Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Development of New N- and S-substituted-imidazolidin-4-one Analogues with Potent Anti-breast Cancer Activity: In vitro Molecular Docking Assessment

Author(s): Dalal Nasser Binjawhar, Arwa Sultan Alqahtani, Ola A. Abu Ali, Eman Fayad*, Fawziah A. Al-Salmi, Ibrahim Mohey El-Deen and Mohamed Ahmed Elian Sophy*

Volume 28, Issue 16, 2024

Published on: 21 May, 2024

Page: [1278 - 1287] Pages: 10

DOI: 10.2174/0113852728298899240402083333

Price: $65

Abstract

2-Thioxoimidazolidin-4-one derivatives 3, 4, 7, 8, and 9 have been synthesized from 3- (benzylideneamino)-2-thioxoimidazolidin-4-one (2) as a starting material. Compounds 3, 4, 7, 8, and 9 were obtained via the reaction of compound (2) with ethyl chloroacetate, methyl acrylate, and chlorophenacyl bromide, respectively. Elemental analysis and several spectroscopy techniques were used to confirm the synthesized compounds. The synthesized compounds, particularly compounds 7 and 8, exhibited significant cytotoxic influences on MCF-7 cells, surpassing staurosporine. Compounds 7 and 8 can induce apoptosis in those treated MCF-7 cells. Studying molecular docking approved that compounds 7 and 8 bind in two and three dimensions to the aromatase binding pockets. Molecular modeling indicates compounds 7 and 8 have a strong affinity for human topoisomerase II beta, establishing its promise as a multifaceted antitumor agent for breast cancer.

Graphical Abstract

[1]
Waks, A.G.; Winer, E.P. Breast cancer treatment. JAMA, 2019, 321(3), 288-300.
[http://dx.doi.org/10.1001/jama.2018.19323] [PMID: 30667505]
[2]
Loibl, S.; Poortmans, P.; Morrow, M.; Denkert, C.; Curigliano, G. Breast cancer. Lancet, 2021, 397(10286), 1750-1769.
[http://dx.doi.org/10.1016/S0140-6736(20)32381-3] [PMID: 33812473]
[3]
Harbeck, N.; Penault-Llorca, F.; Cortes, J.; Gnant, M.; Houssami, N.; Poortmans, P.; Ruddy, K.; Tsang, J.; Cardoso, F. Breast cancer. Nat. Rev. Dis. Primers, 2019, 5(1), 66.
[http://dx.doi.org/10.1038/s41572-019-0111-2] [PMID: 31548545]
[4]
Tong, C.W.S.; Wu, M.; Cho, W.C.S.; To, K.K.W. Recent advances in the treatment of breast cancer. Front. Oncol., 2018, 8, 227.
[http://dx.doi.org/10.3389/fonc.2018.00227] [PMID: 29963498]
[5]
McAndrew, N.P.; Finn, R.S. Clinical review on the management of hormone receptor–positive metastatic breast cancer. JCO Oncol. Pract., 2022, 18(5), 319-327.
[http://dx.doi.org/10.1200/OP.21.00384] [PMID: 34637323]
[6]
Ghantasala, G.S.P.; Hung, B.T.; Chakrabarti, P. An approach for cervical and breast cancer classification using deep learning: A comprehensive survey. 2023International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India23-25 January 2023, pp. 1-6.
[7]
Oussama, M.N.K.; Atord, M. Guidelines for the early detection and screening of breast cancer; World Health Organization (EMRO30) 2008, 1-55.
[8]
El-Tanani, M.; Al Khatib, A.O.; Al-Najjar, B.O.; Shakya, A.K.; El-Tanani, Y.; Lee, Y.F.; Serrano-Aroca, Á.; Mishra, V.; Mishra, Y.; Aljabali, A.A.; Goyal, R.; Negi, P.; Farani, M.R.; Binabaj, M.M.; Gholami, A.; Charbe, N.B.; Tambuwala, M.M.; Tambuwala, M.M. Cellular and molecular basis of therapeutic approaches to breast cancer. Cell. Signal., 2023, 101, 110492.
[http://dx.doi.org/10.1016/j.cellsig.2022.110492] [PMID: 36241056]
[9]
Zhang, H.; Lin, X.; Huang, Y.; Wang, M.; Cen, C.; Tang, S.; Dique, M.R.; Cai, L.; Luis, M.A.; Smollar, J.; Wan, Y.; Cai, F. Detection methods and clinical applications of circulating tumor cells in breast cancer. Front. Oncol., 2021, 11, 652253.
[http://dx.doi.org/10.3389/fonc.2021.652253] [PMID: 34150621]
[10]
Mutebi, M.; Anderson, B.O.; Duggan, C.; Adebamowo, C.; Agarwal, G.; Ali, Z.; Bird, P.; Bourque, J.M.; DeBoer, R.; Gebrim, L.H.; Masetti, R.; Masood, S.; Menon, M.; Nakigudde, G.; Ng’ang’a, A.; Niyonzima, N.; Rositch, A.F.; Unger-Saldaña, K.; Villarreal-Garza, C.; Dvaladze, A.; El Saghir, N.S.; Gralow, J.R.; Eniu, A. Breast cancer treatment: A phased approach to implementation. Cancer, 2020, 126(S10)(Suppl. 10), 2365-2378.
[http://dx.doi.org/10.1002/cncr.32910] [PMID: 32348571]
[11]
Akram Hussain, S.M. Molecular-based screening and therapeutics of breast and ovarian cancer in low- and middle-income countries. Cancer Res Stat Treat., 2020, 3(1), 81.
[http://dx.doi.org/10.4103/CRST.CRST_2_20]
[12]
Debela, D.T.; Muzazu, S.G.Y.; Heraro, K.D.; Ndalama, M.T.; Mesele, B.W.; Haile, D.C.; Kitui, S.K.; Manyazewal, T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med., 2021, 9.
[http://dx.doi.org/10.1177/20503121211034366] [PMID: 34408877]
[13]
Baust, J.G.; Gage, A.A.; Bjerklund Johansen, T.E.; Baust, J.M. Mechanisms of cryoablation: Clinical consequences on malignant tumors. Cryobiology, 2014, 68(1), 1-11.
[http://dx.doi.org/10.1016/j.cryobiol.2013.11.001] [PMID: 24239684]
[14]
Abdulrahman, L.K.; Al-Mously, M.M.; Al-Mosuli, M.L.; Al-Azzawii, K.K. The biological activity of 5, 5′-imidazolidine-2, 4-dione derivatives. Int. J. Pharm. Pharm. Sci., 2013, 5, 494-504.
[15]
Cho, S.; Kim, S.H.; Shin, D. Recent applications of hydantoin and thiohydantoin in medicinal chemistry. Eur. J. Med. Chem., 2019, 164, 517-545.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.066] [PMID: 30622025]
[16]
Porwal, S.; Chauhan, S.S.; Chauhan, P.M.S.; Shakya, N.; Verma, A.; Gupta, S. Discovery of novel antileishmanial agents in an attempt to synthesize pentamidine-aplysinopsin hybrid molecule. J. Med. Chem., 2009, 52(19), 5793-5802.
[http://dx.doi.org/10.1021/jm900564x] [PMID: 19743860]
[17]
Bialonska, D.; Zjawiony, J.K. Aplysinopsins--marine indole alkaloids: Chemistry, bioactivity and ecological significance. Mar. Drugs, 2009, 7(2), 166-183.
[http://dx.doi.org/10.3390/md7020166] [PMID: 19597579]
[18]
Selič, L.; Jakše, R.; Lampič, K.; Golič, L.; Golič-Grdadolnik, S.; Stanovnik, B. A simple stereoselective synthesis of aplysinopsin analogs. Helv. Chim. Acta, 2000, 83(10), 2802-2811.
[http://dx.doi.org/10.1002/1522-2675(20001004)83:10<2802:AID-HLCA2802>3.0.CO;2-9]
[19]
Siehl, D.L.; Subramanian, M.V.; Walters, E.W.; Lee, S.F.; Anderson, R.J.; Toschi, A.G. Adenylosuccinate synthetase: Site of action of hydantocidin, a microbial phytotoxin. Plant Physiol., 1996, 110(3), 753-758.
[http://dx.doi.org/10.1104/pp.110.3.753] [PMID: 8819867]
[20]
Angyal, A.; Demjén, A.; Wölfling, J.; Puskás, L.G.; Kanizsai, I. Acid-catalyzed 1,3-dipolar cycloaddition of 2H-azirines with nitrones: An unexpected access to 1,2,4,5-tetrasubstituted imidazoles. J. Org. Chem., 2020, 85(5), 3587-3595.
[http://dx.doi.org/10.1021/acs.joc.9b03288] [PMID: 32020808]
[21]
Muccioli, G.G.; Fazio, N.; Scriba, G.K.E.; Poppitz, W.; Cannata, F.; Poupaert, J.H.; Wouters, J.; Lambert, D.M. Substituted 2-thioxoimidazolidin-4-ones and imidazolidine-2,4-diones as fatty acid amide hydrolase inhibitors templates. J. Med. Chem., 2006, 49(1), 417-425.
[http://dx.doi.org/10.1021/jm050977k] [PMID: 16392827]
[22]
Kim, H.R.; Lee, H.J.; Choi, Y.J.; Park, Y.J.; Woo, Y.; Kim, S.J.; Park, M.H.; Lee, H.W.; Chun, P.; Chung, H.Y.; Moon, H.R. Benzylidene-linked thiohydantoin derivatives as inhibitors of tyrosinase and melanogenesis: Importance of the β-phenyl-α,β-unsaturated carbonyl functionality. MedChemComm, 2014, 5(9), 1410-1417.
[http://dx.doi.org/10.1039/C4MD00171K]
[23]
Marton, J.; Enisz, J.; Hosztafi, S.; Timar, T. Preparation and fungicidal activity of 5-substituted hydantoins and their 2-thio analogs. J. Agric. Food Chem., 1993, 41(1), 148-152.
[http://dx.doi.org/10.1021/jf00025a031]
[24]
Han, J.; Dong, H.; Xu, Z.; Lei, J.; Wang, M. Facile synthesis of 5-arylidene thiohydantoin by sequential sulfonylation/desulfination reaction. Int. J. Mol. Sci., 2013, 14(6), 12484-12495.
[http://dx.doi.org/10.3390/ijms140612484] [PMID: 23765221]
[25]
Tejchman, W.; Orwat, B.; Korona-Głowniak, I.; Barbasz, A.; Kownacki, I.; Latacz, G.; Handzlik, J.; Żesławska, E.; Malm, A. Highly efficient microwave synthesis of rhodanine and 2-thiohydantoin derivatives and determination of relationships between their chemical structures and antibacterial activity. RSC Advances, 2019, 9(67), 39367-39380.
[http://dx.doi.org/10.1039/C9RA08690K] [PMID: 35540630]
[26]
Tejchman, W.; Korona-Glowniak, I.; Malm, A.; Zylewski, M.; Suder, P. Antibacterial properties of 5-substituted derivatives of rhodanine-3-carboxyalkyl acids. Med. Chem. Res., 2017, 26(6), 1316-1324.
[http://dx.doi.org/10.1007/s00044-017-1852-7] [PMID: 28515623]
[27]
Camargo, P.G.; Bortoleti, B.T.S.; Fabris, M.; Gonçalves, M.D.; Tomiotto-Pellissier, F.; Costa, I.N.; Conchon-Costa, I.; Lima, C.H.S.; Pavanelli, W.R.; Bispo, M.L.F.; Macedo, F., Jr Thiohydantoins as anti-leishmanial agents: In vitro biological evaluation and multi-target investigation by molecular docking studies. J. Biomol. Struct. Dyn., 2022, 40(7), 3213-3222.
[http://dx.doi.org/10.1080/07391102.2020.1845979] [PMID: 33183184]
[28]
Buchynskyy, A.; Gillespie, J.R.; Herbst, Z.M.; Ranade, R.M.; Buckner, F.S.; Gelb, M.H. 1-Benzyl-3-aryl-2-thiohydantoin derivatives as new anti-Trypanosoma brucei agents: SAR and in vivo efficacy. ACS Med. Chem. Lett., 2017, 8(8), 886-891.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00230] [PMID: 28835807]
[29]
Wu, F.; Jiang, H.; Zheng, B.; Kogiso, M.; Yao, Y.; Zhou, C.; Li, X.N.; Song, Y. Inhibition of cancer-associated mutant isocitrate dehydrogenases by 2-thiohydantoin compounds. J. Med. Chem., 2015, 58(17), 6899-6908.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00684] [PMID: 26280302]
[30]
Gediya, L.K.; Njar, V.C.O. Promise and challenges in drug discovery and development of hybrid anticancer drugs. Expert Opin. Drug Discov., 2009, 4(11), 1099-1111.
[http://dx.doi.org/10.1517/17460440903341705] [PMID: 23480431]
[31]
Rialdi, A.; Campisi, L.; Zhao, N.; Lagda, A.C.; Pietzsch, C.; Ho, J.S.Y.; Martinez-Gil, L.; Fenouil, R.; Chen, X.; Edwards, M.; Metreveli, G.; Jordan, S.; Peralta, Z.; Munoz-Fontela, C.; Bouvier, N.; Merad, M.; Jin, J.; Weirauch, M.; Heinz, S.; Benner, C.; van Bakel, H.; Basler, C.; García-Sastre, A.; Bukreyev, A.; Marazzi, I. Topoisomerase 1 inhibition suppresses inflammatory genes and protects from death by inflammation. Science, 2016, 352(6289), aad7993.
[http://dx.doi.org/10.1126/science.aad7993] [PMID: 27127234]
[32]
Claudio Viegas-Junior; Danuello, A.; da Silva Bolzani, V.; Barreiro, E.J.; Fraga, C.A.M. Molecular hybridization: A useful tool in the design of new drug prototypes. Curr. Med. Chem., 2007, 14(17), 1829-1852.
[http://dx.doi.org/10.2174/092986707781058805] [PMID: 17627520]
[33]
Fershtat, L.L.; Makhova, N.N. Molecular hybridization tools in the development of furoxan-based no-donor prodrugs. ChemMedChem, 2017, 12(9), 622-638.
[http://dx.doi.org/10.1002/cmdc.201700113] [PMID: 28371340]
[34]
Sztanke, K.; Maziarka, A.; Osinka, A.; Sztanke, M. An insight into synthetic Schiff bases revealing antiproliferative activities in vitro. Bioorg. Med. Chem., 2013, 21(13), 3648-3666.
[http://dx.doi.org/10.1016/j.bmc.2013.04.037] [PMID: 23673213]
[35]
Kajal, A.; Bala, S.; Kamboj, S.; Sharma, N.; Saini, V. Schiff bases: A versatile pharmacophore. J. Catal., 2013, 2013, 1-14.
[http://dx.doi.org/10.1155/2013/893512]
[36]
Chigurupati, S.; Selvaraj, M.; Mani, V.; Mohammad, J.I.; Selvarajan, K.K.; Akhtar, S.S.; Marikannan, M.; Raj, S.; Teh, L.K.; Salleh, M.Z. Synthesis of azomethines derived from cinnamaldehyde and vanillin: In vitro aetylcholinesterase inhibitory, antioxidant and in silico molecular docking studies. Med. Chem. Res., 2018, 27(3), 807-816.
[http://dx.doi.org/10.1007/s00044-017-2104-6]
[37]
Channar, P.A.; Bano, S.; Hassan, S.; Perveen, F.; Saeed, A.; Mahesar, P.A.; Khan, I.A.; Iqbal, J. Appraisal of novel azomethine–thioxoimidazolidinone conjugates as ecto-5′-nucleotidase inhibitors: Synthesis and molecular docking studies. RSC Advances, 2022, 12(27), 17596-17606.
[http://dx.doi.org/10.1039/D2RA02675A] [PMID: 35765454]
[38]
Saied, E.M.; Arenz, C. Stereoselective synthesis of novel sphingoid bases utilized for exploring the secrets of sphinx. Int. J. Mol. Sci., 2021, 22(15), 8171.
[http://dx.doi.org/10.3390/ijms22158171] [PMID: 34360937]
[39]
Saied, E.M.; Diederich, S.; Arenz, C. Facile synthesis of the CERT inhibitor HPA-12 and some novel derivatives. Chem. Asian J., 2014, 9(8), 2092-2094.
[http://dx.doi.org/10.1002/asia.201402241] [PMID: 24888419]
[40]
Saied, E.M.; Banhart, S.; Bürkle, S.E.; Heuer, D.; Arenz, C. A series of ceramide analogs modified at the 1-position with potent activity against the intracellular growth of Chlamydia trachomatis. Future Med. Chem., 2015, 7(15), 1971-1980.
[http://dx.doi.org/10.4155/fmc.15.126] [PMID: 26496536]
[41]
Abdel-Wahab, B.A. F Abd El-Kareem, H.; Alzamami, A.; A Fahmy, C.; H Elesawy, B.; Mostafa Mahmoud, M.; Ghareeb, A.; El Askary, A.; H Abo Nahas, H.; G M Attallah, N.; Altwaijry, N.; M Saied, E. Novel exopolysaccharide from marine Bacillus subtilis with broad potential biological activities: Insights into antioxidant, anti-inflammatory, cytotoxicity, and anti-alzheimer activity. Metabolites, 2022, 12(8), 715.
[http://dx.doi.org/10.3390/metabo12080715] [PMID: 36005587]
[42]
Banhart, S.; Saied, E.M.; Martini, A.; Koch, S.; Aeberhard, L.; Madela, K.; Arenz, C.; Heuer, D. Improved plaque assay identifies a novel anti-Chlamydia ceramide derivative with altered intracellular localization. Antimicrob. Agents Chemother., 2014, 58(9), 5537-5546.
[http://dx.doi.org/10.1128/AAC.03457-14] [PMID: 25001308]
[43]
Salem, M.G.; El-Maaty, D.M.A.; El-Deen, Y.I.M.; Elesawy, B.H.; Askary, A.E.; Saleh, A.; Saied, E.M.; Behery, M.E. Novel 1,3-thiazole analogues with potent activity against breast cancer: A design, synthesis, in vitro, and in silico study. Molecules, 2022, 27(15), 4898.
[http://dx.doi.org/10.3390/molecules27154898] [PMID: 35956848]
[44]
El Azab, I.H.; Saied, E.M.; Osman, A.A.; Mehana, A.E.; Saad, H.A.; Elkanzi, N.A.A. Novel N-bridged pyrazole-1-carbothioamides with potential antiproliferative activity: Design, synthesis, in vitro and in silico studies. Future Med. Chem., 2021, 13(20), 1743-1766.
[http://dx.doi.org/10.4155/fmc-2021-0066] [PMID: 34427113]
[45]
Gaber, A.; Alsanie, W.F.; Kumar, D.N.; Refat, M.S.; Saied, E.M. Novel papaverine metal complexes with potential anticancer activities. Molecules, 2020, 25(22), 5447.
[http://dx.doi.org/10.3390/molecules25225447] [PMID: 33233775]
[46]
Samaha, D.; Hamdo, H.H.; Cong, X.; Schumacher, F.; Banhart, S.; Aglar, Ö.; Möller, H.M.; Heuer, D.; Kleuser, B.; Saied, E.M.; Arenz, C. Liposomal FRET assay identifies potent drug-like inhibitors of the ceramide transport protein (CERT). Chemistry, 2020, 26(70), 16616-16621.
[http://dx.doi.org/10.1002/chem.202003283] [PMID: 33047409]
[47]
Avner, B.S.; Fialho, A.M.; Chakrabarty, A.M. Overcoming drug resistance in multi-drug resistant cancers and microorganisms. Bioengineered, 2012, 3(5), 262-270.
[http://dx.doi.org/10.4161/bioe.21130] [PMID: 22750915]
[48]
Haslak, Z.P.; Agopcan Cinar, S.; Sarigul Ozbek, S.; Monard, G.; Dogan, I.; Aviyente, V. Elucidation of the atroposelectivity in the synthesis of axially chiral thiohydantoin derivatives. Org. Biomol. Chem., 2020, 18(12), 2233-2241.
[http://dx.doi.org/10.1039/C9OB02556A] [PMID: 32022073]
[49]
Králová, P.; Maloň, M.; Koshino, H.; Soural, M. Convenient synthesis of thiohydantoins, imidazole-2-thiones and imidazo[2,1-b]thiazol-4-iums from polymer-supported α-acylamino ketones. Molecules, 2018, 23(4), 976.
[http://dx.doi.org/10.3390/molecules23040976] [PMID: 29690582]
[50]
Metwally, M.A.; Abdel-Latif, E. Thiohydantoins: Synthetic strategies and chemical reactions. J. Sulfur Chem., 2012, 33(2), 229-257.
[http://dx.doi.org/10.1080/17415993.2011.643550]
[51]
Muccioli, G.G.; Poupaert, J.H.; Wouters, J.; Norberg, B.; Poppitz, W.; Scriba, G.K.E.; Lambert, D.M. A rapid and efficient microwave-assisted synthesis of hydantoins and thiohydantoins. Tetrahedron, 2003, 59(8), 1301-1307.
[http://dx.doi.org/10.1016/S0040-4020(03)00033-4]
[52]
Elokdah, H.; Sulkowski, T.S.; Abou-Gharbia, M.; Butera, J.A.; Chai, S.Y.; McFarlane, G.R.; McKean, M.L.; Babiak, J.L.; Adelman, S.J.; Quinet, E.M. Design, synthesis, and biological evaluation of thio-containing compounds with serum HDL-cholesterol-elevating properties. J. Med. Chem., 2004, 47(3), 681-695.
[http://dx.doi.org/10.1021/jm030219z] [PMID: 14736248]
[53]
Kokotos, C.G.; Limnios, D.; Triggidou, D.; Trifonidou, M.; Kokotos, G. Novel pyrrolidine-thiohydantoins/thioxotetrahydropyrimidinones as highly effective catalysts for the asymmetric Michael addition. Org. Biomol. Chem., 2011, 9(9), 3386-3395.
[http://dx.doi.org/10.1039/c0ob01083a] [PMID: 21423944]
[54]
Shipman, M.; Montagne, C. Modified bucherer-bergs reaction for the one-pot synthesis of 5, 50-disubstituted hydantoins from nitriles and organometallic reagents. Synlett, 2006, 2006(14), 2203-2206.
[http://dx.doi.org/10.1055/s-2006-949644]
[55]
Wang, Z.; Sheikh, S.; Zhang, Y. A simple synthesis of 2-thiohydantoins. Molecules, 2006, 11(10), 739-750.
[http://dx.doi.org/10.3390/11100739] [PMID: 17971750]
[56]
Majumdar, P.; Bathula, C.; Basu, S.M.; Das, S.K.; Agarwal, R.; Hati, S.; Singh, A.; Sen, S.; Das, B.B. Design, synthesis and evaluation of thiohydantoin derivatives as potent topoisomerase I (Top1) inhibitors with anticancer activity. Eur. J. Med. Chem., 2015, 102, 540-551.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.032] [PMID: 26312433]
[57]
Gauthier, M.P.; Michaux, C.; Rolin, S.; Vastersaegher, C.; de Leval, X.; Julémont, F.; Pochet, L.; Masereel, B. Synthesis, molecular modelling and enzymatic evaluation of (±)3,5-diphenyl-2-thioxoimidazolidin-4-ones as new potential cyclooxygenase inhibitors. Bioorg. Med. Chem., 2006, 14(4), 918-927.
[http://dx.doi.org/10.1016/j.bmc.2005.09.005] [PMID: 16214349]
[58]
Brandao, S.S.F.; Andrade, A.M.C.; Pereira, D.T.M.; Filho, J.M.B.; Lima, M.C.A.; Galdino, S.L.; Pitta, I.R.; Barbe, J. A novel way of synthesis of l,3,5-trisubstituted-2-thioxoimidazolidinones. Heterocycl. Commun., 2004, 10, 9-14.
[http://dx.doi.org/10.1515/HC.2004.10.1.9]
[59]
Abdellatif, K.R.A.; Fadaly, W.A.A.; Mostafa, Y.A.; Zaher, D.M.; Omar, H.A. Thiohydantoin derivatives incorporating a pyrazole core: Design, synthesis and biological evaluation as dual inhibitors of topoisomerase-I and cycloxygenase-2 with anti-cancer and anti-inflammatory activities. Bioorg. Chem., 2019, 91, 103132.
[http://dx.doi.org/10.1016/j.bioorg.2019.103132] [PMID: 31374529]
[60]
Kamiloglu, S.; Sari, G.; Ozdal, T.; Capanoglu, E. Guidelines for cell viability assays. Food Front., 2020, 1(3), 332-349.
[http://dx.doi.org/10.1002/fft2.44]
[61]
Mohammed, F.Z.; Rizzk, Y.W.; El Deen, I.M.; Mourad, A.A.E.; El Behery, M. Design, synthesis, cytotoxic screening and molecular docking studies of novel hybrid thiosemicarbazone derivatives as anticancer agents. Chem. Biodivers., 2021, 18(12), e2100580.
[http://dx.doi.org/10.1002/cbdv.202100580] [PMID: 34699127]
[62]
Mohammed, F.Z.; Rizzk, Y.W.; El-Deen, I.M.; Gad, E.M.; El Behery, M.; Mahdy, A.R.E. Discovery of 2‐Amino‐4H‐1, 3, 4‐thiadiazine‐5(6H)‐one derivatives and their in vitro antitumor investigation. ChemistrySelect, 2022, 7(7), e202104333.
[http://dx.doi.org/10.1002/slct.202104333]
[63]
Alzamami, A.; Radwan, E.M.; Abo-Elabass, E.; Behery, M.E.; Alshwyeh, H.A.; Al-Olayan, E.; Altamimi, A.S.; Attallah, N.G.M.; Altwaijry, N.; Jaremko, M.; Saied, E.M. Novel 8-Methoxycoumarin-3-Carboxamides with potent anticancer activity against liver cancer via targeting caspase-3/7 and β-tubulin polymerization. BMC Chem., 2023, 17(1), 174.
[http://dx.doi.org/10.1186/s13065-023-01063-5] [PMID: 38041156]
[64]
Salem, M.G.; Abu El-ata, S.A.; Elsayed, E.H.; Mali, S.N.; Alshwyeh, H.A.; Almaimani, G.; Almaimani, R.A.; Almasmoum, H.A.; Altwaijry, N.; Al-Olayan, E.; Saied, E.M.; Youssef, M.F. Novel 2-substituted-quinoxaline analogs with potential antiproliferative activity against breast cancer: Insights into cell cycle arrest, topoisomerase II, and EGFR activity. RSC Advances, 2023, 13(47), 33080-33095.
[http://dx.doi.org/10.1039/D3RA06189B] [PMID: 37954422]
[65]
Liu, Y.; Zhou, Z.; Yan, J.; Wu, X.; Xu, G. Diosgenin exerts antitumor activity via downregulation of Skp2 in breast cancer cells. BioMed Res. Int., 2020, 2020, 1-10.
[http://dx.doi.org/10.1155/2020/8072639] [PMID: 32626765]
[66]
Bistaffa, M.J.; Camacho, S.A.; Melo, C.F.O.R.; Catharino, R.R.; Toledo, K.A.; Aoki, P.H.B. Plasma membrane permeabilization to explain erythrosine B phototoxicity on in vitro breast cancer cell models. J. Photochem. Photobiol. B, 2021, 223, 112297.
[http://dx.doi.org/10.1016/j.jphotobiol.2021.112297] [PMID: 34482154]
[67]
Abbady, A.Q.; Twair, A.; Ali, B.; Murad, H. Characterization of annexin V fusion with the superfolder GFP in liposomes binding and apoptosis detection. Front. Physiol., 2017, 8, 317.
[http://dx.doi.org/10.3389/fphys.2017.00317] [PMID: 28579961]
[68]
Tong, J.; Rufli, S.; Wong, W.W.L. Measuring caspase activity using a fluorometric assay or flow cytometry. J. Vis. Exp., 2023, 193(193), e64745.
[http://dx.doi.org/10.3791/64745] [PMID: 37036227]
[69]
Tong, L.; Warren, T.C.; King, J.; Betageri, R.; Rose, J.; Jakes, S. Crystal structures of the human p56lck SH2 domain in complex with two short phosphotyrosyl peptides at 1.0 A and 1.8 A resolution. J. Mol. Biol., 1996, 256(3), 601-610.
[http://dx.doi.org/10.1006/jmbi.1996.0112] [PMID: 8604142]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy