Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Advances in Trifluoromethylation of Olefins, Aldehydes, and Ketones

Author(s): Mengran Bai, Liyuan Zhang, Lu Liu, Chenyu Jia, Yuting Zheng, Huijian Shang, Hui Sun* and Bin Cui*

Volume 28, Issue 16, 2024

Published on: 21 May, 2024

Page: [1229 - 1243] Pages: 15

DOI: 10.2174/0113852728305885240506155446

Price: $65

Abstract

Due to the robust electrophilic properties of the trifluoromethyl group (-CF3), its incorporation into organic compounds can markedly alter their ester affinity, stability, bioavailability, and other properties. The trifluoromethylation reaction is currently experiencing rapid advancement, with an expanding array of substrates and the emergence of novel methodologies. Consequently, compounds containing the -CF3 moiety find extensive utility across diverse fields. This article aims to comprehensively review the latest advancements in trifluoromethylation reaction of olefins, aldehydes, and ketones, encompassing nucleophilic trifluoromethylation, electrophilic trifluoromethylation, and radical trifluoromethylation. The discussion includes an exploration of the types and broadening scope of applicable substrates. Furthermore, this article addresses the associated challenges and delineates prospective directions for future developments in trifluoromethyl reaction.

Graphical Abstract

[1]
Zhu, W.; Wang, J.; Wang, S.; Gu, Z.; Aceña, J.L.; Izawa, K.; Liu, H.; Soloshonok, V.A. Recent advances in the trifluoromethylation methodology and new CF3-containing drugs. J. Fluor. Chem., 2014, 167, 37-54.
[http://dx.doi.org/10.1016/j.jfluchem.2014.06.026]
[2]
Singh, R.P.; Shreeve, J.M. Nucleophilic trifluoromethylation reactions of organic compounds with (Trifluoromethyl)trimethylsilane. Tetrahedron, 2000, 56(39), 7613-7632.
[http://dx.doi.org/10.1016/S0040-4020(00)00550-0]
[3]
Billard, T.; Bruns, S.; Langlois, B.R. New stable reagents for the nucleophilic trifluoromethylation. 1. Trifluoromethylation Of carbonyl compounds with N-formylmorpholine derivatives. Org. Lett., 2000, 2(14), 2101-2103.
[http://dx.doi.org/10.1021/ol005987o] [PMID: 10891240]
[4]
Besset, T.; Schneider, C.; Cahard, D. Tamed arene and heteroarene trifluoromethylation. Angew. Chem. Int. Ed., 2012, 51(21), 5048-5050.
[http://dx.doi.org/10.1002/anie.201201012] [PMID: 22488902]
[5]
Furuya, T.; Kamlet, A.S.; Ritter, T. Catalysis for fluorination and trifluoromethylation. Nature, 2011, 473(7348), 470-477.
[http://dx.doi.org/10.1038/nature10108] [PMID: 21614074]
[6]
Prakash, G.K.S.; Mandal, M. Nucleophilic trifluoromethylation tamed. J. Fluor. Chem., 2001, 112(1), 123-131.
[http://dx.doi.org/10.1016/S0022-1139(01)00477-8]
[7]
Shibata, N.; Matsnev, A.; Cahard, D. Shelf-stable electrophilic trifluoromethylating reagents: A brief historical perspective. Beilstein J. Org. Chem., 2010, 6, 6.
[http://dx.doi.org/10.3762/bjoc.6.65] [PMID: 20703379]
[8]
Shibata, N.; Mizuta, S.; Kawai, H. Recent advances in enantioselective trifluoromethylation reactions. Tetrahedron Asymmetry, 2008, 19(23), 2633-2644.
[http://dx.doi.org/10.1016/j.tetasy.2008.11.011]
[9]
Kuninobu, Y.; Torigoe, T. Regioselective C-H trifluoromethylation of heteroaromatic compounds. Bull. Chem. Soc. Jpn., 2021, 94(2), 532-541.
[http://dx.doi.org/10.1246/bcsj.20200302]
[10]
Yuan, S.; Liu, X.; Huang, Z.; Gui, S.; Diao, Y.; Peng, Y.Y.; Ding, Q. Tetrabutylammonium chloride-induced cascade radical addition/cyclization of O-isocyanodiaryl amines: A novel protocol for the synthesis of 11-trifluoromethylated dibenzodiazepines. J. Org. Chem., 2022, 87(24), 16542-16549.
[http://dx.doi.org/10.1021/acs.joc.2c02100] [PMID: 36454597]
[11]
Cherkupally, P.; Beier, P. Nucleophilic trifluoromethylation using diethyl trifluoromethanephosphonate. Synfacts, 2010, 2010(3), 340.
[12]
Jablonski, L.; Joubert, J.; Billard, T.; Langlois, B.R. Trifluoroacetic acid derivatives as nucleophilic trifluoromethylating reagents. Synlett, 2003, 2003(2), 230-232.
[http://dx.doi.org/10.1002/chin.200319058]
[13]
Jover, J. Computational insights into nucleophilic copper-catalyzed trifluoromethylation of aryl halides. ACS Catal., 2014, 4(12), 4389-4397.
[http://dx.doi.org/10.1021/cs500872m]
[14]
Liu, H.; Gu, Z.; Jiang, X. Direct trifluoromethylation of the C-H bond. Adv. Synth. Catal., 2013, 355(4), 617-626.
[http://dx.doi.org/10.1002/adsc.201200764]
[15]
Pasteris, R.J.; Hanagan, M.A.; Bisaha, J.J.; Finkelstein, B.L.; Hoffman, L.E.; Gregory, V.; Andreassi, J.L.; Sweigard, J.A.; Klyashchitsky, B.A.; Henry, Y.T.; Berger, R.A. Discovery of oxathiapiprolin, a new oomycete fungicide that targets an oxysterol binding protein. Bioorg. Med. Chem., 2016, 24(3), 354-361.
[http://dx.doi.org/10.1016/j.bmc.2015.07.064] [PMID: 26314923]
[16]
Anastassiadou, M.; Bernasconi, G.; Brancato, A.; Carrasco Cabrera, L.; Greco, L.; Jarrah, S.; Kazocina, A.; Leuschner, R.; Magrans, J.O.; Miron, I.; Nave, S.; Pedersen, R.; Reich, H.; Rojas, A.; Sacchi, A.; Santos, M.; Stanek, A.; Theobald, A.; Vagenende, B.; Verani, A. Setting of import tolerances for oxathiapiprolin in various crops. EFSA J., 2020, 18(6), e06155.
[PMID: 32874331]
[17]
Salas, S.E.; Shepherd, C.P.; Ngugi, H.K.; Genet, J.L. Disease control attributes of oxathiapiprolin fungicides for management of cucurbit downy mildew. Plant Dis., 2019, 103(11), 2812-2820.
[http://dx.doi.org/10.1094/PDIS-02-19-0396-RE] [PMID: 31486739]
[18]
Gao, Y.; Zhao, X.; Sun, X.; Wang, Z.; Zhang, J.; Li, L.; Shi, H.; Wang, M. Enantioselective detection, bioactivity, and degradation of the novel chiral fungicide oxathiapiprolin. J. Agric. Food Chem., 2021, 69(11), 3289-3297.
[http://dx.doi.org/10.1021/acs.jafc.0c04163] [PMID: 33710880]
[19]
Yanchang, S.; Shu, G. Stereoselective synthesis of trifluoromethylated α-chloro-α,β-unsaturated esters and nitriles. J. Chem. Soc., Perkin Trans. 1, 1996, (20), 2531-2533.
[20]
Yang, J.J.; Kirchmeier, R.L.; Shreeve, J.M. New electrophilic trifluoromethylating agents. J. Org. Chem., 1998, 63(8), 2656-2660.
[http://dx.doi.org/10.1021/jo972213l] [PMID: 11672133]
[21]
Mizuta, S.; Galicia-López, O.; Engle, K.M.; Verhoog, S.; Wheelhouse, K.; Rassias, G.; Gouverneur, V. Trifluoromethylation of allylsilanes under copper catalysis. Chemistry, 2012, 18(28), 8583-8587.
[http://dx.doi.org/10.1002/chem.201201707] [PMID: 22692972]
[22]
Chen, J.Y.; Huang, J.; Sun, K.; He, W.M. Recent advances in transition-metal-free trifluoromethylation with Togni’s reagents. Org. Chem. Front., 2022, 9(4), 1152-1164.
[http://dx.doi.org/10.1039/D1QO01504D]
[23]
Feng, C.; Loh, T.P. Copper-catalyzed olefinic trifluoromethylation of enamides at room temperature. Chem. Sci., 2012, 3(12), 3458-3462.
[http://dx.doi.org/10.1039/c2sc21164e]
[24]
Cho, E.J.; Senecal, T.D.; Kinzel, T.; Zhang, Y.; Watson, D.A.; Buchwald, S.L. The palladium-catalyzed trifluoromethylation of aryl chlorides. Science, 2010, 328(5986), 1679-1681.
[http://dx.doi.org/10.1126/science.1190524] [PMID: 20576888]
[25]
Kang, J.C.; Tu, Y.Q.; Dong, J.W.; Chen, C.; Zhou, J.; Ding, T.M.; Zai, J.T.; Chen, Z.M.; Zhang, S.Y. Electrochemical semipinacol rearrangements of allylic alcohols: Construction of all-carbon quaternary stereocenters. Org. Lett., 2019, 21(8), 2536-2540.
[http://dx.doi.org/10.1021/acs.orglett.9b00263] [PMID: 30945551]
[26]
Guo, X-L. Electrochemical oxidative C-H trifluoromethylation of quinoxalin-2(1H)-ones and the performance evaluation via electro-descriptors. Youji Huaxue, 2022, 42(2), 641-649.
[http://dx.doi.org/10.6023/cjoc202108023]
[27]
Liu, X.; Xu, C.; Wang, M.; Liu, Q. Trifluoromethyltrimethylsilane: Nucleophilic trifluoromethylation and beyond. Chem. Rev., 2015, 115(2), 683-730.
[http://dx.doi.org/10.1021/cr400473a] [PMID: 24754488]
[28]
Koller, R.; Togni, A. Electrophilic trifluoromethylation of alcohols. Chim. Oggi, 2010, 28(2), 33-35.
[29]
Zhang, C.P.; Wang, Z.L.; Chen, Q.Y.; Zhang, C.T.; Gu, Y.C.; Xiao, J.C. Generation of the CF3 radical from trifluoromethylsulfonium triflate and its trifluoromethylation of styrenes. Chem. Commun., 2011, 47(23), 6632-6634.
[http://dx.doi.org/10.1039/c1cc11765c] [PMID: 21559547]
[30]
Herbstritt, D.; Braun, T. Reduction of SF5CF3 via iridium catalysis: Radical trifluoromethylation of aromatics. Chem. Commun., 2023, 59(26), 3850-3853.
[http://dx.doi.org/10.1039/D3CC00495C] [PMID: 36891951]
[31]
Chu, L.; Qing, F.L. Copper-mediated aerobic oxidative trifluoromethylation of terminal alkynes with Me3SiCF3. J. Am. Chem. Soc., 2010, 132(21), 7262-7263.
[http://dx.doi.org/10.1021/ja102175w] [PMID: 20450157]
[32]
Hafner, A.; Bräse, S. Ortho-trifluoromethylation of functionalized aromatic triazenes. Angew. Chem. Int. Ed., 2012, 51(15), 3713-3715.
[http://dx.doi.org/10.1002/anie.201107414] [PMID: 22318969]
[33]
Miyake, Y.; Ota, S.; Nishibayashi, Y. Copper-catalyzed nucleophilic trifluoromethylation of allylic halides: A simple approach to allylic trifluoromethylation. Chemistry, 2012, 18(42), 13255-13258.
[http://dx.doi.org/10.1002/chem.201202853] [PMID: 22965685]
[34]
Wu, S.; Guo, J.; Sohail, M.; Cao, C.; Chen, F.X. The enantioselective trifluoromethylation of aromatic aldehydes by quaternary ammonium bromide and (IPr)CuF at low catalyst loading. J. Fluor. Chem., 2013, 148, 19-29.
[http://dx.doi.org/10.1016/j.jfluchem.2013.01.027]
[35]
Lin, J.S.; Liu, X.G.; Zhu, X.L.; Tan, B.; Liu, X.Y. Copper-catalyzed aminotrifluoromethylation of unactivated alkenes with (TMS)CF3: Construction of trifluoromethylated azaheterocycles. J. Org. Chem., 2014, 79(15), 7084-7092.
[http://dx.doi.org/10.1021/jo5012619] [PMID: 25002033]
[36]
Cui, B.; Sun, H.; Xu, Y.; Duan, L.; Li, Y.M. MgCl2-catalyzed trifluoromethylation of carbonyl compounds using (trifluoromethyl)trimethylsilane as the trifluoromethylating agent. Tetrahedron, 2017, 73(48), 6754-6762.
[http://dx.doi.org/10.1016/j.tet.2017.10.021]
[37]
Zhao, S.; Guo, Y.; Han, E.J.; Luo, J.; Liu, H.M.; Liu, C.; Xie, W.; Zhang, W.; Wang, M. Copper(II)-catalyzed trifluoromethylation of iodoarenes using Chen’s reagent. Org. Chem. Front., 2018, 5(7), 1143-1147.
[http://dx.doi.org/10.1039/C8QO00025E]
[38]
Geri, J.B.; Wade Wolfe, M.M.; Szymczak, N.K. Borazine‐CF3− adducts for rapid, room temperature, and broad scope trifluoromethylation. Angew. Chem. Int. Ed., 2018, 57(5), 1381-1385.
[http://dx.doi.org/10.1002/anie.201711316] [PMID: 29205733]
[39]
Hirano, K.; Saito, T.; Fujihira, Y.; Sedgwick, D.M.; Fustero, S.; Shibata, N. Diastereoselective synthesis of enantioenriched trifluoromethylated ethylenediamines and isoindolines containing two stereogenic carbon centers by nucleophilic trifluoromethylation using HFC-23. J. Org. Chem., 2020, 85(12), 7976-7985.
[http://dx.doi.org/10.1021/acs.joc.0c00796] [PMID: 32421330]
[40]
Fujihira, Y.; Liang, Y.; Ono, M.; Hirano, K.; Kagawa, T.; Shibata, N. Synthesis of trifluoromethyl ketones by nucleophilic trifluoromethylation of esters under a fluoroform/KHMDS/triglyme system. Beilstein J. Org. Chem., 2021, 17, 431-438.
[http://dx.doi.org/10.3762/bjoc.17.39] [PMID: 33633811]
[41]
Yurino, T.; Ohkuma, T.; Yamashita, H.; Shan, Y.; Wu, Z. Potassium alkoxide as an efficient catalyst for nucleophilic perfluoroalkylation: Attempt at anion-controlled enantioselective insertion of a trifluoromethyl group. Synlett, 2022, 33(17), 1739-1744.
[http://dx.doi.org/10.1055/a-1914-1518]
[42]
Said, M.S.; Khonde, N.S.; Kumar, P.; Gajbhiye, J.M. Electron-deficient fluoroarene-mediated synthesis of trifluoromethyl ketones from carboxylic acids. Org. Lett., 2023, 25(7), 1094-1098.
[http://dx.doi.org/10.1021/acs.orglett.2c04318] [PMID: 36757825]
[43]
Zhang, J.; Feng, X.; Guo, T.; Han, X.; Liu, H.; Li, X.; Wang, X.; Li, H.; Li, X. Straightforward synthesis of trifluoromethylated arenes via copper‐mediated trifluoromethylation of diaryliodonium salts with fluoroform. ChemistrySelect, 2023, 8(14), e202301062.
[http://dx.doi.org/10.1002/slct.202301062]
[44]
Mandal, D.; Maji, S.; Pal, T.; Sinha, S.K.; Maiti, D. Recent advances in transition metal-mediated trifluoromethylation reactions. Chem. Commun., 2022, 58(75), 10442-10468.
[http://dx.doi.org/10.1039/D2CC04082D] [PMID: 36069245]
[45]
Liu, G.; Chen, P. Recent advances in transition-metal-catalyzed trifluoromethylation and related transformations. Synthesis, 2013, 45(21), 2919-2939.
[http://dx.doi.org/10.1055/s-0033-1339677]
[46]
Lin, X.; Wang, G.; Li, H.; Huang, Y.; He, W.; Ye, D.; Huang, K.W.; Yuan, Y.; Weng, Z. Copper-catalyzed trifluoromethylation of arylsulfinate salts using an electrophilic trifluoromethylation reagent. Tetrahedron, 2013, 69(12), 2628-2632.
[http://dx.doi.org/10.1016/j.tet.2013.01.041]
[47]
Umemoto, T.; Adachi, K. New method for trifluoromethylation of enolate anions and applications to regio-, diastereo- and enantioselective trifluoromethylation. J. Org. Chem., 1994, 59(19), 5692-5699.
[http://dx.doi.org/10.1021/jo00098a030]
[48]
Chen, D.; Jiang, J.; Wan, J.P. Advances in the transition metal‐free C-H trifluoromethylation. Chin. J. Chem., 2022, 40(21), 2582-2594.
[http://dx.doi.org/10.1002/cjoc.202200347]
[49]
Dagousset, G.; Carboni, A.; Magnier, E.; Masson, G. Photoredox-induced three-component azido- and aminotrifluoromethylation of alkenes. Org. Lett., 2014, 16(16), 4340-4343.
[http://dx.doi.org/10.1021/ol5021477] [PMID: 25102254]
[50]
Kawamura, S.; Egami, H.; Sodeoka, M. Aminotrifluoromethylation of olefins via cyclic amine formation: Mechanistic study and application to synthesis of trifluoromethylated pyrrolidines. J. Am. Chem. Soc., 2015, 137(14), 4865-4873.
[http://dx.doi.org/10.1021/jacs.5b02046] [PMID: 25798656]
[51]
Fu, M.; Chen, L.; Jiang, Y.; Jiang, Z.X.; Yang, Z. Copper-catalyzed intermolecular chloro- and bromotrifluoromethylation of alkenes. Org. Lett., 2016, 18(3), 348-351.
[http://dx.doi.org/10.1021/acs.orglett.5b03080] [PMID: 26752325]
[52]
Liu, Z.; Bai, Y.; Zhang, J.; Yu, Y.; Tan, Z.; Zhu, G. Copper-catalyzed acyltrifluoromethylation of alkenes: Rapid access to trifluoroethyl indanones and related compounds. Chem. Commun., 2017, 53(48), 6440-6443.
[http://dx.doi.org/10.1039/C7CC02537H] [PMID: 28560364]
[53]
Ye, Q.; Jiang, M.; Deng, Q.H.; Liu, J.T. Copper‐catalyzed intramolecular carbotrifluoromethylation of ene‐imines for the construction of 3‐(2,2,2‐trifluoro)ethylated 4‐amino‐chromans. Adv. Synth. Catal., 2018, 360(7), 1402-1406.
[http://dx.doi.org/10.1002/adsc.201701298]
[54]
Chen, C.T.; Chen, Y.P.; Tsai, B.Y.; Liao, Y.Y.; Su, Y.C.; Chen, T.C.; Lu, C.H.; Fujii, R.; Kawashima, K.; Mori, S. Vanadyl species catalyzed 1,2-oxidative trifluoromethylation of unactivated olefins. ACS Catal., 2020, 10(6), 3676-3683.
[http://dx.doi.org/10.1021/acscatal.0c00370]
[55]
Zhao, Y.; Hou, T.; Zhang, L.; Wang, X.; Hou, J.; Liu, Y.; Han, G.; Song, Y. Iron‐catalyzed trifluoromethylation of indole‐tethered alkene enables synthesis of CF3‐containing spiroindolenines and tetrahydrocarbazoles. Eur. J. Org. Chem., 2023, 26(18), e202300253.
[http://dx.doi.org/10.1002/ejoc.202300253]
[56]
Mizuta, S.; Verhoog, S.; Engle, K.M.; Khotavivattana, T.; O’Duill, M.; Wheelhouse, K.; Rassias, G.; Médebielle, M.; Gouverneur, V. Catalytic hydrotrifluoromethylation of unactivated alkenes. J. Am. Chem. Soc., 2013, 135(7), 2505-2508.
[http://dx.doi.org/10.1021/ja401022x] [PMID: 23373772]
[57]
Egami, H.; Usui, Y.; Kawamura, S.; Nagashima, S.; Sodeoka, M. Product control in alkene trifluoromethylation: Hydrotrifluoromethylation, vinylic trifluoromethylation, and iodotrifluoromethylation using togni reagent. Chem. Asian J., 2015, 10(10), 2190-2199.
[http://dx.doi.org/10.1002/asia.201500359] [PMID: 25960034]
[58]
Zhou, S.; Song, T.; Chen, H.; Liu, Z.; Shen, H.; Li, C. Catalytic radical trifluoromethylalkynylation of unactivated alkenes. Org. Lett., 2017, 19(3), 698-701.
[http://dx.doi.org/10.1021/acs.orglett.6b03870] [PMID: 28102684]
[59]
Nadiveedhi, M.R.; Cirandur, S.R.; Akondi, S.M. Visible-light-promoted photocatalyst- and additive-free intermolecular trifluoromethyl-thio(seleno) cyanation of alkenes. Green Chem., 2020, 22(17), 5589-5593.
[http://dx.doi.org/10.1039/D0GC01726D]
[60]
Wang, H.; Wei, C.; Zou, H.; Linghu, C.; Wang, Z.; Wang, J.; Chen, Y.; Zhang, L. Transition-metal-free, direct C H radical trifluoromethylation of nitroimidazoles with Togni’s reagent. Tetrahedron Lett., 2022, 92, 153659.
[http://dx.doi.org/10.1016/j.tetlet.2022.153659]
[61]
Wang, H.; Sun, X.; Linghu, C.; Deng, Y.; Wang, Y.; Wei, C.; Wang, J.; Zhang, L. Catalyst-free direct C H trifluoromethylation of indoles with Togni’s reagent. Tetrahedron Lett., 2023, 118, 154385.
[http://dx.doi.org/10.1016/j.tetlet.2023.154385]
[62]
Ichiishi, N.; Caldwell, J.P.; Lin, M.; Zhong, W.; Zhu, X.; Streckfuss, E.; Kim, H.Y.; Parish, C.A.; Krska, S.W. Protecting group free radical C–H trifluoromethylation of peptides. Chem. Sci., 2018, 9(17), 4168-4175.
[http://dx.doi.org/10.1039/C8SC00368H] [PMID: 29780547]
[63]
Tomashenko, O.A.; Grushin, V.V. Aromatic trifluoromethylation with metal complexes. Chem. Rev., 2011, 111(8), 4475-4521.
[http://dx.doi.org/10.1021/cr1004293] [PMID: 21456523]
[64]
Studer, A.A. “Renaissance” in radical trifluoromethylation. Angew. Chem. Int. Ed., 2012, 51(36), 8950-8958.
[http://dx.doi.org/10.1002/anie.201202624] [PMID: 22890985]
[65]
Itoh, Y.; Mikami, K. Radical trifluoromethylation of ketone Li enolates. Tetrahedron, 2006, 62(30), 7199-7203.
[http://dx.doi.org/10.1016/j.tet.2006.03.115]
[66]
Mizuta, S.; Verhoog, S.; Wang, X.; Shibata, N.; Gouverneur, V.; Médebielle, M. Redox chemistry of trifluoromethyl sulfonium salts as CF3 radical sources. J. Fluor. Chem., 2013, 155, 124-131.
[http://dx.doi.org/10.1016/j.jfluchem.2013.07.006]
[67]
Muñiz, K. Imido-osmium(VIII) compounds in organic synthesis: aminohydroxylation and diamination reactions. Chem. Soc. Rev., 2004, 33(3), 166-174.
[http://dx.doi.org/10.1039/B307102M] [PMID: 15026821]
[68]
Sanford, M.; Ye, Y. Investigations into transition-metal-catalyzed arene trifluoromethylation reactions. Synlett, 2012, 23(14), 2005-2013.
[http://dx.doi.org/10.1055/s-0032-1316988] [PMID: 25838638]
[69]
Cao, X.H.; Pan, X.; Zhou, P.J.; Zou, J.P.; Asekun, O.T. Manganese(iii)-mediated direct Csp2–H radical trifluoromethylation of coumarins with sodium trifluoromethanesulfinate. Chem. Commun., 2014, 50(25), 3359-3362.
[http://dx.doi.org/10.1039/c3cc49689a] [PMID: 24549088]
[70]
Zhang, B.; Mück-Lichtenfeld, C.; Daniliuc, C.G.; Studer, A. 6-Trifluoromethyl-phenanthridines through radical trifluoromethylation of isonitriles. Angew. Chem. Int. Ed., 2013, 52(41), 10792-10795.
[http://dx.doi.org/10.1002/anie.201306082] [PMID: 24000125]
[71]
Luo, H.Q.; Luo, X.Z.; Zhang, Z.P.; Dong, W. A practical method for metal-free radical trifluoromethylation of styrenes with NaSO2CF3. Synlett, 2014, 25(9), 1307-1311.
[http://dx.doi.org/10.1055/s-0033-1341057]
[72]
Tomita, Y.; Ichikawa, Y.; Itoh, Y.; Kawada, K.; Mikami, K. Zincate-type enolate for radical α-trifluoromethylation. Tetrahedron Lett., 2007, 48(50), 8922-8925.
[http://dx.doi.org/10.1016/j.tetlet.2007.10.041]
[73]
Miller, S.A.; van Beek, B.; Hamlin, T.A.; Bickelhaupt, F.M.; Leadbeater, N.E. A methodology for the photocatalyzed radical trifluoromethylation of indoles: A combined experimental and computational study. J. Fluor. Chem., 2018, 214, 94-100.
[http://dx.doi.org/10.1016/j.jfluchem.2018.08.005]
[74]
Christophorou, L.G.; Olthoff, J.K. Electron interactions with CF3I. J. Phys. Chem. Ref. Data, 2000, 29(4), 553-569.
[http://dx.doi.org/10.1063/1.1318910]
[75]
Ye, Y.; Sanford, M.S. Merging visible-light photocatalysis and transition-metal catalysis in the copper-catalyzed trifluoromethylation of boronic acids with CF3I. J. Am. Chem. Soc., 2012, 134(22), 9034-9037.
[http://dx.doi.org/10.1021/ja301553c] [PMID: 22624669]
[76]
Li, Z.R.; Bao, X.X.; Sun, J.; Shen, J.; Wu, D.Q.; Liu, Y.K.; Deng, Q.H.; Liu, F. Iron-catalyzed trifluoromethylation of vinylcyclopropanes: Facile synthesis of CF3-containing dihydronaphthalene derivatives. Org. Chem. Front., 2016, 3(8), 934-938.
[http://dx.doi.org/10.1039/C6QO00166A]
[77]
He, Y.T.; Li, L.H.; Yang, Y.F.; Wang, Y.Q.; Luo, J.Y.; Liu, X.Y.; Liang, Y.M. Copper-catalyzed synthesis of trifluoromethyl-substituted isoxazolines. Chem. Commun., 2013, 49(50), 5687-5689.
[http://dx.doi.org/10.1039/c3cc42588f] [PMID: 23682357]
[78]
Wang, D.; Deng, G.J.; Chen, S.; Gong, H. Catalyst-free direct C–H trifluoromethylation of arenes in water–acetonitrile. Green Chem., 2016, 18(22), 5967-5970.
[http://dx.doi.org/10.1039/C6GC02000C]
[79]
Ji, Y.; Brueckl, T.; Baxter, R.D.; Fujiwara, Y.; Seiple, I.B.; Su, S.; Blackmond, D.G.; Baran, P.S. Innate C-H trifluoromethylation of heterocycles. Proc. Natl. Acad. Sci. USA, 2011, 108(35), 14411-14415.
[http://dx.doi.org/10.1073/pnas.1109059108] [PMID: 21844378]
[80]
Liu, C.; Lu, Q.; Huang, Z.; Zhang, J.; Liao, F.; Peng, P.; Lei, A. NMP and O2 as radical initiator: Trifluoromethylation of alkenes to tertiary β-trifluoromethyl alcohols at room temperature. Org. Lett., 2015, 17(24), 6034-6037.
[http://dx.doi.org/10.1021/acs.orglett.5b03035] [PMID: 26649920]
[81]
Long, W.; Lian, P.; Li, J.; Wan, X. Mn-catalysed photoredox hydroxytrifluoromethylation of aliphatic alkenes using CF3SO2 Na. Org. Biomol. Chem., 2020, 18(33), 6483-6486.
[http://dx.doi.org/10.1039/D0OB01322F] [PMID: 32766611]
[82]
Yang, X.; He, L.; Tsui, G.C. Hydroxytrifluoromethylation of alkenes using fluoroform-derived CuCF3. Org. Lett., 2017, 19(9), 2446-2449.
[http://dx.doi.org/10.1021/acs.orglett.7b01085] [PMID: 28440653]
[83]
Su, Z.; Guo, Y.; Chen, Q.Y.; Zhao, Z.G.; Nian, B.Y. Catalyst‐free hydroxytrifluoromethylation of alkenes using iodotrifluoromethane. Chin. J. Chem., 2019, 37(6), 597-604.
[http://dx.doi.org/10.1002/cjoc.201900087]
[84]
Wang, L.; Ding, Q.; Li, X.; Peng, Y. Visible‐light‐induced, manganese‐catalyzed tandem cyclization of 2‐biphenyl isocyanides with cyclopropanols for the synthesis of 6‐β‐ketoalkyl phenanthridines. Asian J. Org. Chem., 2019, 8(3), 385-390.
[http://dx.doi.org/10.1002/ajoc.201800733]
[85]
Kulthe, A.D.; Mainkar, P.S.; Akondi, S.M. Intermolecular trifluoromethyl-alkenylation of alkenes enabled by metal-free photoredox catalysis. Chem. Commun., 2021, 57(45), 5582-5585.
[http://dx.doi.org/10.1039/D1CC01806J] [PMID: 33969856]
[86]
Midya, S.P.; Rana, J.; Abraham, T.; Aswin, B.; Balaraman, E. Metal-free radical trifluoromethylation of β-nitroalkenes through visible-light photoredox catalysis. Chem. Commun., 2017, 53(50), 6760-6763.
[http://dx.doi.org/10.1039/C7CC02589K] [PMID: 28597876]
[87]
Zhang, N.; Quan, Z.J.; Zhang, Z.; Da, Y.X.; Wang, X.C. Synthesis of stilbene derivatives via visible-light-induced cross-coupling of aryl diazonium salts with nitroalkenes using –NO2 as a leaving group. Chem. Commun., 2016, 52(99), 14234-14237.
[http://dx.doi.org/10.1039/C6CC08182G] [PMID: 27872921]
[88]
Kong, W.; An, H.; Song, Q. Visible-light-induced thiotrifluoromethylation of terminal alkenes with sodium triflinate and benzenesulfonothioates. Chem. Commun., 2017, 53(64), 8968-8971.
[http://dx.doi.org/10.1039/C7CC03520A] [PMID: 28718480]
[89]
Oh, S.H.; Malpani, Y.R.; Ha, N.; Jung, Y.S.; Han, S.B. Vicinal difunctionalization of alkenes: Chlorotrifluoromethylation with CF3SO2Cl by photoredox catalysis. Org. Lett., 2014, 16(5), 1310-1313.
[http://dx.doi.org/10.1021/ol403716t] [PMID: 24571334]
[90]
Winter, R.W.; Gard, G.L. The addition of (CF3SO2)2CHBr to vinylidene fluoride. J. Fluor. Chem., 2006, 127(10), 1324-1327.
[http://dx.doi.org/10.1016/j.jfluchem.2006.05.023]
[91]
Zhao, Y.; Wang, X.; Yao, R.; Li, C.; Xu, Z.; Zhang, L.; Han, G.; Hou, J.; Liu, Y.; Song, Y. Iron‐catalyzed alkene trifluoromethylation in tandem with phenol dearomatizing spirocyclization: Regioselective construction of trifluoromethylated spirocarbocycles. Adv. Synth. Catal., 2022, 364(3), 637-642.
[http://dx.doi.org/10.1002/adsc.202101201]
[92]
Guo, J.Y.; Wu, R.X.; Jin, J.K.; Tian, S.K. TfNHNHBoc as a trifluoromethylating agent for vicinal difunctionalization of terminal alkenes. Org. Lett., 2016, 18(15), 3850-3853.
[http://dx.doi.org/10.1021/acs.orglett.6b01862] [PMID: 27414955]
[93]
Zhang, Y.; Zhang, H.Y.; Huo, W.; Ge, C.; Zhao, J. Copper-promoted intramolecular aminotrifluoromethylation of alkenes with langlois reagent as the trifluoromethyl source. Synlett, 2017, 28(8), 962-965.
[http://dx.doi.org/10.1055/s-0036-1588400]
[94]
Min, M.Y.; Song, R.J.; Ouyang, X.H.; Li, J.H. Copper-catalyzed intermolecular oxidative trifluoromethyl-arylation of styrenes with NaSO2CF3 and indoles involving C–H functionalization. Chem. Commun., 2019, 55(25), 3646-3649.
[http://dx.doi.org/10.1039/C9CC00469F] [PMID: 30849147]
[95]
Jiang, C.; Wang, L.; Zhang, H.; Chen, P.; Guo, Y.L.; Liu, G. Enantioselective copper-catalyzed trifluoromethylation of benzylic radicals via ring opening of cyclopropanols. Chem, 2020, 6(9), 2407-2419.
[http://dx.doi.org/10.1016/j.chempr.2020.07.003]
[96]
Li, Y.; Liu, Y.; Hao, D.; Li, C.; Liu, Y.; Gu, Y.; Vaccaro, L.; Liu, P. Cu-catalyzed direct C1–H trifluoromethylation of pyrrolo [1,2-a]quinoxalines. Tetrahedron, 2022, 105, 132610.
[http://dx.doi.org/10.1016/j.tet.2021.132610]
[97]
Klein, J.E.M.N.; Rommel, S.; Plietker, B. Fe-catalyzed nucleophilic activation of C–Si versus allylic C–O bonds: Catalytic trifluoromethylation of carbonyl groups versus tandem trifluormethylation–allylation of olefins. Organometallics, 2014, 33(20), 5802-5810.
[http://dx.doi.org/10.1021/om5005012]
[98]
Xu, R.; Cai, C. Iron-catalyzed three-component intermolecular trifluoromethyl-acyloxylation of styrenes with NaSO2CF3 and benzoic acids. Org. Chem. Front., 2020, 7(2), 318-323.
[http://dx.doi.org/10.1039/C9QO01342C]
[99]
Yu, W.; Xu, X.H.; Qing, F.L. Silver‐mediated oxidative fluorotrifluoromethylation of unactivated alkenes. Adv. Synth. Catal., 2015, 357(9), 2039-2044.
[http://dx.doi.org/10.1002/adsc.201500027]
[100]
Yang, X.; Tsui, G.C. Silver-catalyzed trifluoromethylalkynylation of unactivated alkenes with hypervalent iodine reagents. Org. Lett., 2019, 21(21), 8625-8629.
[http://dx.doi.org/10.1021/acs.orglett.9b03230] [PMID: 31603335]
[101]
Yang, X.; Tsui, G.C. Trifluoromethylation of unactivated alkenes with Me3SiCF3 and N-iodosuccinimide. Org. Lett., 2019, 21(5), 1521-1525.
[http://dx.doi.org/10.1021/acs.orglett.9b00332] [PMID: 30777764]
[102]
Maeda, K.; Kurahashi, T.; Matsubara, S. Chlorotrifluoromethylation of terminal olefins by atom transfer‐type radical reaction catalyzed by cobalt complexes. Eur. J. Org. Chem., 2019, 2019(28), 4613-4616.
[http://dx.doi.org/10.1002/ejoc.201900834]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy