Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

The Importance of Structural Water in HDAC8 for Correct Binding Pose Applied for Drug Design of Anticancer Molecules

Author(s): Gerardo Morales-Herrejón, Humberto Lubriel Mendoza-Figueroa, Marlet Martínez-Archundía and José Correa-Basurto*

Volume 24, Issue 15, 2024

Published on: 03 June, 2024

Page: [1109 - 1125] Pages: 17

DOI: 10.2174/0118715206299644240523054454

Price: $65

Abstract

Aims: Validating the docking procedure and maintaining the structural water molecules at HDAC8 catalytic site.

Background: Molecular docking simulations play a significant role in Computer-Aided Drug Design, contributing to the development of new molecules. To ensure the reliability of these simulations, a validation process called "self-docking or re-docking" is employed, focusing on the binding mode of a ligand co-crystallized with the protein of interest.

Objective: In this study, several molecular docking studies were conducted using five X-ray structures of HDAC8-ligand complexes from the PDB.

Method: Ligands initially complexed with HDAC8 were removed and re-docked onto the free protein, revealing a poor reproduction of the expected binding mode. In response to this, we observed that most HDAC8-ligand complexes contained one to two water molecules in the catalytic site, which were crucial for maintaining the cocrystallized ligand.

Result: These water molecules enhance the binding mode of the co-crystallized ligand by stabilizing the proteinligand complex through hydrogen bond interactions between ligand and water molecules. Notably, these interactions are lost if water molecules are removed, as is often done in classical docking methodologies. Considering this, molecular docking simulations were repeated, both with and without one or two conserved water molecules near Zn+2 in the catalytic cavity. Simulations indicated that replicating the native binding pose of co-crystallized ligands on free HDAC8 without these water molecules was challenging, showing greater coordinate displacements (RMSD) compared to those including conserved water molecules from crystals.

Conclusion: The study highlighted the importance of conserved water molecules within the active site, as their presence significantly influenced the successful reproduction of the ligands' native binding modes. The results suggest an optimal molecular docking procedure for validating methods suitable for filtering new HDAC8 inhibitors for future experimental assays.

[1]
Maurer, M.; Oostenbrink, C. Water in protein hydration and ligand recognition. J. Mol. Recognit., 2019, 32(12), e2810.
[http://dx.doi.org/10.1002/jmr.2810] [PMID: 31456282]
[2]
Bellissent-Funel, M.C.; Hassanali, A.; Havenith, M.; Henchman, R.; Pohl, P.; Sterpone, F.; van der Spoel, D.; Xu, Y.; Garcia, A.E. Water determines the structure and dynamics of proteins. Chem. Rev., 2016, 116(13), 7673-7697.
[http://dx.doi.org/10.1021/acs.chemrev.5b00664] [PMID: 27186992]
[3]
Carugo, O. Structure and function of water molecules buried in the protein core. Curr. Protein Pept. Sci., 2015, 16(3), 259-265.
[http://dx.doi.org/10.2174/1389203716666150227162803] [PMID: 25723549]
[4]
Gupta, S.; D’Mello, R.; Chance, M.R. Structure and dynamics of protein waters revealed by radiolysis and mass spectrometry. Proc. Natl. Acad. Sci. USA, 2012, 109(37), 14882-14887.
[http://dx.doi.org/10.1073/pnas.1209060109] [PMID: 22927377]
[5]
Schoenborn, B.P.; Garcia, A.; Knott, R. Hydration in protein crystallography. Prog. Biophys. Mol. Biol., 1995, 64(2-3), 105-119.
[http://dx.doi.org/10.1016/0079-6107(95)00012-7] [PMID: 8987380]
[6]
Zhou, J.; Yang, T.; Peng, B.; Shan, B.; Ding, M.; Zhang, K. Structural water molecules confined in soft and hard nanocavities as bright color emitters. ACS Phy. Chem. Au, 2022, 2(1), 47-58.
[http://dx.doi.org/10.1021/acsphyschemau.1c00020] [PMID: 36855578]
[7]
Vukovic, S.; Brennan, P.E.; Huggins, D.J. Exploring the role of water in molecular recognition: predicting protein ligandability using a combinatorial search of surface hydration sites. J. Phys. Condens. Matter, 2016, 28(34), 344007.
[http://dx.doi.org/10.1088/0953-8984/28/34/344007] [PMID: 27367338]
[8]
Benkaidali, L.; André, F.; Maouche, B.; Siregar, P.; Benyettou, M.; Maurel, F.; Petitjean, M. Computing cavities, channels, pores and pockets in proteins from non-spherical ligands models. Bioinformatics, 2014, 30(6), 792-800.
[http://dx.doi.org/10.1093/bioinformatics/btt644] [PMID: 24202541]
[9]
Bauer, M.R.; Mackey, M.D. Electrostatic complementarity as a fast and effective tool to optimize binding and selectivity of protein–ligand complexes. J. Med. Chem., 2019, 62(6), 3036-3050.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01925] [PMID: 30807144]
[10]
Lin, F-Y.; MacKerell, A.D. Force fields for small molecules. Methods Mol. Biol., 2019, 2022, 21-54.
[http://dx.doi.org/10.1007/978-1-4939-9608-7_2]
[11]
Biswal, J.; Jayaprakash, P.; Rangaswamy, R.; Jeyakanthan, J. Synergistic effects of hydration sites in protein stability: A theoretical water thermodynamics approach. In: Frontiers in Protein Structure, Function, and Dynamics; Singh, D.B.; Tripathi, T., Eds.; Springer: Singapore, 2020; pp. 187-212.
[http://dx.doi.org/10.1007/978-981-15-5530-5_8]
[12]
Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Computeraided Drug Des., 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[13]
Bello, M.; Martínez-Archundia, M.; Correa-Basurto, J. Automated docking for novel drug discovery. Expert Opin. Drug Discov., 2013, 8(7), 821-834.
[http://dx.doi.org/10.1517/17460441.2013.794780] [PMID: 23642085]
[14]
Fischer, A.; Smieško, M.; Sellner, M.; Lill, M.A. Decision making in structure-based drug discovery: Visual inspection of docking results. J. Med. Chem., 2021, 64(5), 2489-2500.
[http://dx.doi.org/10.1021/acs.jmedchem.0c02227] [PMID: 33617246]
[15]
ten Brink, T.; Exner, T.E. Influence of protonation, tautomeric, and stereoisomeric states on protein-ligand docking results. J. Chem. Inf. Model., 2009, 49(6), 1535-1546.
[http://dx.doi.org/10.1021/ci800420z] [PMID: 19453150]
[16]
Shoichet, B.K.; Leach, A.R.; Kuntz, I.D. Ligand solvation in molecular docking. Proteins, 1999, 34(1), 4-16.
[http://dx.doi.org/10.1002/(SICI)1097-0134(19990101)34:1<4::AID-PROT2>3.0.CO;2-6] [PMID: 10336382]
[17]
Jones, D.; Kim, H.; Zhang, X.; Zemla, A.; Stevenson, G.; Bennett, W.F.D.; Kirshner, D.; Wong, S.E.; Lightstone, F.C.; Allen, J.E. Improved protein–ligand binding affinity prediction with structure-based deep fusion inference. J. Chem. Inf. Model., 2021, 61(4), 1583-1592.
[http://dx.doi.org/10.1021/acs.jcim.0c01306] [PMID: 33754707]
[18]
Bender, B.J.; Gahbauer, S.; Luttens, A.; Lyu, J.; Webb, C.M.; Stein, R.M.; Fink, E.A.; Balius, T.E.; Carlsson, J.; Irwin, J.J.; Shoichet, B.K. A practical guide to large-scale docking. Nat. Protoc., 2021, 16(10), 4799-4832.
[http://dx.doi.org/10.1038/s41596-021-00597-z] [PMID: 34561691]
[19]
Reichert, N.; Choukrallah, M.A.; Matthias, P. Multiple roles of class I HDACs in proliferation, differentiation, and development. Cell. Mol. Life Sci., 2012, 69(13), 2173-2187.
[http://dx.doi.org/10.1007/s00018-012-0921-9] [PMID: 22286122]
[20]
Ho, T.C.S.; Chan, A.H.Y.; Ganesan, A. Thirty years of HDAC inhibitors: 2020 insight and hindsight. J. Med. Chem., 2020, 63(21), 12460-12484.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00830] [PMID: 32608981]
[21]
Porter, N.J.; Christianson, D.W. Structure, mechanism, and inhibition of the zinc-dependent histone deacetylases. Curr. Opin. Struct. Biol., 2019, 59, 9-18.
[http://dx.doi.org/10.1016/j.sbi.2019.01.004] [PMID: 30743180]
[22]
Ropero, S.; Esteller, M. The role of histone deacetylases (HDACs) in human cancer. Mol. Oncol., 2007, 1(1), 19-25.
[http://dx.doi.org/10.1016/j.molonc.2007.01.001] [PMID: 19383284]
[23]
Weichert, W. HDAC expression and clinical prognosis in human malignancies. Cancer Lett., 2009, 280(2), 168-176.
[http://dx.doi.org/10.1016/j.canlet.2008.10.047] [PMID: 19103471]
[24]
Chakrabarti, A.; Melesina, J.; Kolbinger, F.R.; Oehme, I.; Senger, J.; Witt, O.; Sippl, W.; Jung, M. Targeting histone deacetylase 8 as a therapeutic approach to cancer and neurodegenerative diseases. Future Med. Chem., 2016, 8(13), 1609-1634.
[http://dx.doi.org/10.4155/fmc-2016-0117] [PMID: 27572818]
[25]
Chakrabarti, A.; Oehme, I.; Witt, O.; Oliveira, G.; Sippl, W.; Romier, C.; Pierce, R.J.; Jung, M. HDAC8: A multifaceted target for therapeutic interventions. Trends Pharmacol. Sci., 2015, 36(7), 481-492.
[http://dx.doi.org/10.1016/j.tips.2015.04.013] [PMID: 26013035]
[26]
Wang, D. Computational studies on the histone deacetylases and the design of selective histone deacetylase inhibitors. Curr. Top. Med. Chem., 2009, 9(3), 241-256.
[http://dx.doi.org/10.2174/156802609788085287] [PMID: 19355989]
[27]
Somoza, J.R.; Skene, R.J.; Katz, B.A.; Mol, C.; Ho, J.D.; Jennings, A.J.; Luong, C.; Arvai, A.; Buggy, J.J.; Chi, E.; Tang, J.; Sang, B.C.; Verner, E.; Wynands, R.; Leahy, E.M.; Dougan, D.R.; Snell, G.; Navre, M.; Knuth, M.W.; Swanson, R.V.; McRee, D.E.; Tari, L.W. Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. Structure, 2004, 12(7), 1325-1334.
[http://dx.doi.org/10.1016/j.str.2004.04.012] [PMID: 15242608]
[28]
Brunsteiner, M.; Petukhov, P.A. Insights from comprehensive multiple receptor docking to HDAC8. J. Mol. Model., 2012, 18(8), 3927-3939.
[http://dx.doi.org/10.1007/s00894-011-1297-8] [PMID: 22431224]
[29]
Bermúdez-Lugo, J.A.; Perez-Gonzalez, O.; Rosales-Hernández, M.C.; Ilizaliturri-Flores, I.; Trujillo-Ferrara, J.; Correa-Basurto, J. Exploration of the valproic acid binding site on histone deacetylase 8 using docking and molecular dynamic simulations. J. Mol. Model., 2012, 18(6), 2301-2310.
[http://dx.doi.org/10.1007/s00894-011-1240-z] [PMID: 21968575]
[30]
Sixto-López, Y.; Gómez-Vidal, J.A.; de Pedro, N.; Bello, M.; Rosales-Hernández, M.C.; Correa-Basurto, J. Hydroxamic acid derivatives as HDAC1, HDAC6 and HDAC8 inhibitors with antiproliferative activity in cancer cell lines. Sci. Rep., 2020, 10(1), 10462.
[http://dx.doi.org/10.1038/s41598-020-67112-4] [PMID: 32591593]
[31]
Luna-Palencia, G.; Martinez-Ramos, F.; Vasquez-Moctezuma, I.; Fragoso-Vazquez, M.; Mendieta-Wejebe, J.; Padilla-Martínez, I.; Sixto-Lopez, Y.; Mendez-Luna, D.; Trujillo-Ferrara, J.; Meraz-Rios, M.; Fonseca-Sabater, Y.; Correa-Basurto, J. Three amino acid derivatives of valproic acid: Design, synthesis, theoretical and experimental evaluation as anticancer agents. Anticancer. Agents Med. Chem., 2014, 14(7), 984-993.
[http://dx.doi.org/10.2174/1871520614666140127113218]
[32]
Prestegui-Martel, B.; Bermúdez-Lugo, J. A.; Chávez-Blanco, A.; Dueñas-González, A.; García-Sánchez, J. R.; Pérez-González, O. A.; Padilla-Martínez, I. I.; Fragoso-Vázquez, M. J.; Mendieta-Wejebe, J. E.; Correa-Basurto, A. M.; Méndez-Luna, D.; Trujillo-Ferrara, J.; Correa-Basurto, J. N N-(2-Hydroxyphenyl)-2-Propylpentanamide, a valproic acid aryl derivative designed in silico with improved anti-proliferative activity in hela, rhabdomyosarcoma and breast cancer cells. J. Enzyme Inhib. Med. Chem., 2016, 31(sup 3), 140-149.
[http://dx.doi.org/10.1080/14756366.2016.1210138]
[33]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B.G.; Gomperts, R.; Mennucci, B.; Hratchian, H.P.; Ortiz, J.V.; Izmaylov, A.F.; Sonnenberg, J.L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V.G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J.A., Jr; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Millam, J.M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Farkas, O.; Foresman, J.B.; Fox, D.J. Gaussian, Inc., Wallingford CT; GaussView 5.0. Wallingford, E.U.A., 2016.
[34]
Morris, Garrett M. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[35]
Welker Leng, K.R.; Castañeda, C.A.; Decroos, C.; Islam, B.; Haider, S.M.; Christianson, D.W.; Fierke, C.A. Phosphorylation of histone deacetylase 8: Structural and mechanistic analysis of the phosphomimetic S39E mutant. Biochemistry, 2019, 58(45), 4480-4493.
[http://dx.doi.org/10.1021/acs.biochem.9b00653] [PMID: 31633931]
[36]
Decroos, C.; Bowman, C.M.; Moser, J.A.S.; Christianson, K.E.; Deardorff, M.A.; Christianson, D.W. Compromised structure and function of HDAC8 mutants identified in Cornelia de Lange Syndrome spectrum disorders. ACS Chem. Biol., 2014, 9(9), 2157-2164.
[http://dx.doi.org/10.1021/cb5003762] [PMID: 25075551]
[37]
Osko, J.D.; Porter, N.J.; Decroos, C.; Lee, M.S.; Watson, P.R.; Raible, S.E.; Krantz, I.D.; Deardorff, M.A.; Christianson, D.W. Structural analysis of histone deacetylase 8 mutants associated with Cornelia de Lange Syndrome spectrum disorders. J. Struct. Biol., 2021, 213(1), 107681.
[http://dx.doi.org/10.1016/j.jsb.2020.107681] [PMID: 33316326]
[38]
Santos-Martins, D.; Forli, S.; Ramos, M.J.; Olson, A.J. AutoDock4(Zn): an improved AutoDock force field for small-molecule docking to zinc metalloproteins. J. Chem. Inf. Model., 2014, 54(8), 2371-2379.
[http://dx.doi.org/10.1021/ci500209e] [PMID: 24931227]
[39]
Garrido González, F.P.; Mancilla Percino, T. Synthesis, docking study and inhibitory activity of 2,6-diketopiperazines derived from α-amino acids on HDAC8. Bioorg. Chem., 2020, 102, 104080.
[http://dx.doi.org/10.1016/j.bioorg.2020.104080] [PMID: 32683182]
[40]
Amin, S.A.; Adhikari, N.; Jha, T. Exploration of histone deacetylase 8 inhibitors through classification QSAR study: Part II. J. Mol. Struct., 2020, 1204, 127529.
[http://dx.doi.org/10.1016/j.molstruc.2019.127529]
[41]
Rajaraman, S.; Balakrishnan, R.; Deshmukh, D.; Ganorkar, A.; Biswas, S.; Pulya, S.; Ghosh, B. HDAC8 as an emerging target in drug discovery with special emphasis on medicinal chemistry. Future Med. Chem., 2023, 15(10), 885-908.
[http://dx.doi.org/10.4155/fmc-2023-0054] [PMID: 37227732]
[42]
Luna-Palencia, G.R.; Correa-Basurto, J.; Trujillo-Ferrara, J.; Meraz-Ríos, M.A.; Vásquez-Moctezuma, I. Epigenetic evaluation of N-(2-hydroxyphenyl)-2-Propylpentanamide, a valproic acid aryl derivative with activity against hela cells. Curr. Mol. Pharmacol., 2021, 14(4), 570-578.
[http://dx.doi.org/10.2174/1874467213666200730113828] [PMID: 32744980]
[43]
Sixto-López, Y.; Rosales-Hernández, M.C.; Contis-Montes de Oca, A.; Fragoso-Morales, L.G.; Mendieta-Wejebe, J.E.; Correa-Basurto, A.M.; Abarca-Rojano, E.; Correa-Basurto, J. N-(2′-Hydroxyphenyl)-2-Propylpentanamide (HO-AAVPA) inhibits HDAC1 and increases the translocation of HMGB1 levels in human cervical cancer cells. Int. J. Mol. Sci., 2020, 21(16), 5873.
[http://dx.doi.org/10.3390/ijms21165873] [PMID: 32824279]
[44]
Esther Rubavathy, S.M.; Palanisamy, K.; Priyankha, S.; Thilagavathi, R.; Prakash, M.; Selvam, C. Discovery of novel HDAC8 inhibitors from natural compounds by in silico high throughput screening. J. Biomol. Struct. Dyn., 2023, 41(19), 9492-9502.
[http://dx.doi.org/10.1080/07391102.2022.2142668] [PMID: 36369945]
[45]
Zagni, C.; Citarella, A.; Oussama, M.; Rescifina, A.; Maugeri, A.; Navarra, M.; Scala, A.; Piperno, A.; Micale, N. Hydroxamic acid-based histone deacetylase (HDAC) inhibitors bearing a pyrazole scaffold and a cinnamoyl linker. Int. J. Mol. Sci., 2019, 20(4), 945.
[http://dx.doi.org/10.3390/ijms20040945] [PMID: 30795625]
[46]
Lukac, I.; Wyatt, P.G.; Gilbert, I.H.; Zuccotto, F. Ligand binding: Evaluating the contribution of the water molecules network using the fragment molecular orbital method. J. Comput. Aided Mol. Des., 2021, 35(10), 1025-1036.
[http://dx.doi.org/10.1007/s10822-021-00416-3] [PMID: 34458939]
[47]
Lionta, E.; Spyrou, G.; Vassilatis, D.; Cournia, Z. Structure-based virtual screening for drug discovery: Principles, applications and recent advances. Curr. Top. Med. Chem., 2014, 14(16), 1923-1938.
[http://dx.doi.org/10.2174/1568026614666140929124445] [PMID: 25262799]
[48]
Chen, D.; Oezguen, N.; Urvil, P.; Ferguson, C.; Dann, S.M.; Savidge, T.C. Regulation of protein-ligand binding affinity by hydrogen bond pairing. Sci. Adv., 2016, 2(3), e1501240.
[http://dx.doi.org/10.1126/sciadv.1501240] [PMID: 27051863]
[49]
Tse, C.; Wickstrom, L.; Kvaratskhelia, M.; Gallicchio, E.; Levy, R.; Deng, N. Exploring the free-energy landscape and thermodynamics of protein-protein association. Biophys. J., 2020, 119(6), 1226-1238.
[http://dx.doi.org/10.1016/j.bpj.2020.08.005] [PMID: 32877664]
[50]
Stoddard, V. In silico design of novel histone deacetylase 4 inhibitors: Design guidelines for improved binding affinity. Int. J. Mol. Sci., 2020, 21(1), 219.
[http://dx.doi.org/10.3390/ijms21010219] [PMID: 33379337]
[51]
Du, J.; Li, W.; Liu, B.; Zhang, Y.; Yu, J.; Hou, X.; Fang, H. An in silico mechanistic insight into HDAC8 activation facilitates the discovery of new small-molecule activators. Bioorg. Med. Chem., 2020, 28(16), 115607.
[http://dx.doi.org/10.1016/j.bmc.2020.115607] [PMID: 32690262]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy