.; Hosseini, S.; Chamani, J. Enzyme activity inhibition properties of new cellulose nanocrystals from Citrus medica L. pericarp: A perspective of cholesterol lowering. Luminescence, 2022, 37(11), 1836-1845.
[http://dx.doi.org/10.1002/bio.4360] [PMID: 35946171]
[18]
Moosavi-Movahedi, A.A.; Chamani, J.; Ghourchian, H.; Shafiey, H.; Sorenson, C.M.; Sheibani, N. Electrochemical evidence for the molten globule states of cytochrome c induced by N-alkyl sulfates at low concentrations. J. Protein Chem., 2003, 22(1), 23-30.
[http://dx.doi.org/10.1023/A:1023011609931] [PMID: 12739895]
[19]
Kim, J.; Lee, J.; Lee, Y.M.; Pramanick, S.; Im, S.; Kim, W.J. Andrographolide-loaded polymerized phenylboronic acid nanoconstruct for stimuli-responsive chemotherapy. J. Control. Release, 2017, 259, 203-211.
[http://dx.doi.org/10.1016/j.jconrel.2016.10.029] [PMID: 27984106]
[20]
Zhang, J.; Li, Y.; Gao, W.; Repka, M.A.; Wang, Y.; Chen, M. Andrographolide-loaded PLGA-PEG-PLGA micelles to improve its bioavailability and anticancer efficacy. Expert Opin. Drug Deliv., 2014, 11(9), 1367-1380.
[http://dx.doi.org/10.1517/17425247.2014.924503] [PMID: 24935153]
[21]
Parveen, R.; Ahmad, F.J.; Iqbal, Z.; Samim, M.; Ahmad, S. Solid lipid nanoparticles of anticancer drug andrographolide: Formulation, in vitro and in vivo studies. Drug Dev. Ind. Pharm., 2014, 40(9), 1206-1212.
[http://dx.doi.org/10.3109/03639045.2013.810636] [PMID: 23826860]
[22]
Yen, C.C.; Chen, Y.C.; Wu, M.T.; Wang, C.C.; Wu, Y.T. Nanoemulsion as a strategy for improving the oral bioavailability and anti-inflammatory activity of andrographolide. Int. J. Nanomedicine, 2018, 13, 669-680.
[http://dx.doi.org/10.2147/IJN.S154824] [PMID: 29440893]
[23]
Demetzos, C. Differential Scanning Calorimetry (DSC): A tool to study the thermal behavior of lipid bilayers and liposomal stability. J. Liposome Res., 2008, 18(3), 159-173.
[http://dx.doi.org/10.1080/08982100802310261] [PMID: 18770070]
[24]
El-Hammadi, M.M.; Arias, J.L. An update on liposomes in drug delivery: A patent review (2014-2018). Expert Opin. Ther. Pat., 2019, 29(11), 891-907.
[http://dx.doi.org/10.1080/13543776.2019.1679767] [PMID: 31603360]
[25]
Sercombe, L.; Veerati, T.; Moheimani, F.; Wu, S.Y.; Sood, A.K.; Hua, S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol., 2015, 6(DEC), 286.
[http://dx.doi.org/10.3389/fphar.2015.00286] [PMID: 26648870]
[26]
El-Hachem, G.N.N.; Haibe-Kains, B.; Khalil, A.; Kobeissy, F.H. AutoDock and AutoDocktools for protein-ligand docking: Beta-site amyloid precursor protein cleaving enzyme 1(BACE1) as a case study. Neuro-proteomics, 2016, 1598, 391-403.
[27]
Ravindranath, P.A.; Forli, S.; Goodsell, D.S.; Olson, A.J.; Sanner, M.F. AutoDockFR: Advances in protein-ligand docking with explicitly specified binding site flexibility. PLOS Comput. Biol., 2015, 11(12), e1004586.
[http://dx.doi.org/10.1371/journal.pcbi.1004586] [PMID: 26629955]
[28]
An, T.N.M.; Alam, M.; Son, N.V.; Cuong, N.V.; Quang, N.M.; Tri, M.D.; Tan, L.V. Synthesis, physical chemistry, molecular docking, bioactivities and antioxidant activity of α-amino phosphonates based on phenothiazine using peg–400 as green catalyst. ChemistrySelect, 2019, 4(31), 8915-8920.
[http://dx.doi.org/10.1002/slct.201901560]
[29]
An, T.N.M.; Phuong, P.T.; Quang, N.M.; Son, N.V.; Cuong, N.V.; Tan, L.V.; Tri, M.D.; Alam, M.; Tat, P.V. Synthesis, docking study, cytotoxicity, antioxidant, and anti-microbial activities of novel 2,4-disubstituted thiazoles based on phenothiazine. Curr. Org. Synth., 2020, 17(2), 151-159.
[http://dx.doi.org/10.2174/1570179417666191220100614] [PMID: 32418517]
[30]
Tri, M.D.; Phat, N.T.; Minh, P.N.; Chi, M.T.; Hao, B.X.; Minh An, T.N.; Alam, M.; Van Kieu, N.; Dang, V.S.; Mai, T.T.N.; Duong, T.H. In vitro anti-inflammatory, in silico molecular docking and molecular dynamics simulation of oleanane-type triterpenes from aerial parts of Mussaenda recurvata. RSC Advances, 2023, 13(8), 5324-5336.
[http://dx.doi.org/10.1039/D2RA06870B] [PMID: 36793303]
[31]
Ha, N.D.T.; Phuong, T.; Cuong, N.V.; An, T.N.M. Novel benzimidazol-2-thione derivatives. Synthesis, in vitro anticancer, antimicrobial activities, and in silico molecular docking study. Chem. Select, 2023, 8(17), 2-13.
[32]
Vo, G.V.; Nguyen, T.H.T.; Nguyen, T.P.; Do, T.H.T.; Tran, N.M.A.; Nguyen, H.T.; Nguyen, T.T. In silico and in vitro studies on the anti-cancer activity of artemetin, vitexicarpin and penduletin compounds from Vitex negundo. Saudi Pharm. J., 2022, 30(9), 1301-1314.
[http://dx.doi.org/10.1016/j.jsps.2022.06.018] [PMID: 36249935]
[33]
Nguyen, H-H.; Tran, N-M-A.; Nguyen, T-H-T.; Vo, H-C.; Nguyen, C.H.; Nguyen, T-H-A.; Nguyen, N-H.; Duong, T-H. Rotenoids and coumaronochromonoids from Boerhavia erecta and their biological activities: In vitro and in silico studies. J. Saudi Chem. Soc., 2022, 26(4), 101489.
[http://dx.doi.org/10.1016/j.jscs.2022.101489]
[34]
Bell, E.W.; Zhang, Y. DockRMSD: An open-source tool for atom mapping and RMSD calculation of symmetric molecules through graph isomorphism. J. Cheminform., 2019, 11(1), 40.
[http://dx.doi.org/10.1186/s13321-019-0362-7] [PMID: 31175455]
[35]
Sargsyan, K.; Grauffel, C.; Lim, C. How molecular size impacts RMSD applications in molecular dynamics simulations. J. Chem. Theory Comput., 2017, 13(4), 1518-1524.
[http://dx.doi.org/10.1021/acs.jctc.7b00028] [PMID: 28267328]
[36]
Kim, J.E.; Lee, J.Y. Synthesis and electro-optic properties of novel Y-type polyimide containing nitrothiazolylazodioxyphenyl group. Mol. Cryst. Liq. Cryst., 2019, 688(1), 60-67.
[http://dx.doi.org/10.1080/15421406.2019.1651069]
[37]
Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; Chen, X.; Hou, T.; Cao, D. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res., 2021, 49(W1), W5-W14.
[http://dx.doi.org/10.1093/nar/gkab255] [PMID: 33893803]
[38]
Bitew, M.; Desalegn, T.; Demissie, T.B.; Belayneh, A.; Endale, M.; Eswaramoorthy, R. Pharmacokinetics and drug-likeness of antidiabetic flavonoids: Molecular docking and DFT study. PLoS One, 2021, 16(12), e0260853.
[http://dx.doi.org/10.1371/journal.pone.0260853] [PMID: 34890431]
[39]
Wang, Y.; Xing, J.; Xu, Y.; Zhou, N.; Peng, J.; Xiong, Z.; Liu, X.; Luo, X.; Luo, C.; Chen, K.; Zheng, M.; Jiang, H. In silico ADME/T modelling for rational drug design. Q. Rev. Biophys., 2015, 48(4), 488-515.
[http://dx.doi.org/10.1017/S0033583515000190] [PMID: 26328949]
[40]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2012, 64, 4-17.
[http://dx.doi.org/10.1016/j.addr.2012.09.019] [PMID: 11259830]
[41]
Sharifi-Rad, A.; Mehrzad, J.; Darroudi, M.; Saberi, M.R.; Chamani, J. Oil-in-water nanoemulsions comprising Berberine in olive oil: Biological activities, binding mechanisms to human serum albumin or holo-transferrin and QMMD simulations. J. Biomol. Struct. Dyn., 2021, 39(3), 1029-1043.
[http://dx.doi.org/10.1080/07391102.2020.1724568] [PMID: 32000592]
[42]
Rahmani, R.; Gharanfoli, M.; Gholamin, M.; Darroudi, M.; Chamani, J.; Sadri, K.; Hashemzadeh, A. Plant-mediated synthesis of superparamagnetic iron oxide nanoparticles (SPIONs) using aloe vera and flaxseed extracts and evaluation of their cellular toxicities. Ceram. Int., 2020, 46(3), 3051-3058.
[http://dx.doi.org/10.1016/j.ceramint.2019.10.005]
[43]
Zhang, X.; Guo, J.; Gao, C.; Kiyingi, W.; Wang, L.; Fei, D.; Peng, Z.; Li, J.; Dong, J. A molecular study of viscosity-causing mechanism and viscosity reduction through re-emulsification for Jimsar shale oil. J. Mol. Liq., 2023, 392, 123470.
[http://dx.doi.org/10.1016/j.molliq.2023.123470]
[44]
Esfandiari, M.Z.; Noghani, R.A.; Sohrabi, T.; Mokaberi, P.; Tehranizadeh, A.Z.; Chamani, J. Molecular dynamics and multi-spectroscopic of the interaction behavior between bladder cancer cells and calf thymus DNA with rebeccamycin: Apoptosis through the down regulation of PI3K/AKT signaling pathway. J. Fluoresc., 2023, 33(4), 1537-1557.
[http://dx.doi.org/10.1007/s10895-023-03169-4] [PMID: 36787038]
[45]
Nguyen, N.H.; Tran, N.M.A.; Duong, T.H.; Vo, G.V. α-Glucosidase inhibitory activities of flavonoid derivatives isolated from Bouea macrophylla: In vitro and in silico studies. RSC Advances, 2023, 13(12), 8190-8201.
[http://dx.doi.org/10.1039/D3RA00650F] [PMID: 36922943]
[46]
Duy Tuy Ha, N.; Phuong, T.; Van Cuong, N.; An, N.M.T.; Nguyen, T.; An, M. Novel benzimidazol‐2‐thione derivatives: Synthesis, in vitro anticancer, antimicrobial activities, and in silico molecular docking study. ChemistrySelect, 2023, 8(17), e202300246.
[http://dx.doi.org/10.1002/slct.202300246]
[47]
Mai, T.C.; Tran, N.T.; Mai, D.T.; Ngoc Mai, T.T.; Thuc Duyen, N.H.; Minh An, T.N.; Alam, M.; Dang, C.H.; Nguyen, T.D. Supercritical CO2 assisted extraction of essential oil and naringin from Citrus grandis peel: In vitro antimicrobial activity and docking study. RSC Advances, 2022, 12(40), 25962-25976.
[http://dx.doi.org/10.1039/D2RA04068A] [PMID: 36199614]
[48]
Nguyen, H.T.; Nguyen, T.T.; Duong, T.H.; Tran, N.M.; Nguyen, C.H.; Nguyen, T.H.; Sichaem, J. α-Glucosidase inhibitory and antimicrobial benzoylphloroglucinols from garcinia schomburgakiana fruits: In vitro and in silico studies. Molecules, 2022, 27(8), 27082574.
[49]
Dao, T.B.N.; Nguyen, T.M.T.; Nguyen, V.Q.; Tran, T.M.D.; Tran, N.M.A.; Nguyen, C.H.; Nguyen, T.H.T.; Nguyen, H.H.; Sichaem, J.; Tran, C.L.; Duong, T.H. Flavones from combretum quadrangulare growing in vietnam and their alpha-glucosidase inhibitory activity. Molecules, 2021, 26(9), 2531.
[http://dx.doi.org/10.3390/molecules26092531] [PMID: 33926133]
[50]
Nguyen, T.H.D.; Tuyen, K.P.; An, N.M.T.; Huy, T.N.; Duc-Dung, P.; Trang, T.Q.N.; Anh, T.H.N.; Tri, H.N.; Hung, T.D.; Ngoc-Hong, N. Design, modification, and bio-evaluation of salazinic acid derivatives. Arab. J. Chem., 2021, 15(1), 2-5.
[51]
Jongkees, S.A.K.; Caner, S.; Tysoe, C.; Brayer, G.D.; Withers, S.G.; Suga, H. Rapid discovery of potent and selective glycosidase-inhibiting de novo peptides. Cell Chem. Biol., 2017, 24(3), 381-390.
[http://dx.doi.org/10.1016/j.chembiol.2017.02.001] [PMID: 28262556]
[52]
Figueroa, H.S.; Luévano, R.A.; Pérez, A.J.C.; Martínez, G.A.; Andrade, O.R.; Rivera, L.I.; Vázquez, N.G. Synthesis, molecular docking, dynamic simulation and pharmacological characterization of potent multifunctional agent (dual GPR40-PPARγ agonist) for the treatment of experimental type 2 diabetes. Eur. J. Pharmacol., 2021, 907, 174244.
[http://dx.doi.org/10.1016/j.ejphar.2021.174244] [PMID: 34116041]
[53]
Tran, C.L. Alpha-glucosidase inhibitory diterpenes from euphorbia antiquorum growing in vietnam. Molecules, 2021, 26(8), 2257.
[54]
Sichaem, J.; Aree, T.; Lugsanangarm, K.; Tip-pyang, S. Identification of highly potent α-glucosidase inhibitory and antioxidant constituents from Zizyphus rugosa bark: Enzyme kinetic and molecular docking studies with active metabolites. Pharm. Biol., 2017, 55(1), 1436-1441.
[http://dx.doi.org/10.1080/13880209.2017.1304426] [PMID: 28320255]
[55]
Tran, H.H.T.; Nguyen, M.C.; Le, H.T.; Nguyen, T.L.; Pham, T.B.; Chau, V.M.; Nguyen, H.N.; Nguyen, T.D. Inhibitors of α-glucosidase and α-amylase from Cyperus rotundus. Pharm. Biol., 2014, 52(1), 74-77.
[http://dx.doi.org/10.3109/13880209.2013.814692] [PMID: 24044731]
[56]
Nguyen, N.H.; Vu, Y.T.; Nguyen, T.D.; Cao, T.T.; Nguyen, H.T.; Le, T.K.D.; Sichaem, J.; Mai, D.T.; Minh An, T.N.; Duong, T.H. Bio-guided isolation of alpha-glucosidase inhibitory compounds from Vietnamese Garcinia schomburgkiana fruits: In vitro and in silico studies. RSC Advances, 2023, 13(50), 35408-35421.
[http://dx.doi.org/10.1039/D3RA06760B] [PMID: 38053690]
[57]
Duong, T.H.; An, T.N.M.; Le, T.K.D.; Tran, T.M.D.; Nguyen, H.T.; Nguyen, T.H.A.; Nguyen, N.H.; Sichaem, J. Parmoferone A, a new depsidone from the lichen Parmotrema cristiferum. Nat. Prod. Res., 2023, 1-6.
[http://dx.doi.org/10.1080/14786419.2023.2193746] [PMID: 36999530]
[58]
D. E. Shaw Research. Desmond version 3.0 tutorial., 2011. Available from: https://ccp4bb.blogspot.com/2011/10/desmond-30-tutorial-oct-5-in-bostonma.html?m=0
[59]
Ece, A. Computer-aided drug design. BMC Chem., 2023, 17(1), 26.
[http://dx.doi.org/10.1186/s13065-023-00939-w]
[60]
Shih, Y.J.; Su, C.C.; Chen, C.W.; Dong, C.D.; Liu, W.; Huang, C.P. Adsorption characteristics of nano-TiO2 onto zebrafish embryos and its impacts on egg hatching. Chemosphere, 2016, 154, 109-117.
[http://dx.doi.org/10.1016/j.chemosphere.2016.03.061] [PMID: 27043376]
[61]
Bhachoo, J.; Beuming, T. Investigating protein–peptide interactions using the Schrödinger computational suite. Methods Mol. Biol., 2017, 1561, 235-254.
[http://dx.doi.org/10.1007/978-1-4939-6798-8_14] [PMID: 28236242]
[62]
Ash, J.; Fourches, D. Characterizing the chemical space of ERK2 kinase inhibitors using descriptors computed from molecular dynamics trajectories. J. Chem. Inf. Model., 2017, 57(6), 1286-1299.
[http://dx.doi.org/10.1021/acs.jcim.7b00048] [PMID: 28471171]
[63]
Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1-2(2), 19-25.
[http://dx.doi.org/10.1016/j.softx.2015.06.001]
[64]
Schüttelkopf, A.W.; van Aalten, D.M.F. PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr. D Biol. Crystallogr., 2004, 60(8), 1355-1363.
[http://dx.doi.org/10.1107/S0907444904011679] [PMID: 15272157]
[65]
Chiu, S.W.; Pandit, S.A.; Scott, H.L.; Jakobsson, E. An improved united atom force field for simulation of mixed lipid bilayers. J. Phys. Chem. B, 2009, 113(9), 2748-2763.
[http://dx.doi.org/10.1021/jp807056c] [PMID: 19708111]
[66]
Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem., 2005, 26(16), 1701-1718.
[http://dx.doi.org/10.1002/jcc.20291] [PMID: 16211538]
[67]
Danaei, M.; Dehghankhold, M.; Ataei, S.; Davarani, H.F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 2018, 10(2), 57.
[http://dx.doi.org/10.3390/pharmaceutics10020057] [PMID: 29783687]
[68]
Chibowski, E.; Szcześ, A. Zeta potential and surface charge of DPPC and DOPC liposomes in the presence of PLC enzyme. Adsorption, 2016, 22(4-6), 755-765.
[http://dx.doi.org/10.1007/s10450-016-9767-z]
[69]
Giannini, G.; Cabri, W.; Fattorusso, C.; Rodriquez, M. Histone deacetylase inhibitors in the treatment of cancer: Overview and perspectives. Future Med. Chem., 2012, 4(11), 1439-1460.
[http://dx.doi.org/10.4155/fmc.12.80] [PMID: 22857533]
[70]
Staker, B.L.; Feese, M.D.; Cushman, M.; Pommier, Y.; Zembower, D.; Stewart, L.; Burgin, A.B. Structures of three classes of anticancer agents bound to the human topoisomerase I-DNA covalent complex. J. Med. Chem., 2005, 48(7), 2336-2345.
[http://dx.doi.org/10.1021/jm049146p] [PMID: 15801827]
[71]
Rao, K.Y.; Vimalamma, G.; Rao, V.B.C.; Tzeng, Y.M. Flavonoids and andrographolides from Andrographis paniculata. Phytochemistry, 2004, 65(16), 2317-2321.
[http://dx.doi.org/10.1016/j.phytochem.2004.05.008] [PMID: 15381002]
[72]
Takakuni, N. NII-Electronic Library Service. , 1994. Available from: https://www.nii.ac.jp/en/about/library/
[73]
Yang, T.; Cui, F.D.; Choi, M.K.; Lin, H.; Chung, S.J.; Shim, C.K.; Kim, D.D. Liposome formulation of paclitaxel with enhanced solubility and stability. Drug Deliv., 2007, 14(5), 301-308.
[http://dx.doi.org/10.1080/10717540601098799] [PMID: 17613018]
[74]
Chen, Y.; Wu, Q.; Zhang, Z.; Yuan, L.; Liu, X.; Zhou, L. Preparation of curcumin-loaded liposomes and evaluation of their skin permeation and pharmacodynamics. Molecules, 2012, 17(5), 5972-5987.
[http://dx.doi.org/10.3390/molecules17055972] [PMID: 22609787]
[75]
Khan, S.U.; Ahemad, N.; Chuah, L.H.; Naidu, R.; Htar, T.T. Illustrated step by step protocol to perform molecular docking: Human estrogen receptor complex with 4-hydroxytamoxifen as a case study. PDDBS, 2020, 3(1), a0000054.
[76]
Holian, B.L.; Voter, A.F.; Ravelo, R. Thermostatted molecular dynamics: How to avoid the Toda demon hidden in Nosé-Hoover dynamics. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 1995, 52(3), 2338-2347.
[http://dx.doi.org/10.1103/PhysRevE.52.2338] [PMID: 9963676]
[77]
Mackerell, A.D., Jr; Feig, M.; Brooks III, C.L. Extending the treatment of backbone energetics in protein force fields: Limitations of gas‐phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem., 2004, 25(11), 1400-1415.
[http://dx.doi.org/10.1002/jcc.20065] [PMID: 15185334]
[78]
Chamani, J.; Vahedian-Movahed, H.; Saberi, M.R. Lomefloxacin promotes the interaction between human serum albumin and transferrin: A mechanistic insight into the emergence of antibiotic’s side effects. J. Pharm. Biomed. Anal., 2011, 55(1), 114-124.
[http://dx.doi.org/10.1016/j.jpba.2010.12.029] [PMID: 21273024]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy